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Abstract. Structural properties of Petri Nets (PN) have an important
role in the process of model validation and analysis. When dealing with
high level Petri nets (HLPN) structural analysis still poses many prob-
lems and often tools go through the unfolding of the HLPN model and
apply PN structural analysis techniques to the unfolded model: with this
approach the symmetries present in the models are completely ignored
and cannot be exploited. Structural properties of HLPN can be defined
as relations among node instances using symbolic and parametric ex-
pressions; the computation of such expressions from the model structure
and annotations requires the development of a specific calculus, as the
one proposed in the literature for Symmetric Nets (SN). When dealing
with Stochastic SN (SSN), comprising stochastic timed transitions and
immediate transitions, structural analysis becomes a fundamental step in
net-level definition of probabilistic parameters. Moreover some structural
relations allow to automatize the derivation of symbolic Ordinary Differ-
ential Equations for the solution of SSN models with huge state space.
The goal of the present paper is to summarize the language defined to
express SNs’ structural relations, to complete the formalization of some
interesting structural properties as expressions of the calculus, and to
provide examples of their use. The algorithms required to support the
calculus for symbolic structural relations computation have been recently
completed and implemented in a tool called SNexpression.

1 Introduction

Structural properties of Petri Nets have an important role in the process of model
validation and analysis, since they can answer interesting questions on the model
potential behavior, that can also be exploited to improve the efficiency of state
space methods.

When dealing with high level Petri nets it is desirable to exploit the possi-
bilities offered by this class of formalisms, among which the ability to represent
systems in a more parametric way and to make regularities in the model struc-
ture explicit. Some HLPN formalism have been devised to make some form of
symmetry easier to exploit at the level of the analysis: an example of formalism
in this class is Symmetric Nets (SN) [6].



While structural properties of PNs usually express relations between nodes in
the model, when turning to HLPN one wants to express relations between node
instances, possibly using symbolic and parametric expressions [8]. The compu-
tation of such expressions from the model structure and annotation requires the
development of a calculus like that proposed in [7,4]. A similar approach has
been applied to HLPN reduction in [9].

In this paper a set of structural properties for the SN formalism are defined:
these employ a number of functional operators (transpose, difference, composi-
tion, etc.) that allow the arc functions and transition guards of the model to
be properly combined. In order to make the calculus closed with respect to its
operators, a language for the (symbolic) structural expressions has been defined,
with a syntax that extends that of SN arc functions. The calculus has been
recently implemented in the SNexpression tool [5] and applied to a number of
interesting cases. The implemented calculus embeds a new, efficient algorithm
for handling the composition operator (see [3]).

The goal of the present paper is to summarize the language defined to express
the model structural properties, and to complete the specification of a number
of interesting structural properties, providing several examples of their use and
showing their usefulness. All the computations presented in the paper have been
carried out using the SNexpression tool which implements the basic calculus used
for deriving the structural properties expressions, but also directly supports the
computation of structural properties on a SN model (automatically producing
the expressions from the model specification, and applying the operators to ob-
tain the result). There are several useful applications for these properties, e.g.,
the derivation of the Extended Conflict Sets (ECS), needed for the net level
specification of quantitative parameters for probabilistic conflict resolution in
stochastic SNs, in analogy with what is done for Generalized Stochastic Petri
nets [1] (the stochastic SN’s unfolding).

The paper continues with a section (Sec. 2) providing all the definitions and
notations needed in the sequel. In Sec. 3 the structural properties that can be
expressed through the language just introduced are defined and some contexts
where they can be helpful are illustrated. In Sec. 4 the computation of the
properties just introduced on a set of examples is illustrated: the rewriting rules
that lead from the initial formulae (of Tab. 1) to the final result belonging to
language L have been implemented in the SNexpression tool, which has been
used to obtain all the results shown in this paper. Finally, Sec. 5 summarizes the
main contribution of this work and outlines ongoing and future developments.

2 Basic definitions and notation

In this section the SN formalism [6] is quickly recalled, then the definitions and
the notation needed in the next sections are introduced.

2.1 The Symmetric Nets formalism

The SN formalism is introduced through an example. The focus is on the color
inscriptions appearing in the model, which are the basis of the calculus intro-
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Fig. 1. The SN model of a relay race.

duced later. Let us consider the model in Fig. 1 describing the dynamics of a
relay race. The net structure is a bipartite graph whose nodes are places (cir-
cles) and transitions4 that represent the state variables and the events that cause
state changes, respectively.

Places are state variables, characterized by a color domain defining the vari-
able type, and expressed as a Cartesian product of basic color classes (disjoint
and finite non empty sets, denoted with capital letters A, B, . . . , Z, which may
be partitioned into two or more static subclasses, and may be ordered). In this
model there are two basic color classes: C = {IT, FR,D,ES}, encoding the
competing teams identifiers, and N = {0, 1, 2, 3} encoding the athletes identi-
fiers; N is an ordered class, that is a successor function is defined on it, inducing
a circular order among its elements (succ(i) = (i + 1)%4). A pair (2-tuple)
〈c, n〉, c ∈ C, n ∈ N represents athlete n of team c. Each place can contain a
multiset of tuples belonging to its color domain: this is called its marking.

Also the transitions have a color domain since they describe parametric
events; the parameters are color variables denoted with small letters with a sub-
script. The letter used for a variable implicitly defines its type which is the color
class denoted by the corresponding capital letter; subscripts are thus used to dis-
tinguish parameters of same type associated with the same transition. Transition
pass in the net of Fig. 1 has tree parameters c : C, n1, n2 : N . Transitions can
have guards, expressed in terms of predicates on transition variables. The model
evolution in time can be simulated by starting from an initial marking (in the
example all colors from class C in place Ready), and firing one of the enabled tran-
sition instances. A transition instance is a pair transition-binding (t, b), where a
binding is an assignment of colors to the transition parameters. For instance a
possible binding for the parameters of pass is c = IT, n1 = 3, n2 = 1; a binding
is valid only if it satisfies the transition guard. Hence a transition color domain
corresponds to the set of all possible valid bindings for that transition. The arcs
connecting transition t to its input, output and inhibitor places (•t, t•, ◦t) are
annotated with functions (denoted by W−(p, t), W+(p, t) and Wh(p, t), respec-
tively) whose domain is the transition color domain (cd(t)), and that map to
(multisets on) the place color domain (Bag(cd(p))). Input and inhibitor arcs ex-
press the conditions for transition enabling, while input and output arcs define
the state change produced by the occurrence (firing) of an enabled transition.

4 In the Stochastic SN formalism white transitions are timed, black transitions are
immediate and have priority over the timed ones.



Definition 1 (Guards syntax). Guards in SN models are boolean expressions
whose terms are basic predicates: the set of basic predicates is: [var1 = var2]
(true when the same color is assigned to var1 and var2), [var1 =!var2] (true
when the color assigned to var1 is the successor of that assigned to var2),
[d(var1) = Ssubclass id] (true when the color assigned to var1 belongs to static
subclass subclass id), and [d(var1) = d(var2)] (true when the colors assigned to
var1 and var2 belong to the same static subclass).

Definition 2 (Arc functions syntax). A SN function W labeling an arc con-
necting transition t and place p, is a mapping W : cd(t)→ Bag(cd(p))

W =
∑
i

λi.Ti[pi], λi ∈ IN (1)

where the sum is a multiset sum and λi are scalars, Ti = 〈f1, . . . , fk〉 are tuples
of class functions, and pi is a guard. Class functions syntax (referring to class
C, without loss of generality) is:

fi =

m∑
k=1

αk.ck +

||C||∑
q=1

βq.SCq
+

m∑
k=1

γk.!ck; αk, βk, γk ∈ Z (2)

Scalars in (2) must be such that no negative coefficients result from the evaluation
of fi for any legal variables binding. ||C|| is the size of the static partition of C.

An arc function is a weighted sum of (possibly guarded) tuples of class
functions. The allowed class functions are: projection (denoted by a variable
name), synchronization/diffusion constant function (denoted by Sclass id), suc-
cessor function (defined only for ordered classes and denoted by ! followed by a
variable name). An arc function is evaluated on a given binding of the transition:
the value of a tuple is the Cartesian product of the value of its elements. The
projection function evaluates to the variable binding, the successor function eval-
uates to the successor of the variable binding, the diffusion/syncronization func-
tion Sclass id is constant and evaluates to the whole set of elements in class id.
The expression Sclass id − var maps to all the elements in class id except for
the binding of variable var. Sometimes it is useful to partition a color class into
static subclasses, denoted by the class identifier with a numeric subscript. In this
case it is also possible to use the diffusion/syncronization function restricted to a
static subclass. A guarded tuple is evaluated as follows: if the guard is false (for a
given binding) it evaluates to the empty multiset, otherwise its value corresponds
to its standard evaluation without the guard.

A transition instance (t, b) is enabled in marking m if for each input place
p of t the multiset W−(p, t)(b) is included in m(p), and for each inhibitor place
p, the multiplicity of each color in Wh(p, t)(b) is greater than the multiplicity
of the corresponding color in m(p). An enabled transition instance may occur,
withdrawing from each input place p the multiset W−(p, t)(b) and adding into
each output place p the multiset W+(p, t)(b).



Let us exemplify the definitions just introduced on the relay race model: it
comprises 6 transitions and 7 places, transition start represents the start of the
race: only variable n is associated with it, representing the number of the first
runner in the race: it is common to all teams. The function on the input arc is
〈SC〉, so the transition is enabled when all elements of color class C are in place
Ready. The function labelling the two output arcs is 〈SC , n〉, hence the firing of
the instance of start with binding n = i produces |C| tokens in places Running
and First colored with a pair 〈ID, i〉. Let us focus on the black transitions in the
model, in particular, on transition pass, since it contains several features: on the
output arcs to place Finish and Running there are two guarded functions which
allow for a conditional behaviour, i.e., when the runner is the last of his team
(i.e., the predecessor of the runner who started the race, stored in place First)
then function W+(pass,Finish) = 〈c, !n1〉[!n1 6= n2] evaluates to empty, while
W+(pass,Finished) evaluates to a multiset containing only one occurrence of
color 〈c〉. Also the output arc from pass to place First is guarded, and produces
the single colored token 〈c, n2〉 only when n1 is not the predecessor of n2. In the
model we can also observe an inhibitor arc, going from place Winner to transition
win, ensuring that only the first team arriving at the end of the race is recorded
as winner: the function Wh(win,Winner) = 〈SC〉 means no tokens must be
present in Winner, in order for win to be enabled. Finally the synchronization
modelled by transition raceEnd makes use of function 〈SC − c〉 that represents
all the teams that have not won the race, i.e., the set of all elements in class C
except for the one bound to variable c (the winner).

2.2 The language to express structural properties

Definition 3 (Language L). Let Σ = {A,B, . . . , Z} be the set of (finite and
disjoint) basic color classes, and let D be any color domain built as Cartesian
product of classes in Σ, (D = AeA × BeB × ... × ZeZ , e∗ ∈ N). Let Ti : D →
Bag(D′) and [g′i] and [gi] SN standard predicates on D′ and D, respectively .

The set of expressions:

L =
{
F : F =

∑
i

λi.[g
′
i]Ti[gi], λi ∈ N+

}
is the language used to express SN structural relations, where Ti = 〈f1, . . . , fl〉
are function-tuples formed by class functions fj, defined in turn as intersections
of language elementary functions {a, !ka, SA, S − a, S−!ka, ∅A} (projection, kth

successor, constant function corresponding to all elements of basic class A, pro-
jection/successor complement and the empty function; where A represents any
basic class and a any variable of type A).

Language L defined in Def. 3 actually extends the set of functions used in
SN: indeed, predicate [g′i], called filter, is not allowed in SN and permits the
elements satisfying the boolean condition g′i to be selected from the result of the
application of Ti[gi]. On the other hand, SN arc functions W−(p, t), W+(p, t),
Wh(p, t) can be written as elements of L. The calculus we provide defines the
following functional operators on L:



F t Transpose F ∩ F ′ Intersection F Support
F − F ′ Difference F + F ′ Sum F ◦ F ′ Composition

All operators but composition apply to elements of L that map to multisets,
and whose definition is consistent with the operator semantics. The composition
is currently defined on a subset of L consisting of functions mapping to sets.

In the sequel the term expression will be used to indicate formulae that
contain language functions and functional operators from the table above. The
symbolic calculus is able to solve all the considered operators, that means L is
closed w.r.t. them. Appropriate rewriting rules have been defined that simplify
an arbitrary expression with operators until an expression in L is obtained. In
some cases we are interested in obtaining an expression where terms are pairwise
disjoint (i.e., when the expression is evaluated for any color in its domain, the
multisets obtained by evaluating each term are disjoint). Each rewriting rule is
based on the algebraic properties of functions appearing as operands.

A detailed description of these rules can be found in [4], where the difference,
intersection, transpose operators rewriting rules have been first introduced. In
[3] the calculus is completed with the details of composition.

3 Structural properties computation

In this section a number of structural properties will be defined and formalized
through expressions in the language introduced in Sec. 2. Examples of compu-
tation of these structural properties will be illustrated in Sec. 4.

Let us first define a symbolic relation between nodes in a Symmetric Net.

Definition 4. [Symbolic relation] Given a binary relation R between the in-
stances of nodes s and s′ of a SN model defined as

R ⊆ (s× C(s))× (s′ × C(s′))

its symbolic representation denoted R(s, s′) is a mapping from C(s′) to 2C(s)

such that
R(s, s′)(c′) = {c : (s, c)R(s′, c′)}for each c′ ∈ C(s′)

We are interested in deriving symbolic relations between instances of SN node
pairs (place-transition, transition-place, transition-transition) in the form of an
expression of L. Such relations are derived by properly combining the SN func-
tions appearing on the arcs connecting the nodes.

Tab. 1 provides the formulae showing how each structural relation depends
on the arc functions. The calculus partially defined in [4] and completed in [3]
allows us to apply transformations defined as rewriting rules that are repeatedly
applied to the formulae according to the semantics of the operators appearing
in them, until one obtains as a result an expression of language L.
Some ausiliary relations: SbT, SfP,AbT,AtP . The first relations that are intro-
duced here will be used to characterize more complex ones, but can also be used
for other interesting applications [2]. They involve a pair of nodes, place and
transition, directly connected through one or more arcs:



SbT (p, t) = W−(t, p)−W+(t, p)

SfP (t, p) = W−(t, p)−W+(t, p)
t

= SbT (p, t)t

AbT (p, t) = W+(t, p)−W−(t, p)

AtP (t, p) = W+(t, p)−W−(t, p)
t

= AbT (p, t)t

SC(t, t′) =
⋃

p∈•t∩•t′ SfP (t, p) ◦W−(t′, p) ∪
⋃

p∈t•∩◦t′ AtP (t, p) ◦Wh(t′, p)

SC(t, t) =
⋃

p∈•t SfP (t, p) ◦W−(t, p)− Id ∪
⋃

p∈t•∩◦t AtP (t, p) ◦Wh(t, p)− Id

SCC(t, t′) =
⋃

p∈t•∩•t′ AtP (t, p) ◦W−(t′, p) ∪
⋃

p∈•t∩◦t′ SfP (t, p) ◦Wh(t′, p)

SME(t, t′) =
⋃

p∈•t∩◦t′W
−(t, p)

t
◦Wh(t′, p) ∪

⋃
p∈◦t∩•t′W

h(t, p)
t
◦W−(t′, p)

simple

Table 1. Structural relations are obtained by properly combining the arc functions
through intersection, transpose, sum, difference, support, and composition operators.

SbT (p, t) : cd(t) → 2cd(p), Subtracted by Transition: provides the set of colored
tokens that a given instance of t withdraws from p; it is simply defined as (the
support of) the multiset difference of the function appearing on the input arc
and the function appearing on the output arc connecting t and p;

SfP (t, p) = SbT t(p, t) : cd(p)→ 2cd(t), Subtracts from Place (transpose of SbT ):
given a color of p it provides the set of instances of t that withdraw it;

AbT (p, t) : cd(t)→ 2cd(p), Added by Transition: provides the set of colored tokens
an instance of t adds into p when it is fired; it is simply defined as (the support
of) the multiset difference of the function appearing on the output arc and the
function appearing on the input arc connecting t and p;

AtP (t, p) = AbT t(p, t) : cd(p)→ 2cd(t), Adds to Place (transpose of AbT ): given
a color of p it provides the color instances of t that add it into p

Structural Conflict: Two transition instances (t, c) and (t′, c′) are in conflict
in a given marking M if the firing of the former produces a change in state
that modifies the enabling condition of the latter, possibly disabling it. The
structural conflict relation defines some conditions in the model structure and its
annotations, that may lead to an actual conflict in some marking. The symbolic
relation SC(t, t′) has color domain cd(t′) and co-domain 2cd(t), so that when
applied to a color c′ in cd(t′) provides the subset of cd(t) identifying the instances
(t, c) of t that may disable (t′, c′). An instance (t, c) may disable (t′, c′) either
because it withdraws a token from an input place which is shared by the two
transitions, or because it adds a token into an output place which is connected
to (t′) through an inhibitor arc. Let us consider the two cases separately: let
p ∈ •t′ ∩ •t, function W−(t′, p) gives the set of colored tokens in p required
for the enabling of the instances of t′. Since SfP (t, p) gives the instances of t
that withdraw a given colored token from p, then the composition SfP (t, p) ◦
W−(t′, p) provides the instances of t that may disable a given instance of t′

because they require non-disjoint sets of colored tokens in the shared input place
p. Similarly for the case of p ∈ t•∩ ◦t′ function Wh(t′, p) gives the set of colored
tokens in p that may disable t′, while AtP (t, p) gives the instances of t that add a

given colored token in p, so that AtP (t, p) ◦Wh(t′, p) provides the instances of t
that may disable a given instance of t′ because they add in p colored tokens that
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may disable t′. Finally SC(t, t′) is obtained by summing up over all common
input places and common output-inhibitor places. The complete definition is
shown in Tab. 1. Observe that it may be the case that different instances of the
same transition are in conflict. The same expression can be used in this case, but
at the end one must subtract from the set of conflicting instances the instance
to which SC is applied: this explains why Id is subtracted. Observe that the SC
relation is not symmetric.

Structural Causal Connection: Two transition instances (t, c) and (t′, c′) are in
causal connection in a given marking M if the firing of the former produces
a change in state that modifies the enabling condition of the latter, possibly
causing its enabling. The structural causal connection relation defines some con-
ditions in the model structure and its annotations, that may lead to an actual
causal connection in some marking. The symbolic relation SCC(t, t′) has color
domain cd(t′) and co-domain 2cd(t), so that when applied to a color c′ in cd(t′)
provides the subset of cd(t) identifying the instances (t, c) of t that may cause
the enabling of (t′, c′). In this case we should concentrate on output places of t
that are input places for t′ and on input places of t that are inhibitor places for
t′, and in the former case the expression AtP (t, p)◦W−(t′, p) is used, while in the

latter case the expression SfP (t, p) ◦Wh(t′, p) is used. The complete definition
is shown in Tab. 1.

Structural Mutual Exclusion: Two transition instances (t, c) and (t′, c′) are in
(structural) mutual exclusion if the enabling of (t′, c′) in any M implies the fact
that (t, c) is not enabled in M , and viceversa. This situation arises when in the
net structure a place p exists that is input place for t and inhibitor place for
t′, and the number of tokens (of any color) required in the input place p for
the enabling of t is greater than or equal to the upper bound on the number of
tokens (of the same color) in p imposed by the inhibitor arc connecting p and t′.

In a (uncolored) Petri Net (possibly obtained by unfolding an SN) the nec-
essary structural condition for two transitions to be in SME relation is the one
depicted in Fig. 2.(a) where t and t′ are in SME relation because, with respect to
place P , the condition for the enabling of t in marking M is M(P ) ≥ n while the
condition for the enabling of t′ in M is M(P ) < m; since ((M(P ) ≥ n) ∧ (m ≤
n)) ⇒ not(M(P ) < m) and ((M(P ) < m) ∧ (m ≤ n)) ⇒ not(M(P ) ≥ n) the
two transitions are indeed in SME relation, and the relation is symmetric.

When turning to SN models, we are looking for SME conditions on transition
instances. The patterns that may lead to mutual exclusion of t and t′ instances
are depicted in Figs. 2.(b), 2.(c), and 2.(d).

Let us define a symbolic relation SME(t, t′) : cd(t′) → 2cd(t) defined as fol-
lows: SME(t, t′)(c′) = {c ∈ cd(t) : (t, c)SME(t′, c′)} i.e. a function giving the



set of instances of t that are surely disabled in any marking where instance (t′, c′)
is enabled. If all functions on input and inhibitor arcs were all functions mapping
onto sets (i.e. on multisets with all multiplicities ≤ 1) than the SME relation
could be computed by means of the expression shown in Tab. 1 (in the table it
is called SMEsimple, because of the restriction on the functions W− and Wh

involved in the expression). The expression accounts for any possible structural
pattern, including the general situation like the one depicted in Fig. 2.(d). The
expression for SMEsimple(t, t′) is the union of two parts, the former consid-
ers the case in which t′ is connected to P through an inhibitor arc, while t is
connected to P via an input arc; the latter considers the case in which t′ is
connected to P through an input arc and t instead through an inhibitor arc.
Of course the two situations may overlap (as in Fig. 2.(d)), moreover this may
apply also when t and t′ are the same transition (some instances of t may well
be in mutual exclusion with other instances of the same transition, as shown in
next section).

The expression Wh(t, p)
t ◦W−(t′, p) (with p ∈◦ t ∩• t′) applied to a given

color c ∈ cd(t′) first derives the set of colored tokens withdrawn from p by
t′, then by applying the transpose of Wh(t, p) to this set, one obtains all t
instances that would be inhibited by any color in such set. The other expression

W−(t, p)
t ◦Wh(t′, p) instead (with p ∈• t∩◦ t′) applied to a given color c ∈ cd(t′)

gives the set of colors that should not appear in p for t′ to be enabled; by applying
the transpose of W−(t, p) to this set one obtains all instances of t that require
those colors in p to be enabled.

Let us now consider a more general case, where the input and inhibitor arcs
are labelled with functions that map onto proper multisets. We first need to
introduce an operator useful to define the SME relation in the general setting.
Let g : Dg → Bag(D) and h : Dh → Bag(D) be two arc functions with same
codomain, the comparison function g D h is defined as:

g D h(c) = {c′ ∈ Dg : ∃d ∈ D, g(c′)(d) ≥ h(c)(d) > 0}∀c ∈ Dh

For any color c ∈ Dh this function gives the set of all colors c′ ∈ Dg such that
g(c′) ∈ Bag(D) contains at least one element d, also contained in h(c), whose
multiplicity is greater in g(c′) than in h(c).

If we consider now a situation where g is the arc function W−(t, p) : cd(t)→
cd(p) associated with the input arc from p to t and h is the arc function
Wh(t′, p) : cd(t′) → cd(p) associated with the inhibitor arc from p to t′, then
SMEH(t, t′, p) = g D h. In words: given an instance (t′, c) of t′ it computes
the set of instances of t which are surely disabled when (t′, c) is enabled, be-
cause of place p, which is inhibitor for t′ and input for t. If we are in the
situation of Fig. 2.(d), where there is another pair of input-inhibitor arcs de-
parting from p and directed towards t′ and t, respectively, we can take the
transpose of function SMEH(t′, t, p) to obtain another type of SME relation
SMEI(t, t′, p) = SMEH(t′, t, p)t which, given an instance (t′, c) of t′ , returns
the set of instances of t which are surely disabled if (t′, c) is enabled, because of
place p which is input for t′ and inhibitor for t. Finally

SME(t, t′) =
⋃
p

SMEH(t, t′, p) + SMEI(t, t′, p) =
⋃
p

SMEH(t, t′, p) + (SMEH(t′, t, p))t



Let’s define an algorithm implementing the computation of SMEH(t, t′, p): it
is based on the representation of functionsWh(t′, p),W−(t, p),W−(t′, p),Wh(t, p)
in the form of weighted sums of pairwise disjoint terms such that each term is
in the form [b′i]〈f1, . . . , fl〉[bi], where functions fi are intersections of language
elementary functions (see Def. 3), and b′i, bi are standard predicates. In the se-
quel, let g be the function labelling the input arc (of t or t′) and h the function
labelling the inhibitor arc (of t or t′). They are in the form:

gt =

K∑
i=1

mi.G
t
i h =

K′∑
i=1

ni.Hi

Since the terms Gi are disjoint (and hence so are the terms Gt
i) and the terms

Hj are disjoint we can compare directly the weights of pairs Gt
i, Hj without

instantiating the functions on a specific colour. We have mutual exclusion when
mi ≥ nj , hence SMEH(t, t′) =

⋃
i,j:mi≥nj

Gt
i ◦Hj .

procedure SMEH(t, t′, p) :

Let: g = W−(t, p) and h = Wh(t′, p)

gt =
∑K

i=1 mi.G
t
i, Gt

i ∩Gt
j = ∅, ∀i 6= j; h =

∑K′

i=1 ni.Hi, Hi ∩Hj = ∅, ∀i 6= j

R = ∅
for each i = 1, . . . ,K do

for each j = 1, . . . ,K′ do

if mi ≥ nj

R = R ∪Gt
i ◦Hj

return R

Let us apply the algorithm to the example in Fig. 2.(e) which corresponds to
the pattern in Fig. 2.(b) with t2 corresponding to t and t1 corresponding to
t’. The color class C has two static subclasses, C1 and C2. The functions on
the arcs, both with domain and codomain C, are g = 4〈S − c〉 + 8〈c〉 and
h = 4〈c〉[c ∈ C1] + 7〈c〉[c ∈ C2] observe that in both functions the two terms
of the sum are disjoint. In this case the (multiset) transpose of g is equal to g
itself gt = 4〈S − c〉 + 8〈c〉. In order to compute SMEH(t2, t1, P) we compare
the coefficients of the two terms in gt (gt1 and gt2) and those of h (h1 and h2): gt1
has coefficient 4, which is equal to that of h1, while gt2 has coefficient 8, greater
than those of both h1 and h2. Hence SMEH(t2, t1, P) = gt1 ◦ h1 + gt2 ◦ h1 +
gt2 ◦ h2 = 〈S − c〉[c ∈ C1] + 〈c〉[c ∈ C1] + 〈c〉[c ∈ C2] after some simplifications
we obtain: SMEH(t2, t1, P) = 〈S − c〉[c ∈ C1] + 〈c〉. Indeed, if t1 is enabled
for a given binding c = a in C1 there are less than 4 tokens of that color in
P, hence all instances of t2 with binding c 6= a are not enabled because they
need at least 4 tokens of color a in P; if t1 is enabled for a given binding c = b
in C2 there must be less than 7 tokens of that color in P, hence all instances
of t2 with same binding are not enabled since they require 8 tokens of that
color. In this simple example SME(t2, t1) = SMEH(t2, t1, P). Observe that
SME(t1, t2) = SME(t2, t1)t = 〈S − c ∩ SC1

〉[c ∈ C1] + 〈SC1
〉[c ∈ C2] + 〈c〉:

the interpretation of this result is left to the reader.



Extended Conflict Sets (ECS): In Stochastic SN (SSN) models, an extension of
SNs comprising timed transitions (with exponentially distributed delays) and
immediate transitions (firing in 0 time), structural conflict relations are used
to identify at the net level subsets of immediate transitions whose firing order
may influence the relative probability of alternative immediate transition fir-
ing sequences.5 Immediate transitions that are in different ECSs are instead
independent and can be fired in any order. ECS computation requires to in-
troduce the Symmetric and Transitive closure of the SC relation: this new re-
lation is denoted SSC∗. The first step to compute the desired relation con-
sists in making the SC relation Symmetric: SSC(t, t′) = SC(t, t′) ∪ SCt(t′, t).
The transitive closure is computed iteratively as follows: let us consider ma-
trix M0 whose rows and columns are indexed on the (immediate) transitions
ti ∈ I, and such that M0(ti, tj) = SSC(ti, tj). A family {M1,M2, ...,Mn} of
matrices can be derived by applying the following transformation: Mi+1(tl, tj) =
M i ∪ ⋃

tk∈I M
i(tl, tk) ◦M i(tk, tl). Intuitively each iteration adds into element

(tl, tj) of the matrix new (farther) indirect connections between tl and tj estab-
lished by transitivity through an intermediate transition tk. The iterative process
eventually reaches a fixed point: Mn+1 = Mn, and the elements of Mn contain
the information needed to symbolically express all the ECS of the model (the
upper bound where the iterations necessarily stop if it did not stop earlier, is a
matrix full of functions in the form 〈SCj , SCi , ..., SCn〉). A few examples of ECS
computation are shown in Sec. 4.

4 SNexpression at work

In this section the structural property computation algorithms, as implemented
in the SNexpression tool [5] are applied to three examples. All the results de-
scribed in this section are obtained using SNexpression, a tool implementing the
calculus presented in the previous section: it provides also direct computation of
a few structural properties of SN models. With respect to the version presented
in [5] the tool now has some new features, in particular the extension of all
operators, except composition, to multisets. The tool can be downloaded from:
http://www.di.unito.it/~depierro/SNex/. Tab. 2 in the appendix contains
a summary of the commands syntax accepted by the SNexpression user interface
and used to illustrate the examples in this section.

4.1 The relay race model

Let us check some structural properties of the relay race model of Fig. 1 in-
troduced in Sec. 2: for example let us consider the structural causal connection
between transitions start and run; there is only one place that connects the
two transitions, i.e. Running. According to Tab. 1 the formula for computing

this property is AtP (start, Running) ◦ W−(run,Running), and substituting

AtP with its definition we obtain Atp(start, run) = W+(start, Running)
t
. The

5 This is due to the way conflicts among enabled immediate transitions are probabilis-
tically solved, by normalization of their weights to obtain the probabilities.



tool can be exploited for the calculation of the property either by submitting
directly the following commands:

f := @N <S_C,n> g := @C,N <c,n>

sf(f’) => <n> this expression corresponds to AtP(start,Running)

s(f’.g) => <n>

(here the symbol => is used to indicate the result returned by the tool, the
symbol := instead allows to assign expressions to symbols, the syntax sf(expression)
corresponds to a request to apply the operators), or reading the net (prepared
in an appropriate textual format) and submitting the command for structural
causal connection computation:

load "relayrace.sn"

SCC(start,run,Running) => <n>

The meaning of this result is: given an instance of transition run, e.g. with
binding c = IT, n = 1, the instance of start that may enable is that with n = 1.
Indeed, only when the race starts it happens that run becomes enabled due to
the firing of start, since the next instance, until the race ends, are instead
activated by the firing of transition pass:

SCC(pass,run,Running) = <c_1,!-1n_1,S-n_1>

The instances of pass (whose variables are c, n 1 and n 2) that can enable a
given instance of run (variables c and n) can only be those involving the same
team (c has the same value in pass and run) and the variables n 1 and n 2
of pass are the predecessor of variable n of run, and any element of N but n,
respectively.

Let us now evaluate a situation of potential confusion when the relay race
model is interpreted as a Stochastic SN, with stochastically timed transitions,
the white rectangles, and immediate transitions, the black ones. The presence
of confusion in such a kind of model is a symptom of an underspecified be-
haviour (from the point of view of a probabilistic characterization of conflicts
resolution). In this case the potential confusion involves transitions pass and
win: the folded structure of the high level model hides the structural con-
flict existing among the instances of win due to the presence of both an out-
put arc and an inhibitor arc connecting this transition and place Winner. We
want to compute the auto-conflicts of transition win: SC(win,win,Winner) =

AtP (win,Winner) ◦Wh(win,Winner)− Id
SC(win,win,Winner) => <S-c>

Indeed the firing of any instance of win, e.g. with c = IT , is in conflict with
any other instance of the same transition (any c ∈ C\{IT}) since only one team
can win the race. Composing the function on the arc from place Finished to
transition win with the outcome of the SC relation, we obtain the colored tokens
that the conflicting instances withdraw from place Finished; finally composing
the transpose of the function on the arc from pass to Finished to the result of
the last operation provides the instances of pass that may enable some instance
of win in conflict with the instance we started with (e.g. the instance with c =

IT ). Summarizing f := W+(pass, F inished)t◦W−(win, F inished)◦ < S−c > is
a function from cd(win) to cd(pass) indicating the possible presence of stochastic
confusion in markings where both pass and win are concurrently enabled.
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Fig. 3. A subnet from a FMS model.

f1 := @C <c> f2 := @C <S-c> f3 := @C,N^2 <c>[!n_1=n_2]

sf(f1.f2) => <S-c>

s(f3’.f1.f2) => [n_1 = !-1n_2]<S-c,S_N,S_N>

The interpretation of the result, a language expression with filter, is that
given an instance of win, the instances of pass that may produce confusion, if
enabled together with the former, are those involving a different team (S − c)
and such that n1 is the predecessor of n2. In other words, n1 is the identifier of
the athlete running the last section of the race (otherwise the arc function from
pass and place Finish would represent an empty set, and the instance of pass
would not enable any instance of win).

4.2 Machines scheduling policy in a Flexible Manufacturing System

Let us consider the model in Fig. 3, which is a small portion of a model repre-
senting a Flexible Manufacturing System (FMS) producing two types of parts. In
[1] (Chapter 8) a GSPN representing such system is presented and studied. Here
we concentrate only on the part of the model representing the scheduling policy
for two machines that can process both part types. Place Raw represents a buffer
of raw parts: the colors in class C allow to distinguish between the parts of type
a and b. There are two machines M2 and M3 that can process both part types,
however machine M2 processes parts of type a more efficiently than M3, on the
other hand machine M3 processes parts of type b more efficiently than M2, for
this reason the scheduling policy for parts waiting in place Raw tries to allocate as
much as possible parts of type a on M2 and parts of type b on M3 (but without
leaving a machine idle if there is at least one waiting part in place Raw). Place
Mac represents the idle machines: colors a and b are used to identify also the
machines, since there is a natural association of each machine with a part type
for efficiency reasons. The scheduling policy is hidden in transition t1, since its
instances correspond to the possible scheduling choices. Using the calculus it is
possible to discover the structural relations existing among the possible instances
of t1. Structural conflict among t1 instances is computed through the following
formula: SfP (t1, Raw)◦W−(t1, Raw)− Id∪SfP (t1,Mac)◦W−(t1,Mac). The
two terms can be computed by SNexpression through the following commands:

load "FMS.sn"

SC(t1,t1,Raw) => <c_1,S-c_2> SC(t1,t1,Mac) => <S-c_1,c_2>

sf(@C^2 <c_1,S-c_2> + <S-c_1,c_2>) => <c_1,S-c_2> + <S-c_1,c_2>

Hence the instances of t1 potentially in conflict with a given instance of
the same transition are those with variable c 1 bound to the same value as the
first instance, and variable c 2 bound to a different value, or viceversa, different
value for variable c 1 and same value for c 2. Since there are also inhibitor
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Fig. 4. ECS computation examples.

arcs connecting places Raw and Mac to transition t1 we should check also the
structural mutual exclusion relation. By applying the algorithm presented in
Sec. 3 the following result can be computed (here we show the commands to
obtain them through SNexpression):

SME(t1,t1,Raw) => <S-c_1,c_1>[c_1 = c_2] + <c_2,S_C>[c_1 != c_2]

SME(t1,t1,Mac) => <S-c_2,c_1>[c_1 != c_2] + <c_2,S-c_2>

sf( <S-c_1,c_1>[c_1 = c_2] + <c_2,S_C>[c_1 != c_2] +

<S-c_2,c_1>[c_1 != c_2] + <c_2,S-c_2>) => <S-c_1,c_1>[c_1 = c_2] +

<S-c_2,c_1>[c_1 != c_2] + <c_1,S-c_1>[c_1 = c_2] + <c_2,S_C>[c_1 != c_2]

From this result we can infer that the scheduling policy is deterministic,
hence the weights associated with the instances of t1 are irrelevant for the char-
acterization of the stochastic process associated with the model. Let us consider
the two cases: c 1=c 2 and c 1!=c 2. In the former case any other instance
with the two variables bound to different values (represented by the two terms
<S-c 1,c 1>[c 1=c 2] + <c 1,S-c 1>[c 1=c 2]) are in mutual exclusion with
the considered instance; the only instance which is not mutually exclusive is the
one with c 1=c 2 and both variables bound to a different value w.r.t. the refer-
ence instance, however we can verify that the two instances with c 1 and c 2

bound to the same value are not in conflict, so they are independent (if both
enabled they can fire in any order without interfering with each other). Let us
now consider the case c 1!=c 2, the t1 reference instance is in mutual exclusion
with all other instances, hence again there is no conflict to solve.

4.3 ECS computation

In this section the ECS computation technique is illustrated through three ex-
amples, depicted in Fig. 4. The first example in Fig. 4(a) is very simple: the
SC and SSC relations computation gives the following results: SSC(t1, t2) =
SC(t1, t2) = 〈a〉, SSC(t2, t3) = SC(t2, t3) = 〈a〉 (there is no structural conflict
between t1 and t3, due to the net structure, nor among the instances of the same
transition, due to the arc functions). Hence matrix M0 and M1 are as follows:

M0 =

 0 a 0
a 0 a
0 a 0

 M1 = M2 =

 0 a a
a 0 a
a a 0


The elements of matrix M1 can be computed by applying the formulae pre-
sented in Sec. 3; so for example M1(t3, t1) is derived by computing the result
of the following expression: IDa + IDa ◦ 0A + IDa ◦ IDa + 0A ◦ IDa = IDa where



IDa = @A〈a〉 and 0A is the empty function (defined on domain A). In fact, only
instances with same color a ∈ A of t1 and t2 withdraw the same colored tokens
from P1, and only instances with same color a ∈ A of t2 and t3 withdraw the
same colored tokens from P2. By transitive closure the instances with same color
a ∈ A of t1 and t3 are in relation SSC∗ (through t2). Hence there is one ECS for
each distinct color a ∈ A, including the instances of t1, t2 and t3 with color a.
This can be derived from any column of matrix M1: in fact all functions in the
column of transition t have a common domain, which is cd(t). Given an element
a ∈ cd(t), the expression appearing in the row corresponding to transition t′

provide the instances of t′ that are in the same ECS as (t, a).
Now, let us consider the second example depicted in Fig. 4(b). In this case

we can observe the ability of the tool to compute results that are parametric
in the size of the classes. In particular, when computing the structural conflict
relation between the instances of transition t1 we obtain the following result:

SC(t1,t1,p1) = <0_A> : |A| = 2 SC(t1,t2,P1) = <S-a_1> : 2<=|A|<=n

<S-a> : 3 <= |A|<= n SC(t2,t2,Pi) = <0_A> : 2<=|A|<=n

SC(t2,t3,P2) = <a> : 2 <= |A|<= n SC(t3,t3,P2) = <0_A> : 2<=|A|<=n

The above SC relations are already symmetric (i.e. SC(ti, tj) = SC(tj , ti)
t),

hence they lead directly to the elements of M0. The transitive closure becomes
stable after three steps leading to the following result:

M3 = M4 =


 0 S − a S − a

S − a 0 a
S − a a 0

 |A| = 2,

S − a S S
S S − a S
S S S − a

 |A| ≥ 3

In this case if |A| ≥ 3 all instances of the three transitions end up in a unique
ECS. If instead |A| = 2 there is one ECS for each element a ∈ A including
instance (t1, a) and (t2, A − a), (t3, A − a), in other words there are two ECSs,
comprising the instances of t2 and t3 with same color, and the instance of t1
with the other color in A.

Finally let us consider the example in Fig. 4(c). In this case class C is parti-
tioned into two static subclasses denoted C1, C2 (that for technical reasons and
to simplify the discussion we assume have both cardinality > 2). The starting
point is again the computation of the SC relation.

SC(t1,t1)= <S-c * S_C{1}>[c in C{1}] + <S-c * S_C{2}>[c in C{2}] =

= <S_C{1}-c>[c in C{1}] + <S_C{2}-c>[c in C{2}]

SC(t2,t2) = <0_C>, SC(t1,t2,P2) = SC(t2,t1,P2) = <c_1>

Also in this case the relation is already symmetric (so that SSC(ti, tj) =
SC(ti, tj)) and the above relations define the entries of matrix M0. The final
result is the following:

M2 = M3 =

(
〈SC1 − c〉[c ∈ C1] + 〈SC2 − c〉[c ∈ C2] 〈SC1〉[c ∈ C1] + 〈SC2〉[c ∈ C2]
〈SC1〉[c ∈ C1] + 〈SC2〉[c ∈ C2] 〈SC1 − c〉[c ∈ C1] + 〈SC2 − c〉[c ∈ C2]

)
That leads to the conclusion that there are two ECS in the model: the first

one contains all the instances of t1 and t2 whose color belongs to static subclass
C1 while the second contains all the instances of t1 and t2 whose color belongs
to static subclass C2. Indeed if we consider a generic instance (t1, c) of t1 the



functions in the first column show us that if c ∈ Ci all instances of t1 with a
color in the same static subclass (see the expression in M2(t1, t1)) belong to the
same ECS, and the same is true for all instances of t2 with color in the same
static subclass (see the expression in M2(t2, t1)). The same information can be
derived from the second column (due to the symmetry of the involved relations).

5 Conclusion and future work

In this paper an approach for the computation of structural properties of SNs in
a symbolic and parametric form has been proposed, extending previous works
on the subject. The formulae for expressing the structural properties are based
on a language L, that extends the one used to specify SN arc functions, and
on some operators. The language is closed w.r.t. such operators, and rules have
been defined to transform an expression with operators into an expression of
L. This calculus has been implemented in the SNexpression tool; examples of
application have been shown in the paper, highlighting also some directions for
future work: extension of the composition operator to (some type of) multisets
useful in several applications, e.g. for place and transition invariants verification;
extension of the structural relations directly implemented in the tool, e.g. the
symmetric and transitive closure of structural conflicts; user defined constraints
on class cardinalities, and the possibility to import the SN models generated by
other tools, e.g. GreatSPN.
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Appendix This appendix has been included for convenience of the referees,
and will be removed from the final version of the paper: the information in the
following sections can be found in the SNexpression tool web page.

A SNexpression

The SNexpression tool integrates a library that implements the core of the
structural calculus and a command line interface (CLI) whose syntax is just
summarized in the table below. Both components are written in java and have
a highly modular structure. The library has been designed as a pure rewrit-
ing system: it allows arbitrary terms of the language used to express structural
properties to be built and progressively reduced, until a given normal form in
sub-language L is matched. Thanks to its particular blueprint the library can be
easily extended to cover new operators and syntactical features. The CLI inter-
faces to the library via a quite sophisticated parser. It accepts two kinds of inputs:
basic items of the structural language (domains, function-tuples, and operators
defined on them), and higher level forms representing structural formulae. The
computation of structural formulae requires that matrix-representations of SN
models to be pre-loaded. Advanced functionalities such as definition of paramet-
ric color domains and naming of sub-expressions are provided. A simple notebook
helps the user save and reuse intermediate results of the calculus.

Class definition set N ordered
(static subclasses) set M := {1, [2, n]}
Function tuples on sets @N < S C, n >

@C 2̂, D 2̂ < c 1, c 2, d 1, d 2 > [c 2! = c 1 + d 2! = d 1]
Function tuples on multisets @A 2̂ mset : 2 < a, S − a > +3 < a, a >
Function symbols f := @N < S C, n >; g := @N 2̂ < n2 >
(can be used in expressions) f.g
Simplification function s(A 2̂ < S − a 1∗!a 2 >))
(applies the operators and gives as a result a language expression)

Operators:
intersection Symbol: ∗; @D 2̂ < S − d 1 ∗ S − d 2, d 1 > [d 1! = d 2]
difference Symbol: −;
transpose Symbol: ′; @C 2̂, L(< c 1, l > + < c 2, l >)′

composition Symbol: .; @A 2̂,M < a 1,m 1 > . < a 1, a 2, S M{2} >
support Symbol:<< ... >>; @A << 4 < a > [a ∈ A2] >>

Output:
Parametric results h := s(@A 2̂ < S − a 1∗!a 2 >)
(result) <!a 1 > [a 1 = a 2][|A| = 2]

<!a 2 > [a 1! =!a 2][3 <= |A| <= n]
Access to elements h{1}: <!a 1 > [a 1 = a 2]
in parametric results h{2}: <!a 2 > [a 1! =!a 2][3 <= |A| <= n]

Table 2. A summary of the SNexpression comands syntax.
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