

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

GABA production in Lactococcus lactis in enhanced by arginine and co-addition of malate

This is the author's manuscript							
Original Citation:							
Availability:							
This version is available http://hdl.handle.net/2318/1575278 since 2017-07-25T14:43:57Z							
Published version:							
DOI:10.3389/fmicb.2016.01050							
Terms of use:							
Open Access							
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.							

(Article begins on next page)

GABA production in Lactococcus lactis is enhanced by arginine and co-addition of malate

Valérie Laroute¹, Chonthicha Yasaro¹, Waranya Narin¹, Roberto Mazzoli², Enrica Pessione², Muriel Cocaign-Bousquet^{1*}, Pascal Loubière¹

¹LISBP, Université de Toulouse, CNRS, INRA, INSA, France, ²Dipartimento di Scienze della Vita e Biologia dei Sistemi. Università di Torino, Italy

Submitted to Journal: Frontiers in Microbiology

Specialty Section: Microbial Physiology and Metabolism

ISSN: 1664-302X

Article type: Original Research Article

Received on: 18 Apr 2016

Accepted on: 22 Jun 2016

Provisional PDF published on: 22 Jun 2016

Frontiers website link: www.frontiersin.org

Citation:

Laroute V, Yasaro C, Narin W, Mazzoli R, Pessione E, Cocaign-bousquet M and Loubière P(2016) GABA production in Lactococcus lactis is enhanced by arginine and co-addition of malate. *Front. Microbiol.* 7:1050. doi:10.3389/fmicb.2016.01050

Copyright statement:

© 2016 Laroute, Yasaro, Narin, Mazzoli, Pessione, Cocaign-bousquet and Loubière. This is an open-access article distributed under the terms of the <u>Creative Commons Attribution License (CC BY)</u>. The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org

Provisional

1 GABA production in Lactococcus lactis is enhanced by arginine and

2 **co-addition of malate**

3	Valérie Laroute ¹ , Chonthicha Yasaro ¹ , Waranya Narin ¹ , Roberto Mazzoli ² , Enrica Pessione ² , Muriel								
4	Cocaign-Bousquet*, Pascal Loubière ¹ .								
5									
6	¹ LISBP, Université de Toulouse, CNRS, INRA, INSA 135 Avenue de Rangueil, F-31077 Toulouse, France.								
7	² Dipartimento di Scienze della Vita e Biologia dei Sistemi. Università di Torino. Via Accademia Albertina 13. 10123 Torino. Italy.								
8									
9									
10									
11	Corresponding author: Muriel Cocaign-Bousquet,								
12	INSA, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France.								
13	Tel. +33 (0)561559399								
14	Fax +33 (0)561559400								
15	E-mail : <u>muriel.cocaign-bousquet@insa-toulouse.fr</u>								
16									
17	Key words: GABA, arginine, glutamate decarboxylase, ADI, Malo-lactic fermentation.								

1 ABSTRACT

2 Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to 3 γ -aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems 4 5 allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These 6 strategies also include arginine deiminase pathway and malolactic fermentation but little is known 7 about their possible interactions of with GABA production. In the present study, the effects of 8 glutamate, arginine and malate (*i.e.*, the substrates of these acid-resistance pathways) on L. lactis 9 NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine 10 supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass 11 compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow 12 environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some 13 conditions were able to improve GABA production or activate glutamate decarboxylation system 14 even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest 15 GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate and glutamate enabled earlier GABA 16 17 production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no 18 previous study has reported GABA production in such conditions. Although further studies are 19 needed to understand the molecular basis of these phenomena, these results represent important 20 keys suitable of application in GABA production processes.

1 1. INTRODUCTION

2 Lactic acid bacteria (LAB) are gram-positive microaerophilic microorganisms extensively used in the agro-food industry because of their high lactic acid production and consequent food 3 4 acidification. This is an appreciated feature for both prolongation of food shelf-life and biocontrol 5 of food born infections, since most spoilage and pathogenic bacteria are acid-sensitive (Trias et al., 2008). The acid-resistance of LAB is based upon different, either constitutive or inducible, 6 7 mechanisms which include: i) cytoplasm alkalinization by H^+ consumption through decarboxylation 8 mechanisms, or arginine deiminase (ADI) pathway or urease reaction; ii) changes in the 9 composition of the cell envelope; iii) production of general shock proteins (chaperones); iv) 10 changes in cell density (for a review, see Cotter and Hill, 2003). Most of these strategies involve the 11 expression of genes which improve cell resistance to adverse conditions. In lactococci the main 12 metabolic mechanisms involved in pH homeostasis are ADI, malolactic fermentation (MLF) and 13 glutamate decarboxylase (GAD) systems (Figure 1). Nowadays, little is known about possible 14 interactions between these metabolic systems in L. lactis.

15 ADI pathway consists of three reactions converting arginine to ornithine, NH₃, CO₂ and ATP. This route is catalyzed by three enzymes: ADI (converting arginine to citrulline and NH₃), 16 17 ornithine transcarbamylase (converting citrulline to ornithine and carbamoyl phosphate) and 18 carbamate kinase (converting carbamoyl phosphate to NH₃, CO₂ and ATP), encoded by the genes 19 arcA, arcB, and arcC, respectively (Figure 1). These enzymes appear to be acid resistant (Casiano-20 Colón and Marquis, 1988). The efficiency of the overall pathway is increased by arginine supplementation (Poolman et al., 1987). The ADI pathway provides both cytoplasm alkalinization, 21 22 through release of NH₃, and metabolic energy production, since ATP is generated by substrate level 23 phosphorylation in the reaction catalyzed by carbamate kinase. The ADI systems of Lactobacillus 24 sakei (Zuniga et al., 1998), Enterococcus faecalis (Simon et al., 1982) and LAB strains associated 25 with cheese fermentations (Crow and Thomas, 1982) or colonizing oral cavity (Dong et al., 2002; 26 Marquis et al., 1987) are subject to catabolite repression by glucose. However, in Lactobacillus 27 sanfranciscensis (De Angelis et al., 2002), Oenococcus oeni, and other wine LAB (Liu et al., 1996) 28 glucose and arginine can be concomitantly catabolized.

MLF is the conversion of dicarboxylic malic acid to monocarboxylic L-lactic acid by malolactic enzyme (Figure 1). L-lactate is excreted via electrogenic transporters, *i.e.*, by either lactate-malate antiporter (*Lactococcus lactis*) or lactate uniport (*O. oeni* and *Lactobacillus plantarum*) (Konings et al., 1997) depending on the strain, which allow production of proton motive force. Furthermore, due to the pK_a difference of the carboxylic groups of malate and lactate, replacement of malate by lactate results in alkalinization of the extracellular medium. A further relevant malate dissimilation pathway which can contribute to acid resistance of LAB is oxidative decarboxylation of malate to pyruvic acid (catalyzed by malic enzyme) (Landete et al., 2013). It is
generally accepted that malate utilization through MLF cannot sustain growth *per se*, (since lactate
cannot be used as a carbon source by most LAB), while its metabolism via malic enzyme enables
LAB to use it as the only carbon source. Distribution of malic enzyme currently seems restrained to
fewer strains (including *L. lactis* NCDO 2118) with respect to MLF (Landete et al., 2013; Oliveira
et al., 2014). However, malic enzyme has been studied at much lesser extent than MLF and,
currently, contribution of malic enzyme pathway to LAB metabolism cannot be precisely evaluated.

8 Like other amino acid decarboxylations, glutamate conversion to γ -aminobutyric acid 9 (GABA) is an important strategy to counteract excess of acidity (Schelp et al., 2001; Van De 10 Guchte et al., 2002; Pessione 2012) since the reaction itself is proton consuming and results in 11 alkalinization of the cytoplasmic compartment (Small and Waterman, 1998). Glutamate 12 decarboxylase system has been reported in both gram-positive and gram-negative bacteria (Small 13 and Waterman, 1998; Cotter et al., 2005; Bhagwat and Bhagwat 2004; Tramonti et al., 2006) and 14 includes proton-consuming decarboxylation of glutamate by glutamate decarboxylase (GAD) in the 15 cytoplasm and cell membrane-located electrogenic glutamate/GABA antiporters which generate proton motive force (Molenaar et al., 1993; Higuchi et al., 1997; Lu et al., 2013; Tsai et al., 2013) 16 17 (Figure 1). The expression of GAD in L. lactis is increased by low pH and glutamate 18 supplementation (Sanders et al., 1998). Recent studies have identified a further acid-resistance 19 mechanism in Lactobacillus reuteri and E. coli which is based on glutamine and can be interpreted 20 as an "extension" of the GAD system (Lu et al., 2013; Teixeira et al., 2014). Both glutaminase, 21 which catalyzes glutamine deamidation (producing ammonia and glutamate), and GAD are present 22 in the cytoplasm of these strains and contribute to intracellular alkalinization. These studies 23 indicated that GadC, which had been previously identified as a glutamate/GABA antiporter, is also 24 able to mediate uptake of glutamine or extrusion of glutamate. A gene encoding a putative 25 glutamine/GABA antiporter has been identified in the genome of O. oeni PSU-1 also (Mills et al., 26 2005).

L. lactis NCDO 2118 is able to biosynthesize GABA by glutamate decarboxylation. A previous transcriptomic and proteomic study demonstrated that ADI pathway genes (*arcA, arcD1, arcB* and *arcC2*) are down-regulated in glutamate-supplemented/GABA-producing conditions, thus suggesting that glutamate decarboxylation and arginine deimination are competing routes in this strain (Mazzoli et al., 2010). The present investigation aimed to better establish the relative contribution of GAD, ADI and MLF pathways in energy metabolism and acid resistance of *L. lactis* NCDO 2118 and possible reciprocal interactions of these metabolic systems.

34

35 2. MATERIAL AND METHODS

1 2.1. Bacterial strain

Lactococcus lactis subsp. *lactis* NCDO 2118 from vegetable origin was used throughout this study.
This strain was selected during preliminary studies as the only one able to biosynthesize detectable
amounts of GABA among the *L. lactis* strains available in the laboratory microbial collection
(LISBP of INSA-Toulouse, France).

6

7 2.2. Culture conditions

8 2.2.1. Cultures in tubes

9 Cultures were grown in the chemically defined medium (CDM) (Otto et al., 1983; Poolman and Konings, 1988), containing glucose (20 g.L⁻¹) under anaerobic conditions, *i.e.*, in N₂ atmosphere, in 10 butyl rubber-stoppered tubes at 30°C. The initial pH was 6.6. Furthermore, different concentrations 11 12 of glutamate and/or arginine and/or malate were added into the medium depending on the study. All 13 the experiments were performed in duplicate. Inoculation was with cells from precultures harvested 14 during the exponential phase and concentrated in order to obtain an initial optical density at 580 nm (OD₅₈₀) of 0.05 in the tubes. During incubation, 1 mL samples were taken every 30 min so as to 15 measure the OD₅₈₀ with Spectronic 301 spectrophotometer (Milton Roy, Pont Saint Pierre, France). 16 17 The maximum growth rate (μ_{max}) was then determined. pH was also regularly measured with pH 18 meter (Metrohm 744, Villebon Sur Yvette, France).

19

20 2.2.2. Cultures in fermenter

Bacterial cultures were performed in duplicate in 2 L Biostat B plus fermenter (Sartorius, 21 Melsungen, Germany) filled with glucose (20 g.L⁻¹) containing-CDM or the same medium 22 supplemented with 5 g.L⁻¹ (34 mM) glutamate and/or 5 g.L⁻¹ (29 mM) arginine and/or 20 g.L⁻¹ (149 23 mM) malate. Cultures were incubated at 30 °C in anaerobiosis, obtained by slight N₂ overpressure. 24 25 pH was maintained at 6.6 by KOH addition until cultures reached $OD_{580} = 1$, in order to reach 26 enough biomass for further analytical procedures, and then pH was not regulated anymore. Bacterial growth was monitored by measurement of OD₅₈₀ (Libra S11, Biochom, 1 Unit of 27 absorbance is equivalent to 0.3 g.L^{-1}). Samples were collected every 30 min for HPLC 28 29 determination of metabolite concentration in the growth medium.

30

31 2.3. Metabolite determination

32 Glucose, malate and metabolite (*i.e.*, lactate, acetate, formate and ethanol) concentrations 33 were measured in culture supernatants by high performance liquid chromatography (Agilent 34 Technologies 1200 Series, Waldbronn, Germany) using a HPX87H⁺ Biorad column and the following conditions: a temperature of 48 °C, eluent H₂SO₄ (5 mM) at a flow rate of 0.5 mL.min⁻¹,
and dual detection (refractometer and UV).

3 Free amino acid and GABA concentration in culture supernatants was measured by HPLC system (Agilent Technologies 1200 Series, Waldbronn, Germany). Prior to HPLC determination, 4 proteins in the samples were precipitated by adding four volumes of methanol followed by 5 6 overnight incubation on ice. The mixture was centrifuged and the supernatant kept for HPLC 7 analysis. Amino acids were automatically derived with OrthoPhtalic Aldehyde (OPA) and 9-8 fluorenylmethyl-chloroformiate (FMOC-C1). The derivatives were separated on Hypersil AA-ODS 9 column (Agilent Technologies) at 40 °C by a linear gradient of acetate buffer (pH 7.2) with 10 triethylamin (0.018 %), tetrahydrofuran (0.3 %) and acetonitrile. A diode array detector, at 338 nm 11 for OPA derivatives and 262 nm for FMOC derivatives, was used.

12

13 2.4. Statistical methods

14 Student's t-test was applied to each parameter (Table 1) in order to detect significant 15 differences between culture conditions (CDM or CDM supplemented with glutamate as the 16 references). A *p*-value lower than 0.025 was considered as significant.

17

18 **3. RESULTS**

19 **3.1.** Growth and metabolism of *L. lactis* NCDO 2118 in control conditions.

20 Fermentation profiles of L. lactis NCDO 2118 in glucose-containing chemically defined medium 21 (CDM), in unregulated pH conditions, were determined. Growth started immediately after inoculum at maximal growth rate ($\mu_{max} = 0.97 \text{ h}^{-1}$), and stopped after 5 h, at a biomass concentration of about 22 1 g.L⁻¹ (Figure 2, Table 1). At that time, the pH was about 4.9-5.0, and it further gradually 23 24 decreased during the stationary phase until 4.2 (13 h after inoculum). L. lactis NCDO 2118 showed high maximal glucose consumption rate (27.7 mmol.g⁻¹.h⁻¹) and exhibited homolactic metabolism 25 26 all along the growth phases, leading to accumulation of 65.6 mM lactate (Table 1). Growth stopped 27 before glucose depletion. We have performed cultures in the same medium but at regulated pH (6.6) 28 during all the fermentation. In these conditions, growth continued until glucose exhaustion, 29 demonstrating that acidic pH is responsible for the growth arrest in our control conditions.

The growth medium used in this study did contain no glutamate while low concentrations of arginine and glutamine (0.6 and 3.0 mM, respectively) were present. Arginine was quickly exhausted ($q_{max} = 1.44 \text{ mmol.g}^{-1}.h^{-1}$) and stoichiometrically converted to ornithine and citrulline. About half of the initial glutamine was consumed ($q_{max} = 1.22 \text{ mmol.g}^{-1}.h^{-1}$) in 48 h, leading to accumulation of 0.5 mM of glutamate and 0.4 mM of GABA in the growth medium (Table 1).

1 3.2. Effect of glutamate or arginine or malate supplementation on growth and metabolism of

2 L. lactis NCDO 2118

In order to study the effect of glutamate or arginine or malate on metabolic profiles of *L*. *lactis* NCDO 2118 cultures were performed in glucose-CDM medium supplemented with each of these single compounds at regulated and unregulated pH as described below. GABA was never produced in regulated pH conditions (pH = 6.6). It was detected at unregulated pH and only cultures performed in these conditions are described below.

8 3.2.1. Effect of glutamate

The effect of different glutamate concentrations, ranging from 0 to 20 g.L⁻¹ (0-136 mM) was 9 10 tested in tube cultures. Neither specific growth rate nor final biomass was affected by the different 11 glutamate concentrations used (Figure 3A). However, slight variations in final pH and, more 12 importantly, changes in amounts of accumulated GABA were observed among the different 13 glutamate-supplemented cultures. The higher was glutamate supplementation, the higher was the 14 final pH and the amount of GABA which was accumulated (pH = 4.1, 0.3 mM of GABA in cultures 15 without glutamate supplementation; pH = 4.5, 3.8 mM GABA in cultures supplemented with 136 mM glutamate). It is worth noting that glutamate/GABA conversion yield was not the same in each 16 17 condition since it was higher in cultures supplemented with lower glutamate concentration (*i.e.*, 35 18 % in cultures containing 3.4 mM glutamate) and progressively decreased at higher glutamate 19 supplementation (*i.e.*, 3% in cultures containing 136 mM glutamate) (Figure 4).

The medium containing 5 $g.L^{-1}$ glutamate (34 mM) retained our attention since it displayed 20 21 high production of GABA with intermediary glutamate/GABA conversion yield. This condition 22 was also previously used for transcriptome-proteome analysis (Mazzoli et al., 2010). Cultures were 23 performed in fermenter in order to provide detailed metabolic parameters. As determined for tube-24 cultures (see above), glutamate supplementation did not affect μ_{max} and final biomass with respect 25 to control cultures. Glutamate supplementation did not have any effect on glucose consumption 26 rate, although a slightly higher glucose amount was consumed in these condition leading to 27 accumulation of higher amounts of lactic acid (Table 1). Both final pH and GABA accumulation at 28 48 h were higher in glutamate-supplemented culture, thus confirming results obtained in tube 29 cultures. It is worth noting that the amount of glutamine consumed was similar to control cultures, 30 although maximal glutamine consumption rate was significantly lower, and that 5.5 mM of 31 glutamate was consumed leading to accumulation of 3.12 mM GABA (Table 1). Finally, glutamate 32 supplementation did not display any significant influence on arginine consumption rate (Table 1).

33 3.2.2. Effect of arginine

34 Cultures of *L. lactis* NCDO 2118 were performed in tubes containing glucose-CDM 35 medium supplemented with arginine concentrations ranging from 0 to 25 g.L⁻¹ (0-144 mM).

1 Increasing amounts of supplemented arginine progressively caused: i) a slight decrease of the maximal growth rate (from 1 h^{-1} to 0.8 h^{-1}); ii) a strong increase of both the final biomass and iii) 2 final pH (from pH = 4.1 to pH = 6.6) (Figure 3B). Arginine was depleted 6 h after inoculum in 3 4 every tested culture and progressive alkalinization of final pH (proportional to increasing initial 5 concentration of arginine) was observed. This was likely related to production of higher amounts of 6 NH₃ by arginine metabolization through the ADI route. Interestingly, arginine addition up to 10 g.L⁻ 7 ¹ (57 mM) progressively enhanced GABA production up to 1.9 mM (Figure 3B). Since the medium 8 did not contain glutamate, this was likely the result of increased bioconversion of glutamine. However, for higher initial arginine concentrations, GABA accumulation was markedly decreased 9 10 to levels similar to those of control cultures. This was probably caused by excessive medium 11 alkalinization and consequent inhibition of glutamate decarboxylation system.

Arginine at 29 mM (5 g.L⁻¹) was chosen for further experiments in fermenter, since this 12 13 culture condition was characterized by the highest specific GABA production (i.e. amount of 14 GABA/ final biomass ratio). Such arginine supplementation did not significantly increase the μ_{max} 15 but doubled final biomass with respect to control conditions (Table 1). Although arginine was 16 completely exhausted at the growth arrest at 6 h, the extracellular pH at this point, was not much 17 more alkaline than in control conditions. However, in arginine-supplemented cultures a two-fold 18 higher glucose amount was consumed leading to a final lactate concentration of about 123.3 mM 19 which likely had a neutralizing effect on the NH₃ released via the ADI pathway (Table 1). 20 Consistently, ornithine and citrulline accumulated in the culture broth and levels were proportional 21 to arginine consumption. No putrescine was detected.

As observed in tube-cultures, arginine supplementation also enhanced GABA production. Accumulation of increased amounts of GABA cannot be explained only by the higher biomass achieved in arginine-supplemented cultures, since biomass was increased by two-fold whereas GABA accumulation was enhanced by four-fold at 48 h. On the other hand, specific glutamine consumption rate was similar to values measured in control conditions. These observations suggest that arginine directs a higher proportion of glutamine metabolic flux towards GABA production diverting it from other pathways.

29 **3.2.3.** *Effect of malate*

Cultures of *L. lactis* NCDO 2118 in tubes containing glucose-CDM medium supplemented with malate concentration ranging from 0 to 50 g.L⁻¹ (0-373 mM) were performed (Figure 3C). With increasing malate supplementation, final pH and μ_{max} were affected in somehow similar ways as what observed in arginine fortified cultures, *i.e.* final pH progressively raised, while μ_{max} was lower for higher malate supplementation. Taking into account that supplemented concentrations of malate were more than two-fold higher than for arginine, malate supplementation had more limited effects on acid neutralization (final pH with 50 g.L⁻¹ malate supplementation was about 7). On the contrary, such high malate concentration negatively affected μ_{max} (*i.e.*, it was reduced from 1 h⁻¹ to 0.4 h⁻¹). A moderate final biomass increase (up to 1.4 g.L⁻¹) was observed up to malate concentration of 40 g.L⁻¹ (298 mM). Higher malate supplementation caused reduction of final biomass to levels lower than control conditions.

Cultures of L. lactis NCDO 2118 in glucose-CDM medium containing 20 g.L⁻¹ (149 mM) 6 7 malate were performed in fermenter also. This condition was chosen since the GABA produced was 8 significantly increased compared to the reference condition while the growth rate was similar. 9 Maximal specific growth rate, final biomass and final extracellular pH were coherent with results 10 obtained in tube cultures with the same malate concentration. This condition was the one 11 stimulating the consumption of the highest amount of glucose compared to reference conditions or 12 supplementations with glutamate or arginine at 48 h (Table 1). Actually, glucose was almost 13 depleted after 12 h of culture, although specific glucose consumption rate was similar the other 14 growth conditions tested. However, malate supplementation did not stimulate any further GABA 15 accumulation with respect to control conditions (Table 1). Curiously, malate seems to increase arginine consumption rate $(2.69 \text{ mmol.g}^{-1}.\text{h}^{-1})$ with respect to cultures on CDM. 16

17

18 **3.3.** Cultures supplemented with glutamate plus arginine or glutamate plus malate

19 3.3.1. Effect of simultaneous arginine and glutamate supplementation

The simultaneous addition of arginine and glutamate to the glucose-CDM medium was studied in 20 fermenter. The concentrations of arginine (5 g.L⁻¹, 29 mM) and glutamate (5 g.L⁻¹, 34 mM) were 21 chosen according to the individual fermenter conditions previously tested. A slightly decreased 22 maximal growth rate ($\mu_{max} = 0.89 \text{ h}^{-1}$) was observed while final pH was similar to cultures 23 24 supplemented with glutamate only (Table 1). Final biomass at the growth arrest was also 25 significantly higher like cultures supplemented with arginine only. However, GABA production 26 was strongly enhanced since 8.6 mM were accumulated in the medium, that is almost three-fold 27 higher that in cultures supplemented with glutamate only. This was the highest amount of GABA 28 accumulation observed in this study and was likely the result of both higher substrate availability (*i.e.*, glutamate supplementation) and stimulation of GABA production by arginine, confirming 29 30 results obtained in cultures supplemented with arginine only.

31

32 **3.3.2.** Effect of simultaneous malate and glutamate supplementation

In a similar way, the effect of simultaneous malate and glutamate supplementation was tested in fermenter. This condition noticeably reduced μ_{max} (0.81 h⁻¹) with respect to control conditions as observed in cultures supplemented with glutamate only (Table 1). However, the

1 specific glucose consumption rate was similar (Table 1). Final biomass and extracellular pH at the 2 growth arrest, as well as glucose consumption and lactate production at 48 h were higher than the reference but similar to that measured in cultures fortified with malate only. Hence, contribution of 3 4 glutamate to energy metabolism seems negligible. This is confirmed by the fact that in this condition only 2.54 mM of GABA was accumulated at 48 h. This value is not significantly different 5 6 from GABA amounts observed in culture supplemented with glutamate only. These data, taken 7 together with the fact that in malate-plus-glutamate-supplemented cultures biomass production was 8 higher than in culture supplemented with glutamate only, suggest that malate somehow repressed 9 GABA production pathway(s). On the other hand, specific malate consumption rate was slightly 10 lower than in cultures supplemented with malate only (Table 1).

11

12 3.4. Cultures supplemented with glutamate plus arginine plus malate

Cultures of *L. lactis* NCDO 2118 were performed in CDM supplemented with 5 g.L⁻¹ arginine (29 mM), 20 g.L⁻¹ malate (149 mM) and 5 g.L⁻¹ glutamate (34 mM). Since usual glucose concentration (20 g.L⁻¹, 110 mM) was exhausted after 10 h of growth (in agreement with the high sugar consumption rate observed in other malate-supplemented cultures) initial glucose concentration was increased to 45 g.L⁻¹ (250 mM) so as to avoid growth limitation by sugar depletion.

As for other malate supplemented cultures, growth was at slightly lower μ_{max} (0.85 h⁻¹) with respect 18 19 to control cultures supplemented with glutamate. Simultaneous supplementation of glutamate, 20 malate and arginine had additive effects on i) attenuating extracellular acidity caused by lactic acid 21 accumulation (353.3 mM was produced 48 h after inoculum), since pH at both time of growth arrest 22 and after 48 h was the highest observed among the growth conditions tested in this study and ii) increasing biomass formation up to 2.2 g.L⁻¹. Growth arrest occurred 9 h after inoculum. At that 23 24 time, while malate had already been depleted, only 71.1 mM of glucose had been consumed, 25 leading to accumulation of 228.05 mM lactic acid. The high amount of lactic acid observed in these 26 conditions could contribute to growth arrest for reasons independent from acidification.

The specific consumption rates for glucose and glutamine were of the same order of magnitude of values measured in control conditions (Table 1). Specific malate consumption rate was slightly lower than in the other malate-supplemented cultures described above, while arginine was consumed at a highest specific rate (14.58 mmol.g⁻¹.h⁻¹, Table 1).

Finally, GABA was produced until a maximal concentration of 5.22 mM at 48 h, which is higher than amounts accumulated in glutamate- and glutamate-plus-malate-supplemented cultures but lower than those accumulated in glutamate-plus-arginine supplemented cultures. This data confirmed that arginine enhances while malate decreases GABA accumulation. Interestingly, simultaneous glutamate-malate-arginine supplementation triggered an earlier production of GABA with respect to all the other tested conditions: a concentration of 2.86 mM was already detected 12 h after inoculum and it reached 4.28 mM at 24 h. This earlier production of GABA can be observed in Figure 5 which combines the kinetics of the different experiments. When glutamate, arginine and malate were contemporarily supplemented to *L. lactis* NCDO 2118 cultures, GABA production started at the beginning of the exponential growth phase and at a pH as high as 6.6 while only tardive GABA production in acidic conditions (pH<5.1) was observed in all other tested conditions.</p>

7

8 **DISCUSSION**

9 Several systems can be activated or enhanced by LAB to attenuate acidic environments 10 and/or to improve metabolic energy. If the most obvious strategy involves F₀F₁-ATPase, other 11 mechanisms such as the ADI pathway or the decarboxylation of malate and amino acids can be 12 used to neutralize or reduce acidity (Budin-Verneuil et al., 2004). ADI pathway and malate 13 decarboxylation by MLF are often present in LAB which live in wine ecological niche in which 14 both malate and arginine are abundant. In LAB, biogenic amine production (including GABA 15 biosynthesis) through amino acid decarboxylation usually occurs in response to adverse conditions, e.g., as a mean to counteract acidic environments (Van De Guchte et al., 2002) and to obtain 16 17 metabolic energy when the primary substrates (e.g., glucose) are exhausted (Molenaar et al., 1993; 18 Pessione et al., 2010). However, little is known about the relative role of the considered metabolic 19 pathways in pH homeostasis, their possible synergistic/antagonist effects and consequences on 20 global metabolism and growth of LAB. In the present study, the contribution of energy 21 supplying/alkalinizing routes (i.e. ADI pathway, malate fermentation and production of GABA), to 22 growth and metabolism of L. lactis NCDO 2118 and their reciprocal relationships was investigated. 23 Effects of supplementation of different amounts of substrates (arginine, malate and glutamate) or their mixtures on growth (specific growth rate, final biomass), substrate consumption and GABA 24 25 production have been quantitatively determined.

26 Growth Parameters

27 In all tested conditions, the growth profile was characteristic of L. lactis cultures, in which 28 the growth rate was maximal in the early phase and then progressively decreased. Growth arrest 29 was likely caused by low pH and/or lactic acid accumulation in every condition considered here. 30 The increase in final biomass seems inversely correlated to the pH decrease: the higher the initial 31 concentration of arginine or malate, the higher was likely the activation of corresponding acid 32 resistance mechanisms (ADI pathway and MLF, respectively) resulting in weaker and slower pH 33 decrease, hence the growth could be supported for longer time periods. It is worth noting that while in arginine-supplemented cultures the pH acidification caused by lactic acid accumulation by 34 35 glycolysis is neutralized by release of ammonia, pH increase by MLF leads to additional lactate 1 production. It can be speculated that huge lactic acid accumulation is likely the main growth inhibiting factor in malate-supplemented cultures, for reasons independent from medium 2 acidification. For instance, this could explain why in cultures supplemented with 149 mM malate 3 cell growth stopped at lower final biomass, *i.e.* 1.86 g.L⁻¹, and higher pH, *i.e.* pH = 5.76, with 4 5 respect to cultures supplemented with arginine. However, we cannot exclude that arginine and/or 6 malate stimulate biomass production by additional mechanisms (other than homeostasis), such as 7 production of biosynthetic intermediates, for instance through malate conversion by ME (Landete et 8 al., 2013) or arginine conversion to pyrimidine precursors.

9 The maximal glucose consumption rate was similar in all tested conditions, and the central 10 metabolism remained homolactic. From this macro-kinetic analysis, no evidence that glycolytic flux 11 was affected by alternative acid-resistance related pathways could be inferred. This is in agreement 12 with the observation that the expression of two enzymes of the central metabolism, namely 13 phosphoglucomutase and pyruvate dehydrogenase, was unaffected by arginine or malate in 14 Lactobacillus hilgardii (Lamberti et al., 2011). The efficiency of arginine, glutamate and malate dissimilation pathways of L. lactis NCDO 2118 was very diverse, as demonstrated by specific 15 16 substrate consumption rates. Malate was consumed at the highest rate (maximal q_{malate} was comprised between 21.5 and of 29.5 mmol.g⁻¹.h⁻¹), followed by the arginine (maximal q_{Arg} 17 comprised between 1.2 and of 14.6 mmol.g⁻¹.h⁻¹), and finally by glutamate (maximal $q_{Glu} < 0.2$ 18 mmol.g⁻¹.h⁻¹). These data suggest that MLF is the most rapid system for neutralizing acidity in this 19 20 strain. In fact, the slowest acidification was observed in cultures supplemented with malate. Malate 21 consumption rate seems negatively affected by both glutamate and arginine supplementation, 22 suggesting that in these conditions MLF is inhibited. It has been previously reported that malate 23 consumption was not affected by histidine in the culture medium in L. hilgardii ISE5211 (Mazzoli 24 et al., 2009; Lamberti et al., 2011). Similarly ornithine-putrescine conversion does not affect MLF in Oenococcus oeni (Mangani et al., 2005). Hence amino acid and malate decarboxylation can be 25 26 activated in parallel without reciprocal interference in these two wine-isolated strains. This is not 27 the case in L. lactis NCDO 2118 in which also glutamate decarboxylation is negatively affected by 28 malate suggesting that these routes are competing. One possible explanation for this different 29 behaviour is that L. lactis NCDO 2118 has been isolated from another ecological niche (frozen 30 peas) and can be encountered in milk fermentation. Arginine consumption rate is strongly influenced by environmental conditions. Notably, both arginine and malate supplementation 31 32 increases maximal specific consumption rate of arginine (Table 1). These data suggest that both 33 arginine and malate may activate ADI pathway. The activation of ADI by arginine has been previously described for many LAB species (Manca de Nadra et al., 1986; Tonon et al., 2001; De 34 35 Angelis et al., 2002; Lamberti et al., 2011). However, positive regulation of ADI by malate has 1 never been reported so far. Proteomic analyses showed that the expression of ADI pathway 2 enzymes is not affected by malate in L. hilgardii (Lamberti et al., 2011). Furthermore, malate inhibited arginine consumption in some lactobacilli and pediococci isolated from wine (Araque et 3 4 al., 2011). However, Rallu and co-workers (1996) previously suggested that lactic acid can activate 5 arginine metabolism, including ADI pathway, in L. lactis. We can hypothesize that malate is able to 6 enhance ADI pathway in L. lactis NCDO 2118 through additional lactate production by MLF 7 although a direct activation of this pathway by malate cannot be excluded to be specific to the strain 8 considered in this study.

9 GABA production

10 GABA production was clearly dependent on the environmental conditions. In absence of 11 glutamate, only low amounts of GABA were produced likely as a consequence of the conversion of 12 glutamine (which is a CDM component) into glutamate. The higher glutamate supplementation, the 13 higher the final concentration of GABA (Figure 3A). However, relationship between the amount of 14 supplemented glutamate and produced GABA is not linear but rather looks like a Michaelis-Menten 15 plot. Since glutamate amount did not affect significantly final biomass and growth rate, these data suggest that the same amount of enzymes involved in glutamate/GABA conversion (*i.e.*, glutamate 16 17 decarboxylase and/or glutamate/GABA antiporters) were present in all these conditions, *i.e.* 18 glutamate did not improve their biosynthesis. In these conditions, the system is semi-saturated for 19 glutamate concentrations of about 7 mM. The present data therefore confirm previous results 20 obtained on L. lactis NCDO2118 which indicated that glutamate supplementation did not induce 21 overexpression of GAD (Mazzoli et al., 2010).

22 Arginine supplementation significantly enhanced GABA production in both absence or 23 presence of glutamate fortification. The latter condition corresponds with the production of the 24 highest GABA amount observed in this study (8.6 mM). It is possible to hypothesize that arginine 25 can replace glutamine/glutamate in some metabolic function, allowing a higher proportion of these 26 compounds to be directed towards GABA production. For instance, it is well known that in L. lactis 27 glutamine can be converted to carbamoyl phosphate, the building block for pyrimidine biosynthesis, 28 by carbamoyl phosphate synthase (EC 6.3.5.5) (Martinussen and Hammer, 1998). Since also 29 arginine can generate carbamoyl phosphate through the ADI pathway, it could replace glutamine 30 allowing it to be used for GABA biosynthesis. Similarly, arginine could replace glutamate as amino 31 group donor allowing higher glutamate conversion to GABA.

An analysis of GABA production as a function of the pH of the culture confirmed the strong dependency of this metabolic system on pH (Figure 5). Significant GABA production was observed only at pH lower than 5.1 during stationary phase (Figure 5), thus confirming previous observations on the same strain (Mazzoli et al., 2010). These data also agree with recent studies reporting that

1 acidic pH is necessary for activating glutamate/GABA antiport by GadC (Lu et al., 2013; Tsai et al., 2 2013). However, when glutamate, arginine and malate were contemporarily supplemented to L. lactis NCDO 2118 cultures, GABA production started at the beginning of the exponential growth 3 phase and at a pH as high as 6.6 (Figure 5). At pH 6.6, the intracellular pH is estimated to be close 4 5 to the neutrality (Even et al., 2002) and is not compatible with the GAD activity that was found to be highly inhibited above pH 5.4 in our bacteria (results not shown). This suggests that another 6 7 enzyme probably ensures decarboxylation of glutamate in neutral conditions. As far as we know, 8 this is the first evidence of significant GABA production during the exponential growth phase and 9 at nearly neutral pH. The biomass profile could not explain this production since it was similar to 10 cultures supplemented with arginine plus glutamate, where early activation did not occur. Since this 11 effect was not observed when each of these three metabolites was supplemented individually or as 12 binary mixtures (glutamate plus arginine, or glutamate plus malate) it can be speculated that the 13 simultaneous activation of ADI pathway and malolactic fermentation is susceptible to activate 14 GABA production, even at higher pH and during exponential growth. Although more work is 15 needed to understand the biochemical basis of this phenomenon, this observation could have 16 significant impact on industrial GABA production process.

17

18 CONCLUSION

19 Acidic environments constitute a major stress for LAB which developed several acid-20 counteracting systems which include ADI pathway, MLF and amino acid decarboxylation. 21 Regulation and reciprocal interactions of these pathways seem to vary among microbial species. 22 The present study indicated that glutamate decarboxylation plays minor roles in L. lactis NCDO 23 2118 physiology with respect to malate and arginine dissimilation. In fact, glutamate 24 supplementation had very limited effect in neutralizing acidity and in stimulating biomass 25 production in contrast to results obtained through malate and arginine supplementation. 26 Furthermore, GABA production was restrained to narrower environmental conditions than malate 27 or arginine dissimilation, since both acidic pH (pH < 5.1) and stationary phase were generally 28 required for its activation. However, this study indicated some strategies which enabled activation 29 of glutamate decarboxylation system outside of this compass. Notably, arginine was able to strongly 30 stimulate GABA production, while simultaneous addition of arginine and malate was able to trigger 31 glutamate decarboxylation in earlier growth phase (i.e., exponential phase) at near neutral pH. Even 32 if understanding the molecular basis of these phenomena will require further studies, these results 33 are valuable tracks for developing more performant industrial processes for enhanced and earlier 34 GABA production through fermentation.

1 AUTHOR CONTRIBUTIONS

VL: Contribution to acquisition, analysis and interpretation of the data, contribution in drafting the article. CY, WN: contribution to experimental and chemical analysis. RM, EP, MCM: contribution to interpretation of data and in drafting the article. PL: design of the work, analysis and interpretation of data, writing of the manuscript.

6

7 ACKNOWLEDGEMENTS

8 The authors wish to thank Sophie Mondeil for technical assistance. Grants for Chonthicha Yasaro
9 and Waranya Narin were provided by PHC Thailand N°16595UC and DUO-Thailand program.

10

11 **REFERENCES**

- 12 Araque, I., Reguant, C., Rozès, N., and Bordons, A. (2011). Influence of wine-like conditions on arginine
- 13 utilization by lactic acid bacteria. Int. Microbiol. 14, 225-33. doi: 10.2436/20.1501.01.152
- 14 Budin-Verneuil, A., Maguin, E., Auffray, Y., Dusko Ehrlich, S., and Pichereau, V. (2004). An essential role
- 15 for arginine catabolism in the acid tolerance of *Lactococcus lactis* MG1363. Lait 84, 61-68
- 16 Bhagwat, A.A., Bhagwat, M. (2004). Comparative analysis of transcriptional regulatory elements of
- 17 glutamate-dependent acid-resistance systems of Shigella flexneri and Escherichia coli O157:H7. FEMS
- 18 *Microbiol. Lett.* 234, 139-147. doi: 10.1111/j.1574-6968.2004.tb09525
- Casiano-Colón, A., and Marquis, R.E. (1988). Role of the arginine deiminase system in protecting oral
 bacteria and an enzymatic basis for acid tolerance. *Appl. Environ. Microbiol.* 54, 1318-24
- 21 Cotter, P.D., and Hill, C. (2003). Surviving the acid test: responses of gram-positive bacteria to low pH.
- 22 Microbiol. Mol. Biol. Rev. 67, 429-453. doi: 10.1128/MMBR.67.3.429-453.2003
- 23 Cotter, P.D., Ryan, S., Gahan, C.G., and Hill, C. (2005). Presence of GadD1 glutamate decarboxylase in
- 24 selected Listeria monocytogenes strains is associated with an ability to grow at low pH. Appl. Environ.
- 25 Microbiol. 71, 2832-2839. doi: 10.1128/AEM.71.6.2832-2839.2005
- Crow, V.L., and Thomas, T.D. (1982). Arginine metabolism in lactic streptococci. *J. Bacteriol.* 150, 10241032
- 28 De Angelis, M., Mariotti, L., Rossi, J., Servili, M., Fox, P.F., Rollan, G., and Gobbetti, M. (2002). Arginine
- 29 catabolism by sourdough lactic acid bacteria: purification and characterization of the arginine deiminase
- 30 pathway enzymes from Lactobacillus sanfranciscensis CB1. Appl. Environ. Microbiol. 68, 6193-6201.
- 31 doi: 10.1128/AEM.68.12.6193-6201.2002

- 1 Even, S., Lindley, N.D., Loubière, P., and Cocaign-Bousquet, M. (2002) Dynamic response of catabolic
- 2 pathways to autoacidification in Lactococcus lactis: transcript profiling and stability in relation to metabolic
- 3 and energetic constraints. *Mol Microbiol*. 45(4):1143-1152. doi: 10.1046/j.1365-2958.2002.03086.x
- 4 Higuchi, T., Hayashi, H., and Abe, K. (1997). Exchange of glutamate and gamma-aminobutyrate in a
 5 Lactobacillus strain. J. Bacteriol. 179, 3362-3364
- 6 Konings WN, Lolkema JS, Bolhuis M, Van Veen HW, Poolman B, and Driessen AJ (1997). The role of
- 7 transport processes in survival of lactic acid bacteria-energy transduction and multidrug resistance. Antonie
- 8 van Leeuwenhoeck 71:117-128
- 9 Lamberti, C., Purrotti, M., Mazzoli, R., Fattori, P., Barello, C., Coïsson, J.D., Giunta, C., and Pessione, E.
- 10 (2011). ADI pathway and histidine decarboxylation are reciprocally regulated in *Lactobacillus hilgardii* ISE
- 11 5211: proteomic evidence. *Amino Acids* 41, 517-527. doi:10.1007/s00726-010-0781-2
- Landete, J.M., Pardo, I., and Ferrer, S. (2006). Histamine, histidine, and growth-phase mediated regulation of
 the histidine decarboxylase gene in lactic acid bacteria isolated from wine. *FEMS Microbiol. Lett.* 260, 84-
- 14 90. doi: 10.1111/j.1574-6968.2006.00294
- Landete, J.M., Ferrer, S., Monedero, V., and Zúñiga, M. (2013). Malic enzyme and malolactic enzyme
 pathways are functionally linked but independently regulated in *Lactobacillus casei* BL23. *Appl. Environ. Microbiol.* 79, 5509-5518. doi: 10.1128/AEM.01177-13
- 18 Liu, S.Q., Pritchard, G.C., Hardman, M.J., and Pilone, G.J. (1996). Arginine catabolism in wine lactic acid
- bacteria: is it via the arginine deiminase pathway or the arginine-urease pathway? J. Appl. Microbiol. 81,
 486-492
- Lonvaud-Funel A (2001). Biogenic amines in wines: role of lactic acid bacteria. *FEMS Microbiol Lett* 199:913.
- Lu, P., Ma, D., Chen, Y., Guo, Y., Chen, G.Q., and Deng, H., Shi, Y. (2013). L-glutamine provides acid resistance for *Escherichia coli* through enzymatic release of ammonia. *Cell Res.* 23, 635-44. doi:
- 25 10.1038/cr.2013.13
- 26 Manca De Nadra, M.C., Pesce de Ruiz Holgado, A., and Oliver, G. (1988). Arginine dihydrolase pathway in
- 27 Lactobacillus buchneri: a review. Biochimie 70, 367-374. doi:10.1016/0300-9084(88)90209-X
- 28 Mangani, S., Guerrini, S., Granchi, L., and Vincenzini, M. (2005). Putrescine accumulation in wine : role of
- 29 Oenococcus oeni. Curr. Microbiol. 51, 6-10. doi: 10.1007/s00284-004-4425-1

- 1 Marquis, R.E., Bender, G.R., Murray, D.R., and Wong, A. (1987). Arginine deiminase system and bacterial
- 2 adaptation to acid environments. *Appl. Environ. Microbiol.* 53, 198-200.
- Martinussen, J., and Hammer, K. (1998). The carB gene encoding the large subunit of carbamoylphosphate
 synthetase from *Lactococcus lactis* is transcribed monocistronically. *J. Bacteriol.* 180, 4380-4386.
- Mazzoli, R., Lamberti, C., Coisson, J.D., Purrotti, M., Arlorio, M., Giuffrida, M.G., Giunta, C., and
 Pessione, E. (2009). Influence of ethanol, malate and arginine on histamine production of *Lactobacillus*
- 7 *hilgardii* isolated from an Italian red wine. *Amino Acids* 36, 81-89. doi: 10.1007/s00726-008-0035-8
- 8 Mazzoli, R., Pessione, E., Dufour, M., Laroute, V., Giuffrida, M.G., Giunta, C., Cocaign-Bousquet, M., and
- 9 Loubière, P. (2010). Glutamate-induced metabolic changes in Lactococcus lactis NCDO 2118 during GABA
- production: combined transcriptomic and proteomic analysis. *Amino Acids* 39, 727-737. doi:
 10.1007/s00726-010-0507-5
- Mills, D.A., Rawsthorne, H., Parker, C., Tamir, D., and Makarova, K. (2005). Genomic analysis of *Oenococcus oeni* PSU-1 and its relevance to winemaking. *FEMS Microbiol. Rev.* 29, 465–475. doi:
 http://dx.doi.org/10.1016/j.fmrre.2005.04.011
- Molenaar, D., Bosscher, J.S., Ten Brink, B., Driessen, A.J.M., and Konings, W.N. (1993). Generation of a
 proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in *Lactobacillus buchneri. J. Bacteriol.* 175, 2864-2870.
- 18 Oliveira, L.C., Saraiva, T.D., Soares, S.C., Ramos, R.T., Sá, P.H., and Carneiro, A.R. et al. (2014) Genome
- 19 Sequence of Lactococcus lactis subsp. lactis NCDO 2118, a GABA-Producing Strain. Genome Announc. 2:5
- 20 e00980-14. doi: 10.1128/genomeA.00980-14
- 21 Otto, R., Ten Brink, B., Veldkamp, H., and Konings, W.N. (1983). The relation between growth rate and 22 electrochemical proton gradient of *Streptococcus cremoris*. *FEMS Microbiol*. *Lett.* 16, 69-74.
- Pessione, A., Lamberti, C., and Pessione, E. (2010). Proteomic as a tool for studying energy metabolism in
 lactic acid bacteria. *Mol. Biosyst.* 6, 1419-1430. doi: 10.1039/c001948h
- Pessione, E. (2012). Lactic acid bacteria contribution to gut microbial complexity: lights and shadows. *Front. Cell. Infect. Microbiol.* 2, 86. doi: 10.3389/fcimb.2012.00086
- 27 Poolman, B., Driessen, A.J., and Konings, W.N. (1987). Regulation of arginine-ornithine exchange and the
- arginine deiminase pathway in *Streptococcus lactis*. J. Bacteriol. 169, 5597-5604. Erratum in: J. Bacteriol.
- 29 1988 Mar;170(3),1415.

- 1 Poolman, B., and Konings, W.N. (1988). Relation of growth of *Streptococcus lactis* and *Streptococcus*
- 2 *cremoris* to amino acid transport. J. Bacteriol. 170, 700-707.
- Rallu, F., Gruss, A., and Maguin, E. (1996). *Lactococcus lactis* and stress. *Antonie Van Leeuwenhoek* 70,
 243-251.
- 5 Sanders, J.W., Leenhouts, K., Burghoorn, J., Brands, J.R., Venema, G., and Kok, J. (1998). A chloride-
- 6 inducible acid resistance mechanism in *Lactococcus lactis* and its regulation. *Mol. Microbiol.* 27, 299-310.
- 7 doi: 10.1046/j.1365-2958.1998.00676.x
- 8 Schelp, E., Worley, S., Monzingo, A.F., Ernst, S., and Robertus, J.D. (2001). pH-induced structural changes
- 9 regulate histidine decarboxylase activity in *Lactobacillus* 30a. J. Mol. Biol. 306, 727-732.
 10 doi:10.1006/jmbi.2000.4430
- Simon, J.P., Wargnies, B., and Stalon, B. (1982). Control of enzyme synthesis in the arginine deiminase
 pathway of *Streptococcus faecalis*. *J. Bacteriol*. 150, 1085-1090.
- Small, P.L., and Waterman, S.R. (1998). Acid stress, anaerobiosis and *gad* CB: lesson form *Lactococcus lactis* and *Escherichia coli*. *Trends Microbiol*. 6, 214-216. doi:10.1016/S0966-842X(98)01285-2
- 15 Teixeira, J.S., Seeras, A., Sanchez-Maldonado, A.F., Zhang, C., Su, M.S.W., and Gänzle, M.G. (2014).
- 16 Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri. Food Microbiol. 42, 172-
- 17 180. doi: 10.1016/j.fm.2014.03.015
- 18 Tonon, T., Bourdineaud, J.P., and Lonvaud, A. (2001). Catabolisme de l'arginine par *Oenococcus oeni*:
 19 aspects énergétiques et génétiques. *Lait* 81, 139–150.
- 20 Tramonti, A., De Canio, M., Delany, I., Scarlato, V., and De Biase, D. (2006). Mechanisms of transcription
- 21 activation exerted by GadX and GadW at the gadA and gadBC gene promoters of the glutamate-based acid
- resistance system in Escherichia coli. J. Bacteriol. 188, 8118-8127. doi: 10.1128/JB.01044-06
- Trias, R., Bañeras, L., Montesinos, E., and Badosa, E. (2008). Lactic acid bacteria from fresh fruit and
 vegetables as biocontrol agents of phytopathogenic bacteria and fungi. *Int. Microbiol.* 11, 231-236. doi:
 10.2436/20.1501.01.66
- 26 Tsai, M.F., McCarthy, P., and Miller, C. (2013). Substrate selectivity in glutamate-dependent acid resistance
- 27 in enteric bacteria. Proc. Natl. Acad. Sci. USA. 110 (15), 5898-5902. doi: 10.1073/pnas.1301444110
- 28 Van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S.D., and Maguin, E. (2002). Stress
- 29 responses in lactic acid bacteria. Antonie van Leeuwenhoeck 82, 87-216.

- 1 Zuniga, M., Champomier-Verges, M., Zagorec, M., and Perez-Martinez, G. (1998). Structural and functional
- 2 analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of *Lactobacillus sake*.
- *J. Bacteriol.* 180, 4154-4159.

1 Figure legends

2

Figure 1 Schematic representation of metabolic pathways potentially contributing to acid resistance
in *Lactococcus lactis*. *ADI*, arginine deiminase; Arg, arginine; *CK*, carbamate kinase; GABA, γaminobutyric acid; *GAD*, glutamate decarboxylase; Gln, glutamine; Glnase, glutaminase; Glu,
glutamate; *ME*, malic enzyme; *MLE*, malolactic enzyme; Orn, ornithine; *OTC*, ornithine
transcabamylase.

8

9 Figure 2 Evolution of biomass (g.L⁻¹) (square), specific growth rate (h⁻¹) (triangle) and pH (circle)
10 during growth of *L. lactis* NCDO 2118 in CDM.

11

Figure 3 Specific growth rate (h^{-1}) (\blacklozenge) of *L. lactis* subsp. *lactis* NCDO 2118, biomass (g.L⁻¹) (\blacktriangle), 12 pH (□) and GABA production (mM) (●) in CDM containing various concentrations of glutamate 13 (A), arginine (B) or malate (C) at 48 h of culture. (---) trend curve. 14 15 Figure 4 GABA production (mM) (grey) and percentage of glutamate converted to GABA (black) 16 17 according to various initial glutamate concentrations in CDM, at 48 h of culture. 18 Figure 5 GABA production (mM) as a function of the pH of the medium in all conditions tested at 19 20 48 h of culture : CDM (\blacksquare), CDM with glutamate (\blacklozenge), with arginine (\blacklozenge), with malate (\blacktriangle), with

21 arginine and glutamate (\circ), with malate and glutamate (Δ) and with arginine, malate and glutamate

- 22 (*).
- 23

Table 1 Maximal specific rates; maximal biomass, time and pH at the growth arrest; glucose consumption, lactate and GABA production, and pH at 48 h; during growth of L. lactis NCDO 2118 on seven different synthetic media. $v_{lactate}$ is calculated only with lactate coming from glucose, and not from malate. Arg, arginine; Glu, glutamate.

Parameter	CDM	CDM ¹ + Glu	CDM ¹ + Arg	CDM ¹ +Malate	CDM ² +Arg+Glu	CDM ² +Glu+Malate	CDM ² +Arg+Glu+Malate
Maximal specific rates							
μ_{max} (h ⁻¹)	0.97 ± 0.10	0.97 ± 0.04	1.01 ± 0.11	0.90 ± 0.02	$0.89^*\pm0.01$	$0.81^{\ast}\pm0.01$	$0.85^*\pm0.00$
$q_{ m glucose} \ ({ m mmol.g}^{-1}.{ m h}^{-1})$	27.7 ± 3.4	26.9 ± 5.3	24.6 ± 2.1	26.6 ± 4.4	27.0 ± 3.6	32.0 ± 3.1	28.8 ± 7.9
$v_{\text{lactate}} (\text{mmol.g}^{-1}.\text{h}^{-1})$	46.5 ± 3.0	49.9 ± 6.8	43.8 ± 3.6	42.1 ± 8.1	$41.6^*\pm4.8$	$56.2^{**} \pm 2.2$	56.2 ± 13.9
$q_{\text{malate}} (\text{mmol.g}^{-1}.\text{h}^{-1})$				29.5 ± 0.2		24.8 ± 0.1	21.5 ± 2.4
$q_{\text{glutamine}} (\text{mmol.g}^{-1}.\text{h}^{-1})$	1.22 ± 0.27	0.72 ± 0.22	0.97 ± 0.25	1.69 ± 0.67	0.51 ± 0.14	$1.39^{**} \pm 0.31$	$1.20^{**} \pm 0.15$
$q_{\text{arginine}} (\text{mmol.g}^{-1}.\text{h}^{-1})$	1.44 ± 0.26	1.39 ± 0.58	$9.80^{\ast\ast}\pm2.26$	$2.69^{\ast\ast}\pm0.44$	$7.91^{**} \pm 1.18$	3.3** ± 0.35	$14.58^{**} \pm 0.83$
At growth arrest:							
Biomass (g.L ⁻¹)	0.98 ± 0.00	1.00 ± 0.11	$1.96^{**} \pm 0.06$	$1.86^{*} \pm 0.17$	$1.98^{**} \pm 0.20$	$1.67^{**} \pm 0.02$	$2.20^{**} \pm 0.01$
time (h)	5	6	6	7	6	9	9
pH	4.94 ± 0.09	5.14 ± 0.18	5.07 ± 0.05	$5.76^*\pm0.13$	5.31 ± 0.30	$5.78^{**} \pm 0.06$	$6.22^{**} \pm 0.00$
glucose cons. (mM)	34.4 ± 4.0	43.4 ± 5.9	$70.7* \pm 5.1$	$85.7^{\ast\ast}\pm5.0$	$63.4^{**} \pm 3.8$	$80.4^{\ast\ast}\pm0.9$	$71.1^{**} \pm 0.07$
lactate produced (mM)	65.6 ± 0.5	78.6 ± 8.4	$123.3^{**} \pm 6.8$	$275.2* \pm 4.7$	112.5 ± 7.1	$267.7^{\ast\ast}\pm6.9$	$228.05^{**} \pm 3.1$
GABA (mM)	0	0.08 ± 0.01	0.32 ± 0.88	0.14 ± 0.61	0.17 ± 0.20	$1.89^{\ast\ast}\pm0.14$	$1.71^{**}\pm0.13$
At 48h							
glucose cons. (mM)	51.31 ± 1.7	68.93 ± 17.9	$89.9^{**} \pm 8.7$	$105.5^{**} \pm 0.7$	89.4 ± 12.6	$106.8^{**} \pm 3.7$	$121.2^{**} \pm 2.7$
lactate produced (mM)	102.2 ± 4.7	130.3 ± 24.8	$153.3^{**} \pm 7.1$	$318.5^{**} \pm 10.6$	166.2 ± 13.6	$325.3^{**} \pm 8.0$	$353.3^{**} \pm 4.0$
GABA (mM)	0.44 ± 0.02	$3.12^*\pm0.85$	$1.88^{**} \pm 0.25$	0.38 ± 0.13	$8.60^*\pm2.0$	2.54 ± 0.03	5.22 ± 0.33
pН	$4.20\ \pm 0.02$	$4.52^*\pm0.09$	$4.47^{**}\pm0.03$	$4.95^{\ast\ast}\pm0.08$	$4.50\ \pm 0.21$	$4.90^{\ast\ast}\pm0.01$	$4.97^{\ast\ast}\pm0.00$
Ornithine (mM)	0.42 ± 0.03	0.58 ± 0.37	$34.90^{**} \pm 4.40$	0.47 ± 0.18	$36.95^{**} \pm 2.41$	0.07 ± 0.01	$25.81^{**} \pm 1.04$
Citrulline (mM)	0	0	$2.07^{\ast\ast}\pm0.46$	0	$1.14^{**} \pm 0.07$	0	$3.63^{**} \pm 0.23$
8	-						

10

Notes: Values are means \pm standard deviation.

13 Parameters were compared to (1) CDM or (2) CDM+Glu condition with Student t-test. The statistical significance of the test was represented with (*) or (**) according to p-value threshold of 0.025 and 0.01, respectively.

Figure 01.TIF

Malate (mM)

Malate (mM)

Figure 3

Figure 04.TIF

