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Abstract

The field frequency has recently been taken into account in the coupled-perturbed Hartree-

Fock or Kohn-Sham method implemented in the CRYSTAL code1 for calculating the high-

frequency dielectric constant of semi-conductors up to the first electronic transitions. In this

work, we document how the code has been generalized and improved in order to compute the

full UV-visible absorption spectrum, the electron loss function and the reflectivity from the real

and imaginary parts of the electric response property. We show how spectra are modified when

the crystalline orbital relaxation due to the dynamic electric field is taken into account, and how

this modification increases with the percentage of Hartree-Fock exchange in the unperturbed

hybrid hamiltonian.

Keywords: Ab initio calculation, coupled-perturbed Hartree-Fock and Kohn-Sham method

(CPHF/CPKS), time-dependent density functional theory (TDDFT), excitons, hybrid hamilto-

nian, CRYSTAL code, UV-visible absorption spectrum, electron loss function (ELF), reflectiv-

ity, Si, SiC and LiF.

Introduction

The coupled-perturbed Hartree-Fock (CPHF) method2 at first order of perturbation has been

implemented a few years ago in the CRYSTAL code3 for calculating the electronic contribution

to the so-called high-frequency polarizability (or ε∞ dielectric constant) of closed and open shell

periodic systems. The CRYSTAL1,4 code, which uses atomic orbitals (AO) for building Bloch

functions (BF), solves the Hartree-Fock (HF) and Kohn-Sham (KS) equations, the latter with

different kinds of hybrid hamiltonians in the framework of the density functional theory (DFT). The

coupled-perturbed method has, then, been adapted at the first and second orders of perturbation for

the KS equation.5 More recently, the ω-frequency of the field has been introduced in the CPHF(KS)

method so allowing the study of the real part of ε∞(ω), or of the refractive index n =
√

ε∞, as a
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function of the light wavelength.6 Applications to the photoelastic tensor and its dependence on

frequency is described in Refs. 7,8.

Near resonances the dielectric response, related to second-order transition amplitudes due to a

time-dependent electric field perturbation, is a complex function depending on a damping factor

related to the finite life time of excited states, which depends on several physical interactions in

solids (phonon coupling, defects, ...), not easy to evaluate. The imaginary part of ε∞(ω) leads to

the UV-visible spectrum, i.e. to the oscillator strengths versus transition or pole energies. In the

following section, we show how it is computed in the full range of UV-visible energies for periodic

systems, by slightly modifying the frequency-dependent CPHF(KS) method already implemented

in the CRYSTAL code. The performance of the method, similar to the time-dependent Hartree-Fock

(TDHF) method9 or to the configuration interaction singles (CIS) method10,11 as implemented in a

molecular context, or to the time-dependent DFT (TDDFT) and equivalent Bethe-Salpeter equation

(BSE),12,13 as used for periodic compounds, is discussed in the present work by considering bulk

Silicon (Si), SiC and LiF. The effect of the computational parameters controlling the calculation will

be considered in the Si case for which high quality experimental results14–16 and many previous

computations17 are available. We will discuss, in particular, the influence of the percentage of

”exact” exchange in the hybrid functionals on the UV-visible absorption spectrum (UV), electron

loss function (ELF) and reflectivity (R), starting from the observation of Marques et al.18 and the

very recent work of Skone et al.19 It is worth noting that, although the necessity of using hybrid

functionals to compute reasonable band gaps has been frequently underlined recently, most of the

applications compute the dynamic polarizability up to the first resonance only.20–25 A systematic

investigation of the effect of the ”exact” exchange on the UV, ELF and R functions of solids (from

small gap semiconductors to insulators) is still lacking.

In ”Frequency dependent CPHF(KS)” section, we recall first the frequency-dependent CPHF(KS)

basic equations implemented in the CRYSTAL code and how the exciton effects can appear in

UV. Then, we discuss the effect of the computational parameters in the case of Si. And in the last

section, UV, ELF and R for a small gap semiconductor (Si), a wide gap semiconductor (SiC) and
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an insulator (LiF) are compared.

Frequency dependent CPHF(KS)

The optical dielectric constant

The cartesian components of the static polarizability αuv, and the related elements of the dielectric

constant, are calculated as follows in the AO basis set (µ ,ν):

αuv =−
4
nk

BZ

∑
k

Re

{
∑
µν

occ

∑
i

virt

∑
a

Ck∗
µi Ω

k,v
µνCk

νaUu
ia,k

}
(1)

ε
∞
uv = δuv +

4π

V
αuv (2)

where nk is the number of k points in the first Brillouin Zone (BZ) and the indices i ( j) and a (b)

span the occupied and virtual crystalline orbitals, respectively, and where V is the volume of the

cell containing twice more electrons than occupied orbitals per k-point for closed-shell systems. Uu
k

is the unknown anti-hermitian off-diagonal-block matrix that linearly transforms the unperturbed

eigenvectors Ck under the effect of the electric field perturbation represented by matrix Ωk (and

later defined in the text):

Ck,u
µi ≡

∂Ck
µi

∂εu

∣∣∣∣∣
0

=
all

∑
l

Ck
µlU

u
il,k (3)

The off-diagonal (occupied-virtual) blocks Uu
ia,k, defined as

Uu
ia,k =

∑
µν

Ck∗
µaF

k,u
µνCk

ν i

ε
(0)
ik − ε

(0)
ak

(4)
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are functions of both the energy gap
(

ε
(0)
ik − ε

(0)
ak

)
, and the perturbed Fock matrix (Hartree-Fock

hamiltonian),3

Fk,u
µν ≡

∂Fk
µν

∂εu

∣∣∣∣∣
0

= Ω
k,u
µν+

∑
g

eık·g
∑
λρ

BZ

∑
k′

∑
g′

e−ık′·g′
∑

j

(
Ck′,u

λ j Ck′∗
ρ j +Ck′

λ jC
k′u,∗
ρ j

)
∑
g′′

[
2
(

µ
0
ν

g
∣∣∣λ g′′

ρ
g′+g′′

)
−
(

µ
0
λ

g′′
∣∣∣νg

ρ
g′+g′′

)]
(5)

Moving from the Bloch (AO) basis to the crystalline orbitals (CO) basis, we obtain:

Fu
ia,k = ∑

µν

Ck∗
µaF

k,u
µνCk

ν i = Ω
u
ia,k +

BZ

∑
k′

∑
j
∑
b

Uu
jb,k′B

jb,k′
ia,k +Uu∗

jb,k′B
b j,k′
ia,k (6)

where Ωu
ia,k = 〈ik|u+ ı d

dku
|ak〉 is the transition moment operator for periodic systems26 (u = x, y

or z) between occupied ik and virtual ak crystalline orbitals with unperturbed eigenvalues ε
(0)
ik and

ε
(0)
ak , respectively, for each k-point of the periodic system. This expression of the Ω-operator holds

if the wave vector q of the field is close to zero,27 i. e. the wavelength is much larger than the unit

cell size, condition that is valid for the static case and for the UV-visible light. The B jb,k′
ia,k and Bb j,k′

ia,k

terms are defined as follows:

B jb,k′
ia,k =

[
2〈ikbk′|ak jk′〉−〈ikbk′| jk′ak〉

]
(7)

Bb j,k′
ia,k =

[
2〈ik jk′|akbk′〉−〈ik jk′|bk′ak〉

]
(8)

The notation: 〈i j|ab〉 is used for the bielectronic integral 〈i(1) j(2)| 1
r12
|a(1)b(2)〉.

Then, Uu
k (Eq. 4) for a given k-point depends on Fu

k (Eq. 6), which depends in turn on the Uu
k′

matrices for all k-points. Hence, a Self-Consistent Coupled-Perturbed (SC-CP) process is to be

carried out (CPHF or CPKS). At the first cycle of the process, the derivative of the density matrix
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with respect to the field is equal to zero and there is no bielectronic contribution in Fu
ia,k. This step

of unrelaxed orbitals corresponds to the Sum Over States approximation (SOS).

If the field is frequency(ω)-dependent, the time-dependent perturbation theory leads to the two

following U± matrices (see Refs. 9,28 for the molecular or k = 0 cases, and Ref. 6 for periodic

systems):

Uu±[n]
ia,k = lim

η→0+

Ωu
ia,k +∑k′∑

occ
j ∑

virt
b

(
Uu±[n−1]

jb,k′ B jb,k′
ia,k +Uu∓∗[n−1]

jb,k′ Bb j,k′
ia,k

)
ε
(0)
ik − ε

(0)
ak ±ω + ıη

(9)

where the number η is a damping factor producing the peak broadening when the inverse of life

time of excited states is taken into account. This is not easily evaluated in solids and usually the

energy resolution of the experimental equipment is used instead (η ' 0.1eV in UV-visible). The

equivalent of Eq. 2 in the frequency-dependent case is:

Re(ε∞
uv(ω)) = δuv +

4π

V
αuv(ω) = δuv−

8π

V
1
nk

Re

BZ

∑
k

occ

∑
i

virt

∑
a

Ω
v
ai,k

(
Uu+

ia,k +Uu−
ia,k

)
(10)

Note that the dielectric matrix elements are real if η = 0: ε∞
uv(ω) = Re(ε∞

uv(ω)).

To better understand the origin of the energy of the pole, let us separate the “diagonal” (i = j, a = b,

k = k′) bielectronic term from all others in Eq. 9 at convergence of the iterative SC-CP process

(where: Uu±[n]
ia,k 'Uu±[n−1]

ia,k 'Uu±
ia,k):

Uu±
ia,k =

Ωu
ia,k +Uu±

ia,kBia,k
ia,k +Uu∓∗

ia,k Bai,k
ia,k +∑(k′, j,b)6=(k,i,a)

(
Uu±

jb,k′B
jb,k′
ia,k +Uu∓∗

jb,k′B
b j,k′
ia,k

)
ε
(0)
ik − ε

(0)
ak ±ω + ıη

(11)

This matrix element can be written as follows1:

Uu±
ia,k =

Ωu
ia,k +Uu∓∗

ia,k Bai,k
ia,k +∑(k′, j,b)6=(k,i,a)

(
Uu±

jb,k′B
jb,k′
ia,k +Uu∓∗

jb,k′B
b j,k′
ia,k

)
ε
(0)
ik − ε

(0)
ak −Bia,k

ia,k±ω + ıη
(12)

1In going from Eq. 11 to Eq. 12, we use: x = a+bx
c ⇒ x(1−b/c) = a

c which leads to x = a
c−b

6



Resonance

Before looking at the expression of I m(ε∞
uv(ω)) that provides the UV spectrum, we want to

underline the relevance of Eq. 12. Although Eqs. 11 and 12 are formally equivalent, Eq. 12 makes

the SC-CP procedure much clearer. In the SOS approximation for real Uu+
ia,k (η → 0):

Uu+
ia,k =

Ωu
ia,k

ε
(0)
ik − ε

(0)
ak +ω

(13)

the resonance occurs at ω = ε
(0)
ak − ε

(0)
ik . However, Eq. 12 shows that, when the system responds to

the perturbation (the SC-CP scheme is active), the resonance is shifted by Bia,k
ia,k. The Uu+

ia,k element

becomes infinite near the new resonance ω = ωia,k = ε
(0)
ak − ε

(0)
ik +Bia,k

ia,k where the denominator

tends to zero. We can do the further step by considering now the behaviour of Uu−
ia,k in Eq. 12. At

resonance, the denominator is not null (due to a negative sign of ω), but the numerator tends to

infinity due to the presence of Uu+
ia,k. So we have: Uu−

ia,k 'Uu+∗
ia,k Bai,k

ia,k/(ε
(0)
ik − εak

(0)
−Bia,k

ia,k−ωia,k).

The Uu−∗
ia,k element which appears in the numerator of Eq. 12 for Uu+

ia,k is equal to−Uu+
ia,kBai,k

ia,k/2ωia,k.

Then, the expression of Uu+
ia,k in Eq. 12 becomes (see footnote 1):

Uu+
ia,k '

Ωu
ia,k

ε
(0)
ik − ε

(0)
ak −Bia,k

ia,k +(Bai,k
ia,k)

2/2ωia,k +ω

(14)

This means that the pole is shifted with respect to SOS by Bia,k
ia,k = 2〈ikak|akik〉−〈ikak|ikak〉 (first

order correction), and by something depending on Bai,k
ia,k = 〈ikik|akak〉 (see Eqs. 7 and 8; note also

the interchange between ia and ai).

In solids, where the density of states (in the valence and conduction bands) is a continuous function

of the energy, the summation on k′, b and j cannot be disregarded because several other transitions

jk′ → bk′ may occur around ωia,k for which we can assume that: Uu+
jb,k′/Uu+

ia,k ' Ωu
jb,k′/Ωu

ia,k (in

Eq. 14, the denominator for Uu+
ia,k and Uu+

jb,k′ is roughly the same). The resulting bielectronic terms

Uu+
jb,k′B

jb,k′
ia,k in the numerator of Uu+

ia,k (Eq. 12) can be moved outside the summation once weighted

by the density ρ(ωia,k), representing the number of transitions jk′ → bk′ for which the transition
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energy ω jb,k′ is close to ωia,k. Then, at resonance Eq. 11 can be replaced by (for η = 0):

Uu+
ia,k =

Ω
u
ia,k

ε
(0)
ik − ε

(0)
ak −ρ(ωia,k)B

jb,k′
ia,k +ω

(15)

In the above equation B jb,k′
ia,k includes all the contributions from bielectronic integral between orbitals

involved in transitions with an energy value close to the pole:

ωia,k = ε
(0)
ak − ε

(0)
ik +ρ(ωia,k)B

jb,k′
ia,k (16)

and Ω
u
ia,k is equal to Ωu

ia,k corrected by all the other bielectronic B j′b′,k′
ia,k and Bb′ j′,k′

ia,k contributions

corresponding to transitions jk′ → bk′ far in energy from ωia,k.

Imaginary part of the dielectric constant

When η 6= 0, near resonance the imaginary part of the complex dielectric constant can be written as

follows (see Eqs. 10 and 15):

Im(ε
∞
uv(ω)) =

8π

V nk

BZ

∑
k

occ

∑
i

virt

∑
a

ηRe(Ω
v∗
ia,kΩ

u
ia,k)

(ωia,k−ω)2 +η2 (17)

The non-resonant Uu−
ia,k terms have been neglected in the previous equation since they are expected

to give negligible contributions to the resonance. Actually they can be calculated directly without

any approximation from the product of Ωu
ia,k by Uu−

ia,k in Eq. 11.

The case of the resonant Uu+
ia,k term is more delicate. Expression 11 seems to show that the

damping factor becomes important when ωia,k = ε
(0)
ak − ε

(0)
ik , Eq. 12, however, shows that a shift

by ρ(ωia,k)B
jb,k′
ia,k must be taken into account. If, then, Eq. 11 is used as such in the calculation, it

turns out that the imaginary part of Uu+
ia,k is changing sign in the [ε

(0)
ak − ε

(0)
ik +ρ(ωia,k)B

jb,k′
ia,k ,ε

(0)
ak −

ε
(0)
ik ] interval (remember that Im(ε

∞
uv(ω)) must be a positive quantity). An alternative equivalent

formulation permits to avoid large positive to negative oscillations around the resonance. From Eq.
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15, we have:

|ωia,k−ω|= |Ωu
ia,k/Uu+

ia,k(η = 0)| (18)

The denominator in Eq. 17 can be recast as:

Im(ε
∞
uv(ω)) =

8π

V nk

BZ

∑
k

occ

∑
i

virt

∑
a

ηRe(Ω
v∗
ia,kΩ

u
ia,k)

|Ωu
ia,k/Uu+

ia,k(η = 0)|2 +η2
=

8π

V nk

BZ

∑
k

occ

∑
i

virt

∑
a

ηRe(Ω
v∗
ia,kΩ

u
ia,k)

Ω
u∗
ia,kΩ

u
ia,k

|Uu+
ia,k|

2

(19)

where in the second step we used the square modulus of Eq. 15 (but with η 6= 0). The above

function is proportional to η and, then, close to zero when far from resonance (|Ωu
ia,k/Uu+

ia,k| � η);

near the resonance, it is inversely proportional to η and large. In that case, the imaginary part of the

dielectric constant is proportional to the product of the transition moments Ωu∗
ia,kΩ

u
ia,k multiplied

by the new density of transitions ρ(ωia,k) (as the ik and ak functions extend to all the cases such

as: ωia,k = ε
(0)
ak − ε

(0)
ik +ρ(ωia,k)B

jb,k′
ia,k ). Till now, no approximation has been introduced in the

expression of the imaginary part of the dielectric constant, but the presence of Ωia,k shows that

we need to calculate the correction on the transition moment Ωu
ia,k due to bielectronic integral

contributions (Uu±
jb,k′B

jb,k′
ia,k and Uu±

jb,k′B
b j,k′
ia,k ) involving non-resonant jk′ → bk′ transitions (see Eq.

12). This correction should be small if these non-resonant transitions are far from the present

ik → ak resonant transition and not too numerous (the case of molecules but probably not of

periodic systems). Nevertheless, they have been neglected in the imaginary part of the dielectric

constant of which the expression (diagonal component) finally becomes:

Im(ε
∞
uu(ω))' 8π

V nk

BZ

∑
k

occ

∑
i

virt

∑
a

η |Uu+
ia,k|

2 (20)

when replacing Ω
u
ia,k with Ωu

ia,k in Eq. 19.

A decrease in the numerator of Im(ε
∞
uu(ω)) due to coupling corrections in Eq. 19 on the transition

moment should lead, however, to the decrease of the peak height and to the increase of its full width
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at half maximum (FWHM), and vice versa, with no drastic change of the integral of the spectrum.

Oscillator strength

The multiplication of the imaginary part of the dielectric constant (Eq. 20) by 2ω/(4π/V ) leads to

the oscillator strength at each ω-frequency, i.e. to the UV spectrum. The integration of the spectrum

over ω leads to:

1
π

∫
∞

0
2ωIm(ε

∞
uu(ω))/(4π/V )dω =

2
nk

BZ

∑
k

occ

∑
i

virt

∑
a

1
π

∫
∞

0

2ωη |Ωu
ai,k|2

(ωia,k−ω)2 +η2 dω =
2
nk

BZ

∑
k

occ

∑
i

virt

∑
a

2ωia,k|Ωu
ai,k|2

(21)

each transition intensity being a Lorentzian function with height 1/η and width 2η for which the

integration is π . In the case of pure DFT, orbitals are obeying the hypervirial relation (for a large

enough AO basis set27):

(ε
(0)
ik − ε

(0)
ak )Ωu

ia,k =−∇
u
ia,k (22)

where ∇u = d/du acts in the direct space.

Then, the sum over oscillator strengths obtained in Eq. 21 is equal to the number of valence electrons

involved in UV (Thomas-Reiche-Kuhn sum rule):

2
nk

BZ

∑
k

occ

∑
i

virt

∑
a

2(ε(0)ak − ε
(0)
ik )|Ωu

ia,k|2 =
2
nk

BZ

∑
k

occ

∑
i

virt

∑
a

2∇
u
ia,kΩ

u
ai,k =

2
nk

BZ

∑
k

occ

∑
i

2〈ik|∇u
Ω

u|ik〉= ne (23)

if the basis set is complete. The number of electrons ne on the right-hand side of the above equation

is obtained considering that −ı∇u =−ıd/du and Ωu = u+ ıd/dku(= ıeık·r∇kue−ık·r) are hermitian

operators. With hybrid hamiltonians, the UV surface is not equal to the number of electrons

because Eq. 22 is not valid due to the non-commutativity of r-position and HF-exchange (non local)

operators, and also because Ω
u
ia,k has been replaced by Ωu

ia,k in Eq. 19. It follows an amplification
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of the peak intensities (with respect to SOS ones obtained with the same η value), which can be

renormalized a posteriori by the value of the full UV integration.

Computational details

Calculations were performed with a development version of the periodic ab initio CRYSTAL14

code. Several functionals have been tested: the local LDA,29,30 the gradient corrected PBE31 and

the hybrid B3LYP.32,33

In addition, the dependence of the dielectric function on the amount of exact exchange incorporated

into the hybrid functional has been tested by considering a different percentage, x, of exact exchange

with respect to the standard value (25% in B3LYP): x = 10 (F10LYP), x = 15 (F15LYP), x = 40

(F40LYP) and x = 50 (F50LYP).

The following basis sets have been used (see Refs. 27,34): 8-8411-11 [1s4sp2d] (Si), 6-21-11

[1s2sp2d] (C), 7-311-1 [1s2sp1d] (F) and a 6-1-1 [1s1sp1p] (Li).

In the CRYSTAL code the level of accuracy in evaluating the Coulomb and exchange integrals

is controlled by five T parameters (T 1 = T 2 = T 3, T 4, T 5 = 2T 4) (see Ref. 1). The first two

parameters control the Coulomb series and the latter three the exchange one. Several selections of

T =(T 1,T 4) have been tested in the present calculations ranging from T =(8,8) to T =(10,25) (used as

a reference).

The k-grid mesh is controlled in the CRYSTAL code by the shrinking factor IS. Increasing values

of IS have been considered: 16, 36 and 100, corresponding to 145, 1240 and 22000 k points for a

cubic lattice, respectively.

A damping factor η (Eq. 9) selected in the range of 0.03-0.1 eV has been found to provide

stable results (η=0.055 eV is used if not otherwise specified).

The difficulty to obtain the limit of Uu+
ia,k iteratively appears when ω = ε

(0)
ak − ε

(0)
ik , i.e. when the

numerator and denominator in Eq. 9 are both equal to zero (if η is null), while this limit is

well defined and equal to −Ωu
ia,k/(ρ(ωia,k)B

jb,k′
ia,k ) near this transition energy (use Eq. 15 with

11



ω = ε
(0)
ak − ε

(0)
ik ). Actually, the SC-CP process is similar to the numerical Gauss-Seidel method35

for solving large linear equations systems: AX = B, where X represents the unknown vector

(the U-vector in the present work), B the dynamic field perturbation, and A the projected time-

dependent hamiltonian H− ih̄d/dt in the single occupied-virtual excitation basis set. Gauss-Seidel

is particularly efficient when the matrix A is diagonal dominant. However, if one or more diagonal

terms of the A matrix is close to zero, the solution does not converge any more. This happens

near resonances and a mathematical algorithm is required to force the convergence of the iterative

process. The epsilon-algorithm-236,37 using the X-vector obtained from the previous 2-iterations

has been used after each four SC-CP iterations in the whole range of the UV-visible absorption

energy, and convergence has been reached for most of the field frequencies. The SC-CP process

prevents, then, from the storage of a huge hamiltonian matrix (with off-diagonal B jb,k′
ia,k elements)

before its diagonalization.

In order to facilitate comparison between UV spectra, the imaginary part of the dielectric constant

is first broadened with lorentzian functions. Then, the integration of 2ωIm(ε(ω)) over ω (which

theoretically leads to the number of valence electrons involved in the spectrum; see Eqs. 21-23)

allows to renormalize each plot of Im(ε) a posteriori.

Applications

Silicon

Electron struture

The band structure (BS) and projected density of states of Silicon (PDOS) are reported in Figure

S1 of ESI. Detail of BS close to the Fermi level E f have been sketched considering several special

points in the reciprocal space, namely: Γ=(0 0 0), X=(0, 1/2, 1/2), W=(1/4, 3/4, 1/2), U=(1/4,

5/8, 5/8) and K=(3/8, 3/4, 3/8). Here we summarize the main features. The valence bands VB

(bands from 11 to 14) and the conduction bands CB are largely due to 3sp orbitals. VBs cover a
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range of about 13 eV and CB extends for more than 25 eV (B3LYP, see Figure S1 and Table S1

of ESI). The 2sp orbitals contribute to core states (about 100 eV below E f ) and to virtual states

(50-100 eV above E f ). The highest occupied VB and the lowest unoccupied CB will be hereafter

referred to as HOMO and LUMO for analogy with the molecular case. Si has an indirect gap

Eg(Γ→W )=2.02 eV and a direct band gap in Γ, Eg(Γ)=3.77 eV; at L, Eg(L) is equal to 3.96 eV

and, then, quite close to Eg(Γ). At the other special k points, the gap is much larger: Eg(X)=5.07

eV and Eg(U(X))=5.10 eV; the EHOMO→LUMO+1(L)=6.18 eV is the other lowest energy difference

between VB and CB bands (B3LYP results, see Table S1 of ESI). PBE results are qualitatively

similar to B3LYP but energy differences are much smaller (by about 1.5 eV). Intermediate values

are provided by F10LYP and F15LYP functionals: for instance, F15LYP provides Eg(Γ)=3.52 eV,

Eg(X)=5.07 eV, Eg(U(X))=5.10 eV and EHOMO→LUMO+1(L)=5.86 eV, Table S1 of ESI.

UV spectrum

In this section we discuss the computed UV spectrum (UV ) and the influence of the computational

parameters.

• Sampling the reciprocal space.

Im(ε
∞)-CP computed with the F10LYP functional and with several choices of IS (16, 36 and

100), is reported in Figure 1. With IS=16, the computed spectrum is significantly different

with respect to the reference one (IS=100), due to the presence of spurious peaks, that

disappear by moving to IS=36: in this case both positions and heights of all the peaks are

correctly predicted.

• Truncation of the Coulomb and exchange series.

Figure 1 reports Im(ε
∞) (CP-F10LYP) as a function of the integral tolerance parameters

T . The effect of the Coulomb series is a minor one as shown by comparing T =(7,25) and

T =(10,25). When the exchange integrals are involved in going from T =(8,8) to T =(8,45), the
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main effect is an enhancement of the intensity of the two main peaks, and more generally of

the surface of the whole UV spectrum as it is explained in subsection ”Oscillator strengths”.

However, the same ratio (0.20±0.01) between the main peaks is roughly preserved when T

increases.

• The damping factor η .

The combination of η and number of points used to sample the energy range determines the

resolution of UV . In Figure 1, Im(ε)-CP is reported for several values of η , namely η=0.055,

0.082 and 0.11 eV. For F10LYP, no significant change of the spectrum was found, while the

F15LYP-spectrum acquires more detail when η is smaller: each peak can be decomposed in

one or more components. However, the position of the main peaks, and their relative intensity

are again not affected by this choice.

• The DFT functionals.

Im(ε
∞)-SOS and Im(ε

∞)-CP spectra, computed with different functionals (LDA, PBE,

F10LYP, F15LYP and B3LYP) have been reported in Figure 2. Im(ε
∞)-SOS spectra show

nearly the same shape for all functionals. With respect to B3LYP, LDA and PBE are rigidly

shifted to lower energies and F10LYP (F15LYP) to intermediate ones: the Im(ε
∞)-SOS

spectrum resembles the band structure as provided by the selected functional, and is described

by the vertical unperturbed ik → ak monoexcitations, the transition moment of which is

Ωu
ia,k. Considering now the SC-CP calculation of Im(ε

∞), we see that when pure DFT

functionals are employed, UV does not show any significant differences with respect to

the SOS counterpart (see Fig. 2). The Im(ε
∞)-CP spectrum of hybrid functionals, on the

contrary, takes a new shape due to the presence of new peaks and enhancement of the previous

SOS-intensities, particularly evident in the 3.4-5.0 eV region.

F15LYP Im(ε
∞)-CP computed with increasing resolutions are reported in Figures 1 and 2. The

highly resolved spectrum (IS=36, damping factor η=0.5 mHa) shows several peaks: a high intense

doublet at 3.69 and 3.75 eV, another intense doublet at 4.55 and 4.62 eV, a peak at 4.93 eV and a
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low intense one at 5.76 eV.

Comparison of the positions of each peak with the silicon BS (Figure S1 and Table S1 of ESI) allows

the following assignments. The peaks in the first intense doublet are assigned to HOMO→ LUMO

transitions from oscillators in a narrow region around Γ the former, and to L the latter, whereas the

ones in the second doublet derive from HOMO→ LUMO transitions in a large region around X ;

the 5.76 peak corresponds to HOMO→ LUMO+1 transitions in a narrow region close to L. In

Ref. 16 a detailed analysis of the experimental spectrum is reported. The spectrum is composed by

several doublets: at 3.40 and 3.45 eV, at 4.18 and 4.22 eV and at 4.44 and 4.60 eV, and a peak at

5.4 eV. Computed peaks are then in a very good agreement with the observed ones despite a slight

shift (0.3-0.4 eV) towards higher energies. The F10LYP spectrum, see Figure 2, shows poles at

3.45, 4.49 and 5.48 eV. Although their positions are closer to the experimental ones, the intensity

of the first peak is too low compared to those at higher energy. The surface of the spectrum (in a

polarized direction) has been found to be larger than the number of valence electrons by 10% with

SOS, and in order to make the comparison with the experimental spectra easier (see Refs. 14,16),

the computed CPHF(KS)-spectrum has been normalized a posteriori to match Eq. 23 (see Fig.

3). The shape of the F15LYP spectrum, even if slightly shifted to higher energies, reproduces the

observed one quite nicely, confirming that the approximation made on the imaginary part of the

dielectric constant (Eq. 20) is satisfactory with this percentage of exchange (15%), whereas it is

less satisfactory with F10LYP.

Also the region below Eg has been analyzed. Much higher resolution is required to check for the

presence of bound excitons below Eg. F15LYP highly resolved spectrum (IS=150, η=0.01 mHa)

computed in a narrow region close to the band gap edge shows a first resonance downshifted with

respect to Eg=3.5234 eV by 0.5 meV. Thus, the optical spectrum below Eg shows the presence of a

very weakly bound exciton.
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Electron energy loss function, ELF(ω) and reflectivity R(ω) spectrum

ELF(ω) is the Im(−1/ε∞(ω)) function. It has a peak at Re(ε
∞) = 0; the corresponding frequency

is the plasmon pole ωp. It describes the collective harmonic oscillations of electrons with respect to

the fixed lattice of ions. Above the plasmon frequency, the external field oscillates too fast for the

electrons to follow and a material loses its reflectivity R(ω) = |(1−
√

ε∞(ω))/(1+
√

ε∞(ω))|2

dramatically. The calculated ELF corresponds to the intensity in the electron energy loss spec-

troscopy (low valence energy) for which the wavelength of the field is still very large compared to

the size of a unit cell (wavelength vector modulus q' 0). As for UV we analyze now the effect of

the computational set up on the computed ELF(ω) and R(ω) spectra.

• Computational parameters

ELF(ω) and R(ω) spectra computed with several selection of T and IS parameters have been

reported in Figure 4. ELF(ω) and R(ω) spectra computed with several selection of T and

IS parameters have been reported in Figure 4. The effect of integral tolerance parameters

controlling the exchange series has been analyzed by considering increasing values of T ,

T =(8,15), (8,25) and (8,35) (the truncation of the Coulomb series has been shown to affect

the spectra is a minor way, Figure 1). The shape of both ELF(ω) and R(ω) spectra in the

whole 0-25 eV energy range, is marginally affected by the selection of T ; variations of the

absolute intensities are particularly visible in the low frequency region, which however, turn

out to be negligible when considering the T =(8,25) and T = (8,35) spectra.

The ELF seems to be quite stable with respect to the k sampling: only in the case of the

poorest k mesh here adopted, IS=16, the ELF peak appears noisy even if ωp is correctly

predicted with respect to the IS=36 reference.

• The DFT functionals.

SOS and SC-CP ELF(ω) and R(ω) spectra computed with several DFT functionals are

reported in Figure 5. We first consider ELF(ω)-SOS. The value of ωp is 16.4, 18.2, 17.5,

18.1 and 18.6 eV for LDA, PBE, F10LYP, F15LYP and B3LYP, respectively. All the plasmon
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pole frequencies are shifted when SC-CP calculations are performed to ωp=18.1, 16.3, 16.3,

15.6 and 15.3 eV, respectively. With respect to the SOS counterpart, in SC-CP calculations,

all functionals behave in a similar way: i) they do not alter dramatically the shape of the ELF

peak (it becomes less smooth with the appearance of shoulders that in some cases move to

form a second peak); ii) they shift ωp. The plasmon energy is very sensitive to the rather flat

plot of the real part of the dielectric constant when it crosses the frequency axis, and shoulders

in the plot of ELF(ω) are related to oscillations in Re(ε
∞) as illustrated in Figure S2 of ESI

where Re(ε
∞) is depicted in a narrow region close to ε∞=0.

We consider now R(ω). LDA and PBE SC-CP spectra are actually indistinguishable with

respect to the corresponding SOS ones. With hybrid functional R(ω)-CP spectra acquire more

structure, especially in the 3-7 eV region. We can also recognize a drop in R in correspondence

to the plasmon pole of ELF .

Computed ELF(ω) and R(ω) have been compared with the available experimental data. Concerning

ELF , we can underline the good estimate of ωp provided by PBE and F10LYP (the experimental

value is 16.8 eV38); however with PBE the plasmon energy corresponds to the less intense peak in

the ELF(ω) spectrum, whereas it is related to the main peak in the F10LYP case (see Fig. 5).

A relatively good agreement with experiment (Ref. 39) is obtained for R(ω): looking at the F10LYP

spectrum we can identify a doublet in the 3.5-4 eV region (R≥ 50%) and a peak at 5 eV (R=55%)

before the principal one obtained at 7 eV (R=75%) while the experimental plot of R shows a first

peak at 3.4 eV (R' 60%), the largest one at 4.6 eV (R≥ 75%) and the beginning of a diffuse one

at 7 eV (R≤ 70%). The relative intensities are not perfectly reproduced in our calculation with

respect to the good experimental resolution in this range of energy, the overall shape is, however,

very similar. In particular, we obtain R=30% as in experiment for hν ≤ 1 eV.

SiC

The cubic (3C) polytype of SiC (F43m space group) is a wide gap semi-conductor with a static

dielectric constant twice smaller than that of Silicon (see Table 1), and an expected larger electron-
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hole interaction. The electronic structure, band structure BS and projected density of states PDOS

are resumed in Figure S3 and Table S1 of ESI.

SiC has an indirect band gap Eg(Γ→ X) at 2.54 eV, a direct band gap in X , Eg(X)=5.87 eV

(F15LYP); considerably larger are the gaps computed at the other special k points: Eg(L)=7.50

eV, Eg(Γ)=7.21 eV and Eg(U(X))=7.13 eV; the EHOMO→LUMO+1(Γ)=8.26 eV is the other lowest

energy difference between VB and CB bands, followed by EHOMO→LUMO+1(X ,L)=9.54, 9.60 eV,

Table S1 of ESI.

The UV-spectrum computed with F10LYP and F15LYP functionals is reported in Figure 6. The

F15LYP UV-spectrum is dominated by the presence of two very intense peaks at 7.2 and 7.9 eV

and small ones at 5.9, 9.2 and 9.5 eV. The analysis of the SiC band structure (see Figure S2 and

Table S1 of ESI) permits the following attributions: the lowest peak comes from HOMO→ LUMO

transitions in the vicinity of the minimum direct gap; the high peaks at 7.3 and 7.9 eV from

HOMO→ LUMO transitions, close to the L point the former and along the Γ−K−W line the

latter; the peak at 9.2 eV to HOMO→ LUMO+1 transitions along the Γ−L line and the 9.5 to

HOMO→ LUMO+1 transitions close to X . Several experimental studies40,41 have analyzed the

structure of Im(ε) identifying peaks at 5.96, 7.43, 7.73, 9.03, and 9.4 eV. Positions and assignments

of computed peaks are, therefore, in agreement with observations, see Ref. 41. The F15LYP

computed spectrum reproduces quite nicely the experimental one, although slightly shifted towards

lower energies (by about 0.1-0.2 eV) (see Figure 3); rather unsatisfactory is, instead, the F10LYP

one, due to a reversed ratio between intensities of the two main peaks and a smoother shape close to

the band gap edge, Figures 3 and 6.

The presence of a very weak bound exciton has been also found: the highly resolved F15LYP

spectrum (IS=150, η=0.01 mHa) computed in a narrow region close to the band gap edge shows a

first resonance downshifted with respect to Eg=5.873 eV by 2.0 meV.

R(ω) and ELF(ω) CP and SOS spectra computed with PBE, F10LYP and F15LYP are reported

in Figure 7. A good agreement with experiment42 is obtained for the PBE and F10LYP plasmon

energies, at 21.7 and 21.9 eV, respectively (Table 1).
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For R, a value of 20% is obtained at low energy (hν ≤ 1 eV) in good agreement with the experimental

datas of Logothetidis and Petalas.40 A shoulder around 6 eV (R ' 40%) and a peak at 7-8 eV

(R≤ 60% with PBE and F10LYP, R > 80% with F15LYP) are found with the coupled-perturbed

calculation, also in agreement with the latter reference (R = 40% at 6 eV and R' 60% at 7.8 eV).

Above 12 eV, R is essentially constant and equal to about 40-50% up to 18 eV (CP-F15LYP) before

decreasing to zero at higher energy. No experimental datas have been found for comparison in this

range of energy.

LiF

LiF has a rock-salt structure (Fm3m space group); ε∞ = 1.92 (see Table 1).

The electronic structure, band structure BS and projected density of states PDOS of LiF are shown

in Figure S4 of ESI. At the Γ-point the gap (Eg(Γ)) is equal to 15.39, 14.07 and 11.61 eV for B3LYP,

F40LYP and F50LYP, respectively (see Table 1); the experimental gap is 14.1-14.2 eV,43 thus close

to the F40LYP value. The gap in correspondence to other special k points are: Eg(L)=14.09; 16.61;

17.95 eV, Eg(X)=18.63; 21.34; 22.81 eV (B3LYP; F40LYP;F50LYP).

The SC-CP F50LYP UV spectrum, Figure 8, is characterized by an intense peak at 13.86 eV, that is,

1.48 eV lower than Eg(Γ): it is due to bound excitons originated from HOMO→ LUMO transitions

in the vicinity of the minimum direct gap; from 15 to 25 eV the spectrum is characterized by

interband transitions from oscillators localized in a wide region along the Γ−L−X path, see Figure

S3 of ESI. By comparing the computed spectrum with the experimental one (Refs. 44,45) we see

that, although the overall shape is well reproduced, the calculated exciton peak is shifted to higher

energy (the experimental one is at 12.6 eV), Figure 3. With F40LYP the exciton is at 12.85 eV,

shifted with respect to Eg(Γ) by 1.25 eV and in nice agreement with the position of the observed

one. Unlike F50-F40LYP, the B3LYP spectrum appears unsatisfactory because of the absence of

the bound exciton: we see, indeed, a small peak at 12.01 eV and a more intense one at 13.5 eV, both

at higher energy with respect to the band gap (Eg(Γ)=11.61 eV).

R(ω) shows a first thin peak (R' 65%) in the exciton energy range at about 12-14 eV and a wide
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one (R ' 50%) in the region between 20 and 28 eV, Figure 9. Both signals are experimentally

observed, the former (R ' 50%) at 11 eV and the latter (R ' 40%) centered at 23 eV, see Refs.

44,45.

ELF(ω) spectra are reported in Figure 9. In all spectra we can recognize small losses in the exciton

region and a wide intense one around 25 eV due to plasmon resonance of valence electrons. The

plasmon energies are at 25.3, 25.7 and 25.9 for B3LYP, F40LYP and F50LYP in good agreement

with the experimental value, ωp=24.9 eV45,46 and ωp=25.7 eV.47

Discussion

Im(ε
∞) computed with the SC-CP procedure correctly reproduces the experimental UV spectrum

and properly describes the observed excitons, weakly bound in Si and SiC, strongly bound in LiF.

In the SC-CP scheme crystalline orbitals can relax in response to an electric field perturbation

and excitons appear. Relaxation is ruled by the coupling matrices U, that in turn depend on the

Bia(ai),k
ia,k integrals. This leads to a resonance frequency shifted with respect to the vertical transition

ik→ ak by the real quantity Bia,k
ia,k = 2〈ikak|akik〉−〈ikak|ikak〉. Thus, in a certain region of the k

space, generally in correspondence to a critical point, there may be an accumulation of oscillators

resonating in a narrow energy range and whose strengths sum up. The result is the presence in the

UV spectrum of new intense peaks (excitons) which are not observed in the SOS analogue. The

number of oscillators ρ(ωia,k) resonating approximately at ωia,k±η depends on the DOS shape of

the valence and conduction bands: if the latter ones are thin as in molecular systems (or for k-point

where the effective mass is large), the density of transition states at the gap, multiplied by η , will

be equal to one since there is only the ik→ ak transition in the energy range ωia,k±η (k = 0 for

molecule), and the shift of the pole will be as large as Bia,k
ia,k. On the contrary for semi-conductors

with a small effective mass at the gap, ρ(ωia,k) is small and the pole is not expected to be shifted

a lot. However, for photon energy larger than the gap and corresponding to transition energies

between VB and CB states belonging to the DOS maxima, the shift is the largest one. In other
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words, the shape of the UV-visible spectrum can change when the coupling is taken into account

even if the gap (lowest transition energy) is unshifted. Nevertheless, the appearance of excitons

in the UV spectrum is observed only when a certain amount of exact exchange is incorporated in

the DFT functionals, whereas with pure DFT Im(ε
∞)-CP and Im(ε

∞)-SOS practically coincide.

An explanation for this behavior is that the integral, 2〈ik(1)ak(2)| 1
r12
|ak(1)ik(2)〉, the Coulomb

term of Bia,k
ia,k, is probably relatively small with respect to the integral 〈ik(1)ak(2)| 1

r12
|ik(1)ak(2)〉,

the HF exchange potential of Bia,k
ia,k. In the “Coulomb term”: 〈ik(1)ak(2)| 1

r12
|ak(1)ik(2)〉 (as well

as in Bai,k
ia,k), electron (1) belongs to different and orthogonal ik(1)- and ak(1)-orbitals, leading to a

small value of the integral (at long distance r12). On the contrary, the “exchange term” represents

the average repulsion 1/r12 between the hole i2k(1) and electron a2
k(2) densities. This is the reason

why the energy shift of the pole is generally negative, as shown in Application, when using HF

or hybrid DFT hamiltonians (Bia,k
ia,k is negative and a pole appears before the transition energy:

ωia,k < ε
(0)
ak − ε

(0)
ik ). In DFT, the integrals 〈ikak|ikak〉 coming from the HF exchange potential is

missing and replaced by integrals similar to the “Coulomb term” multiplied by the derivative of the

exchange-correlation functional of the electron density (and its gradient) with respect to the field.5,24

Then, the orbital relaxation effect in presence of a frequency-dependent field near resonances is

weak, there is no shift of the energy (Bia,k
ia,k = 2〈ikak|akik〉 ' 0), and the lowest excitation energy

is equal to the direct band gap, as it has been also shown in Refs. 24,25 for extended systems. In

addition “pure” DFT suffers for the self interaction error, the spurious electrostatic interaction of an

electron with itself. As a result, the electron is partly repelled from itself leading to an asymptotic

decay of the exchange-correlation potential that is too weak. Correction for the self interaction

error is necessary to properly describe the polarization of any system. It is partially embodied in the

fraction of exact exchange in hybrids DFT, thus partially recovering the correct asymptotic behavior

of exchange-correlation potential.25,48–50

The necessity to use hybrids to calculate optical transitions has been generally recognized, although,

the best choice for the exchange-correlation functional is still debated. Conventional hybrids are

not able to describe all excitons and especially those involving charge transfer excitations. Several

21



functional forms have been proposed in order to circumvent this problem and among them we

mention the use of a tuned fraction of exact exchange in a conventional hybrid functional; the

use of semiempirical conventional hybrid functionals which contain a large number of empirical

parameters with the aim of providing a balanced treatment of main properties including long-range

charge transfer interactions; long-range corrected functionals with a fixed (even if empirically

determined) long-range separation parameter; long-range separated functionals with system-specific

optimal tuning to determine the range separation parameter, see Refs 20,21 and references therein.

Although this latter procedure has been successfully applied for the description of polarizability

and band gaps in solids, no comprehensive applications to the calculations of the whole UV , ELF

and R spectra has been reported yet. Kresse and coworkers applied the HSE functionals (varying

also the range separation parameter) to semiconductors and insulators: however they were not

able to satisfactorily describe the LiF absorption spectrum.51 Therefore we preferred to follow the

former scheme that appears also particularly attracting, since it involves the use of conventional

exchange functionals, whose performances have been well assessed during decades of studies and

applications. To this extent, in the spirit of the work of Marques et al.,18 Skone et al.,19 Brothers et

al.,22 we found that a percentage of HF-exchange corresponding to the inverse of the static optical

dielectric constant, 1/ε∞(0) (around 10% for Si, 15-20% for SiC and 40-50% for LiF), leads to

band gaps and static dielectric constants in good agreement with experiment. It follows also that the

UV-visible absorption spectrum (position and relative intensity of the peaks) is also well described

with these percentage values, particularly for SiC (Figure 3). A little bit less straightforward is

the case of Si for which the F10LYP functional, the best choice according to this procedure, does

not give a UV spectrum as good as the F15LYP. Also in the case of LiF we found a better result

with F40LYP instead of F50LYP, the best choice according to this scheme. This finding is not

surprising since the procedure leads to a simple description of the screened electron repulsion in a

medium by empirically tuning the amount of exact exchange with only one parameter (the inverse

of the static dielectric constant of the crystal itself). The choice of this unique parameter may be

questionable. In addition to this attempt to obtain a satisfactory description of a physical property
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(as the dielectric constant) by changing the amount of exact exchange can alter the delicate balance

between exchange and correlation in ways that could be disadvantageous for other properties.

Nevertheless, our work shows that a fraction of exact exchange approximatively equal to the inverse

of the static dielectric constant leads to UV spectra comparable with the experimental ones. If

no shift of the CB is found for semiconductors like Si and medium SiC, the relative intensity is

enhanced at low transition energy after the electron gap. As regards LiF, the “red” shift of the optical

gap with respect to the lowest vertical transition energy increases as the percentage of HF-exchange

(x-value) increases in the SC-CP process. However, this is also the case of the opposite “blue” shift

of the lowest vertical transition energy, so that there is no simple linear relation between the optical

gap value and x, as for Si and SiC, and more generally between the full spectrum (UV , ELF and

R) and the exchange percentage. Nevertheless, for the three studied compounds, the lowest energy

peaks are enhanced by coupled hybrid methods with respect to SOS, leading to a shift of the whole

absorption spectrum, as well as to a shift of ELF and R, towards low energies. As regards the

plasmon energy, its value is very sensitive to small amplitude oscillations of Re(ε
∞) around zero;

the ELF maximum can be shifted and shoulders appear. The origin of such oscillations comes from

faked occupied to virtual vertical transitions that are not completely smoothed out by the SC-CP

method. The ELF plasmon frequency is, however, relatively well described when the percentage

value of exchange is around 10% for both Si and SiC crystals, and 40% for LiF. We have also shown

that the band energy for which Si and SiC reflect the light (band energy where the reflectivity is not

null) slightly decreases with the increasing percentage of HF-exchange, while the peak of R at low

energy becomes larger. This result was previously found for the absorption spectrum and showing

that the SC-CP method involving virtual orbitals (as SCF occupied ones) in the optimization process

leads to the decrease of the conduction band width. Virtual unrelaxed orbitals which can have very

large unphysical eigenvalues finally do not contribute to the spectrum anymore, or at much lower

energy than their eigenvalues, when they are included in the SC-CP process.
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Conclusions

In this work, the frequency-dependent coupled-perturbed method already implemented in the

CRYSTAL code which uses localized atomic orbitals has been extended in order to compute the

real and imaginary parts of the dielectric response property of periodic systems in the whole UV-

visible range of energy. The use of the vectorial epsilon-algorithm has been essential to improve

convergence of the SC-CP process near resonances. The method allows to obtain numerically both

the poles and oscillator strengths of the electronic spectrum from the dielectric reponse property

without storing large hamiltonian matrices to be diagonalized.

The percentage of Hartree-Fock exchange in the hamiltonian (with 100 % of HF-exchange the

method is equivalent to TDHF, with 0% to TDDFT) is easily modified and, its influence on the

UV-visible absorption spectrum, electron loss function and reflectivity explored.

In this first application of the CRYSTAL code to the study of the excited states of solids we

employed the well-known B3LYP hybrid functional: we have found that, incorporating a percentage

of HF-exchange corresponding to the inverse of the static optical dielectric constant, 1/ε∞(0), in

the functional (used in Refs. 18,19 to obtain band gaps in good agreement with experiment), leads

also to satisfactory UV-visible absorption spectra (position and relative intensity of the peaks).

Delocalized, weakly bound excitons as in Si, and localized, strongly bound ones as in LiF, are both

correctly described with this approach. The electron loss function and reflectivity computed by

roughly employing the same amount of HF-exchange are also in good agreement with experiments.
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Table 1: Electronic direct gap (in eV), coupled perturbed static (high-frequency) dielectric
constant and plasmon energy (in eV) of Si, SiC and LiF.

PBE F10LYP F15LYP B3LYP F40LYP F50LYP Exp.
Si
Gap 2.57 3.24 3.52 3.77 - 3.4a

ε∞ 11.6 11.2 10.6 10.2 - 11.8b

Plasmon 16.3 16.3 15.5 15.3 - 16.8c

SiC
Gap 4.49 5.47 5.87 6.26 - 6.0d

ε∞ 6.8 6.7 6.4 6.3 - 6.5e

Plasmon 21.9 21.7 21.6 20.8 - 22.2 f

LiF
Gap 9.15 10.42 11.03 11.78 14.21 15.27 14.1g

ε∞ 2.0 1.9 1.9 1.8 1.8 1.7 1.9h

Plasmon 24.4 24.4 24.6 25.3 25.7 25.9 24.9,i 25.7 j

a: Ref. 52 b: Ref. 53, c: Ref. 38, d: Ref. 54–56, e: Ref. 57, f: Ref. 42. g: Ref. 43 h: Ref. 58 i: Ref.
44,46 j: Ref. 47
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Figure 1: Effect of computational parameters on the imaginary part of the dielectric constant of
Silicon (SC-CP calculation): a) reciprocal space sampling, IS, (T=(10,25) and η=0.055 eV); b):
damping factor η: η=0.055 (A), 0.082 (B), 0.11 (C) eV, (T=10,25 and IS=100); c-d): tolerances
controlling the Coulomb and exchange series, T , (IS=100 and η=0.055 eV)
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Figure 2: UV spectrum of Silicon computed with different functionals. IS=100, T =(10,25) and
η=0.055 eV.
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Figure 3: Computed and observed UV spectra of Si, SiC and LiF. Im(ε)-CP is obtained by
normalizing and broadening the calculated spectrum with a lorenztian function. Experimental
spectra from Refs. 14,41,45.
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Figure 4: ELF(ω) and R(ω) of Silicon at the SC-CP B3LYP level of calculation: effect of IS
(T=10,25 and η=0.11 eV) (right panel) and T (IS=100 and η=0.11 eV) (left panels).
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Figure 5: ELF(ω) and R(ω) of Silicon computed with different functionals. IS=36, T =(10,25) and
η=0.11 eV. Experimental data from Refs 14,38
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Figure 6: UV spectrum of SiC at various levels of theory. IS=36, T =(8,25) and η=0.055 eV.
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Figure 7: ELF(ω) and R(ω) of SiC: effect of the coupling at various levels of theory. IS=36,
T =(8,25) and η=0.11 eV. Experimental data from Ref. 41
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Figure 8: UV spectrum of LiF at various levels of theory. IS=16 T =(8,25) and η=0.055 eV .
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Figure 9: ELF(ω) and R(ω) of LiF at various levels of theory. IS=16 T =(8,15) and η=0.11 eV.
Experimental data from Ref. 45
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