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 2 

ABSTRACT 1 

Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to 2 

γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and 3 

relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems 4 

allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These 5 

strategies also include arginine deiminase pathway and malolactic fermentation but little is known 6 

about their possible interactions of with GABA production. In the present study, the effects of 7 

glutamate, arginine and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis 8 

NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine 9 

supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass 10 

compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow 11 

environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some 12 

conditions were able to improve GABA production or activate glutamate decarboxylation system 13 

even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest 14 

GABA production (8.6 mM) was observed in cultures supplemented with both arginine and 15 

glutamate. The simultaneous addition of arginine, malate and glutamate enabled earlier GABA 16 

production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no 17 

previous study has reported GABA production in such conditions. Although further studies are 18 

needed to understand the molecular basis of these phenomena, these results represent important 19 

keys suitable of application in GABA production processes. 20 
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 3 

1. INTRODUCTION 1 

Lactic acid bacteria (LAB) are gram-positive microaerophilic microorganisms extensively used in 2 

the agro-food industry because of their high lactic acid production and consequent food 3 

acidification. This is an appreciated feature for both prolongation of food shelf-life and biocontrol 4 

of food born infections, since most spoilage and pathogenic bacteria are acid-sensitive (Trias et al., 5 

2008). The acid-resistance of LAB is based upon different, either constitutive or inducible, 6 

mechanisms which include: i) cytoplasm alkalinization by H
+ 

consumption through decarboxylation 7 

mechanisms, or arginine deiminase (ADI) pathway or urease reaction; ii) changes in the 8 

composition of the cell envelope; iii) production of general shock proteins (chaperones); iv) 9 

changes in cell density (for a review, see Cotter and Hill, 2003). Most of these strategies involve the 10 

expression of genes which improve cell resistance to adverse conditions. In lactococci the main 11 

metabolic mechanisms involved in pH homeostasis are ADI, malolactic fermentation (MLF) and 12 

glutamate decarboxylase (GAD) systems (Figure 1). Nowadays, little is known about possible 13 

interactions between these metabolic systems in L. lactis. 14 

ADI pathway consists of three reactions converting arginine to ornithine, NH3, CO2 and 15 

ATP. This route is catalyzed by three enzymes: ADI (converting arginine to citrulline and NH3), 16 

ornithine transcarbamylase (converting citrulline to ornithine and carbamoyl phosphate) and 17 

carbamate kinase (converting carbamoyl phosphate to NH3, CO2 and ATP), encoded by the genes 18 

arcA, arcB, and arcC, respectively (Figure 1). These enzymes appear to be acid resistant (Casiano-19 

Colón and Marquis, 1988). The efficiency of the overall pathway is increased by arginine 20 

supplementation (Poolman et al., 1987). The ADI pathway provides both cytoplasm alkalinization, 21 

through release of NH3, and metabolic energy production, since ATP is generated by substrate level 22 

phosphorylation in the reaction catalyzed by carbamate kinase. The ADI systems of Lactobacillus 23 

sakei (Zuniga et al., 1998), Enterococcus faecalis (Simon et al., 1982) and LAB strains associated 24 

with cheese fermentations (Crow and Thomas, 1982) or colonizing oral cavity (Dong et al., 2002; 25 

Marquis et al., 1987) are subject to catabolite repression by glucose. However, in Lactobacillus 26 

sanfranciscensis (De Angelis et al., 2002), Oenococcus oeni, and other wine LAB (Liu et al., 1996) 27 

glucose and arginine can be concomitantly catabolized. 28 

MLF is the conversion of dicarboxylic malic acid to monocarboxylic L-lactic acid by 29 

malolactic enzyme (Figure 1). L-lactate is excreted via electrogenic transporters, i.e., by either 30 

lactate-malate antiporter (Lactococcus lactis) or lactate uniport (O. oeni and Lactobacillus 31 

plantarum) (Konings et al., 1997) depending on the strain, which allow production of proton motive 32 

force.  Furthermore, due to the pKa difference of the carboxylic groups of malate and lactate, 33 

replacement of malate by lactate results in alkalinization of the extracellular medium. A further 34 

relevant malate dissimilation pathway which can contribute to acid resistance of LAB is oxidative 35 
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decarboxylation of malate to pyruvic acid (catalyzed by malic enzyme) (Landete et al., 2013). It is 1 

generally accepted that malate utilization through MLF cannot sustain growth per se, (since lactate 2 

cannot be used as a carbon source by most LAB), while its metabolism via malic enzyme enables 3 

LAB to use it as the only carbon source. Distribution of malic enzyme currently seems restrained to 4 

fewer strains (including L. lactis NCDO 2118) with respect to MLF (Landete et al., 2013; Oliveira 5 

et al., 2014). However, malic enzyme has been studied at much lesser extent than MLF and, 6 

currently, contribution of malic enzyme pathway to LAB metabolism cannot be precisely evaluated. 7 

Like other amino acid decarboxylations, glutamate conversion to γ-aminobutyric acid 8 

(GABA) is an important strategy to counteract excess of acidity (Schelp et al., 2001; Van De 9 

Guchte et al., 2002; Pessione 2012) since the reaction itself is proton consuming and results in 10 

alkalinization of the cytoplasmic compartment (Small and Waterman, 1998). Glutamate 11 

decarboxylase system has been reported in both gram-positive and gram-negative bacteria (Small 12 

and Waterman, 1998; Cotter et al., 2005; Bhagwat and Bhagwat 2004; Tramonti et al., 2006) and 13 

includes proton-consuming decarboxylation of glutamate by glutamate decarboxylase (GAD) in the 14 

cytoplasm and cell membrane-located electrogenic glutamate/GABA antiporters which generate 15 

proton motive force (Molenaar et al., 1993; Higuchi et al., 1997; Lu et al., 2013; Tsai et al., 2013) 16 

(Figure 1). The expression of GAD in L. lactis is increased by low pH and glutamate 17 

supplementation (Sanders et al., 1998). Recent studies have identified a further acid-resistance 18 

mechanism in Lactobacillus reuteri and E. coli which is based on glutamine and can be interpreted 19 

as an “extension” of the GAD system (Lu et al., 2013; Teixeira et al., 2014). Both glutaminase, 20 

which catalyzes glutamine deamidation (producing ammonia and glutamate), and GAD are present 21 

in the cytoplasm of these strains and contribute to intracellular alkalinization. These studies 22 

indicated that GadC, which had been previously identified as a glutamate/GABA antiporter, is also 23 

able to mediate uptake of glutamine or extrusion of glutamate. A gene encoding a putative 24 

glutamine/GABA antiporter has been identified in the genome of O. oeni PSU-1 also (Mills et al., 25 

2005). 26 

L. lactis NCDO 2118 is able to biosynthesize GABA by glutamate decarboxylation. A 27 

previous transcriptomic and proteomic study demonstrated that ADI pathway genes (arcA, arcD1, 28 

arcB and arcC2) are down-regulated in glutamate-supplemented/GABA-producing conditions, thus 29 

suggesting that glutamate decarboxylation and arginine deimination are competing routes in this 30 

strain (Mazzoli et al., 2010). The present investigation aimed to better establish the relative 31 

contribution of GAD, ADI and MLF pathways in energy metabolism and acid resistance of L. lactis 32 

NCDO 2118 and possible reciprocal interactions of these metabolic systems. 33 

 34 

2. MATERIAL AND METHODS 35 
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2.1. Bacterial strain 1 

Lactococcus lactis subsp. lactis NCDO 2118 from vegetable origin was used throughout this study. 2 

This strain was selected during preliminary studies as the only one able to biosynthesize detectable 3 

amounts of GABA among the L. lactis strains available in the laboratory microbial collection 4 

(LISBP of INSA-Toulouse, France). 5 

 6 

2.2. Culture conditions 7 

2.2.1. Cultures in tubes 8 

Cultures were grown in the chemically defined medium (CDM) (Otto et al., 1983; Poolman and 9 

Konings, 1988), containing glucose (20 g.L
-1

) under anaerobic conditions, i.e., in N2 atmosphere, in 10 

butyl rubber-stoppered tubes at 30°C. The initial pH was 6.6. Furthermore, different concentrations 11 

of glutamate and/or arginine and/or malate were added into the medium depending on the study. All 12 

the experiments were performed in duplicate. Inoculation was with cells from precultures harvested 13 

during the exponential phase and concentrated in order to obtain an initial optical density at 580 nm 14 

(OD580) of 0.05 in the tubes. During incubation, 1 mL samples were taken every 30 min so as to 15 

measure the OD580 with Spectronic 301 spectrophotometer (Milton Roy, Pont Saint Pierre, France). 16 

The maximum growth rate (µmax) was then determined. pH was also regularly measured with pH 17 

meter (Metrohm 744, Villebon Sur Yvette, France). 18 

 19 

2.2.2. Cultures in fermenter 20 

Bacterial cultures were performed in duplicate in 2 L Biostat B plus fermenter (Sartorius, 21 

Melsungen, Germany) filled with glucose (20 g.L
-1

) containing-CDM or the same medium 22 

supplemented with 5 g.L
-1

 (34 mM) glutamate and/or 5 g.L
-1

 (29 mM) arginine and/or 20 g.L
-1

 (149 23 

mM) malate. Cultures were incubated at 30 °C in anaerobiosis, obtained by slight N2 overpressure. 24 

pH was maintained at 6.6 by KOH addition until cultures reached OD580 = 1, in order to reach 25 

enough biomass for further analytical procedures, and then pH was not regulated anymore. 26 

Bacterial growth was monitored by measurement of OD580 (Libra S11, Biochom, 1 Unit of 27 

absorbance
 

is equivalent to 0.3 g.L
-1

). Samples were collected every 30 min for HPLC 28 

determination of metabolite concentration in the growth medium.  29 

 30 

2.3. Metabolite determination 31 

Glucose, malate and metabolite (i.e., lactate, acetate, formate and ethanol) concentrations
 

32 

were measured in culture supernatants by high performance liquid chromatography (Agilent 33 

Technologies 1200 Series, Waldbronn, Germany) using a HPX87H
+
 Biorad column and the 34 
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following conditions: a temperature of 48 °C, eluent H2SO4 (5 mM) at a flow rate of 0.5 mL.min
-1

, 1 

and dual detection (refractometer and UV).  2 

Free amino acid and GABA concentration in culture supernatants was measured by HPLC 3 

system (Agilent Technologies 1200 Series, Waldbronn, Germany). Prior to HPLC determination, 4 

proteins in the samples were precipitated by adding four volumes of methanol followed by 5 

overnight incubation on ice. The mixture was centrifuged and the supernatant kept for HPLC 6 

analysis. Amino acids were automatically derived with OrthoPhtalic Aldehyde (OPA) and 9-7 

fluorenylmethyl-chloroformiate (FMOC-C1). The derivatives were separated on Hypersil AA-ODS 8 

column (Agilent Technologies) at 40 °C by a linear gradient of acetate buffer (pH 7.2) with 9 

triethylamin (0.018 %), tetrahydrofuran (0.3 %) and acetonitrile. A diode array detector, at 338 nm 10 

for OPA derivatives and 262 nm for FMOC derivatives, was used.  11 

 12 

2.4. Statistical methods 13 

Student’s t-test was applied to each parameter (Table 1) in order to detect significant 14 

differences between culture conditions (CDM or CDM supplemented with glutamate as the 15 

references). A p-value lower than 0.025 was considered as significant. 16 

 17 

3. RESULTS 18 

3.1. Growth and metabolism of L. lactis NCDO 2118 in control conditions. 19 

Fermentation profiles of L. lactis NCDO 2118 in glucose-containing chemically defined medium 20 

(CDM), in unregulated pH conditions, were determined. Growth started immediately after inoculum 21 

at maximal growth rate (µmax = 0.97 h
-1

), and stopped after 5 h, at a biomass concentration of about 22 

1 g.L
-1

 (Figure 2, Table 1). At that time, the pH was about 4.9-5.0, and it further gradually 23 

decreased during the stationary phase until 4.2 (13 h after inoculum). L. lactis NCDO 2118 showed 24 

high maximal glucose consumption rate (27.7 mmol.g
-1

.h
-1

) and exhibited homolactic metabolism 25 

all along the growth phases, leading to accumulation of 65.6 mM lactate (Table 1). Growth stopped 26 

before glucose depletion. We have performed cultures in the same medium but at regulated pH (6.6) 27 

during all the fermentation. In these conditions, growth continued until glucose exhaustion, 28 

demonstrating that acidic pH is responsible for the growth arrest in our control conditions. 29 

The growth medium used in this study did contain no glutamate while low concentrations of 30 

arginine and glutamine (0.6 and 3.0 mM, respectively) were present. Arginine was quickly 31 

exhausted (qmax =1.44 mmol.g
-1

.h
-1

) and stoichiometrically converted to ornithine and citrulline. 32 

About half of the initial glutamine was consumed (qmax =1.22 mmol.g
-1

.h
-1

) in 48 h, leading to 33 

accumulation of 0.5 mM of glutamate and 0.4 mM of GABA in the growth medium (Table 1).  34 

 35 
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 7 

3.2. Effect of glutamate or arginine or malate supplementation on growth and metabolism of 1 

L. lactis NCDO 2118 2 

In order to study the effect of glutamate or arginine or malate on metabolic profiles of L. 3 

lactis NCDO 2118 cultures were performed in glucose-CDM medium supplemented with each of 4 

these single compounds at regulated and unregulated pH as described below. GABA was never 5 

produced in regulated pH conditions (pH = 6.6). It was detected at unregulated pH and only cultures 6 

performed in these conditions are described below. 7 

3.2.1. Effect of glutamate 8 

The effect of different glutamate concentrations, ranging from 0 to 20 g.L
-1

 (0-136 mM) was 9 

tested in tube cultures. Neither specific growth rate nor final biomass was affected by the different 10 

glutamate concentrations used (Figure 3A). However, slight variations in final pH and, more 11 

importantly, changes in amounts of accumulated GABA were observed among the different 12 

glutamate-supplemented cultures. The higher was glutamate supplementation, the higher was the 13 

final pH and the amount of GABA which was accumulated (pH = 4.1, 0.3 mM of GABA in cultures 14 

without glutamate supplementation; pH = 4.5, 3.8 mM GABA in cultures supplemented with 136 15 

mM glutamate). It is worth noting that glutamate/GABA conversion yield was not the same in each 16 

condition since it was higher in cultures supplemented with lower glutamate concentration (i.e., 35 17 

% in cultures containing 3.4 mM glutamate) and progressively decreased at higher glutamate 18 

supplementation (i.e., 3% in cultures containing 136 mM glutamate) (Figure 4). 19 

The medium containing 5 g.L
-1

 glutamate (34 mM) retained our attention since it displayed 20 

high production of GABA with intermediary glutamate/GABA conversion yield. This condition 21 

was also previously used for transcriptome-proteome analysis (Mazzoli et al., 2010). Cultures were 22 

performed in fermenter in order to provide detailed metabolic parameters. As determined for tube-23 

cultures (see above), glutamate supplementation did not affect µmax and final biomass with respect 24 

to control cultures. Glutamate supplementation did not have any effect on glucose consumption 25 

rate, although a slightly higher glucose amount was consumed in these condition leading to 26 

accumulation of higher amounts of lactic acid (Table 1). Both final pH and GABA accumulation at 27 

48 h were higher in glutamate-supplemented culture, thus confirming results obtained in tube 28 

cultures. It is worth noting that the amount of glutamine consumed was similar to control cultures, 29 

although maximal glutamine consumption rate was significantly lower, and that 5.5 mM of 30 

glutamate was consumed leading to accumulation of 3.12 mM GABA (Table 1). Finally, glutamate 31 

supplementation did not display any significant influence on arginine consumption rate (Table 1). 32 

3.2.2. Effect of arginine 33 

Cultures of L. lactis NCDO 2118 were performed in tubes containing glucose-CDM 34 

medium supplemented with arginine concentrations ranging from 0 to 25 g.L
-1

 (0-144 mM). 35 
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Increasing amounts of supplemented arginine progressively caused: i) a slight decrease of the 1 

maximal growth rate (from 1 h
-1

 to 0.8 h
-1

); ii) a strong increase of both the final biomass and iii) 2 

final pH (from pH = 4.1 to pH = 6.6) (Figure 3B). Arginine was depleted 6 h after inoculum in 3 

every tested culture and progressive alkalinization of final pH (proportional to increasing initial 4 

concentration of arginine) was observed. This was likely related to production of higher amounts of 5 

NH3 by arginine metabolization through the ADI route. Interestingly, arginine addition up to 10 g.L
-

6 

1
 (57 mM) progressively enhanced GABA production up to 1.9 mM (Figure 3B). Since the medium 7 

did not contain glutamate, this was likely the result of increased bioconversion of glutamine. 8 

However, for higher initial arginine concentrations, GABA accumulation was markedly decreased 9 

to levels similar to those of control cultures. This was probably caused by excessive medium 10 

alkalinization and consequent inhibition of glutamate decarboxylation system. 11 

Arginine at 29 mM (5 g.L
-1

) was chosen for further experiments in fermenter, since this 12 

culture condition was characterized by the highest specific GABA production (i.e. amount of 13 

GABA/ final biomass ratio). Such arginine supplementation did not significantly increase the µmax 14 

but doubled final biomass with respect to control conditions (Table 1). Although arginine was 15 

completely exhausted at the growth arrest at 6 h, the extracellular pH at this point, was not much 16 

more alkaline than in control conditions. However, in arginine-supplemented cultures a two-fold 17 

higher glucose amount was consumed leading to a final lactate concentration of about 123.3 mM 18 

which likely had a neutralizing effect on the NH3 released via the ADI pathway (Table 1). 19 

Consistently, ornithine and citrulline accumulated in the culture broth and levels were proportional 20 

to arginine consumption.  No putrescine was detected. 21 

As observed in tube-cultures, arginine supplementation also enhanced GABA production. 22 

Accumulation of increased amounts of GABA cannot be explained only by the higher biomass 23 

achieved in arginine-supplemented cultures, since biomass was increased by two-fold whereas 24 

GABA accumulation was enhanced by four-fold at 48 h. On the other hand, specific glutamine 25 

consumption rate was similar to values measured in control conditions. These observations suggest 26 

that arginine directs a higher proportion of glutamine metabolic flux towards GABA production 27 

diverting it from other pathways. 28 

3.2.3. Effect of malate 29 

Cultures of L. lactis NCDO 2118 in tubes containing glucose-CDM medium supplemented 30 

with malate concentration ranging from 0 to 50 g.L
-1

 (0-373 mM) were performed (Figure 3C). 31 

With increasing malate supplementation, final pH and µmax were affected in somehow similar ways 32 

as what observed in arginine fortified cultures, i.e. final pH progressively raised, while µmax was 33 

lower for higher malate supplementation. Taking into account that supplemented concentrations of 34 

malate were more than two-fold higher than for arginine, malate supplementation had more limited 35 
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effects on acid neutralization (final pH with 50 g.L
-1

 malate supplementation was about 7). On the 1 

contrary, such high malate concentration negatively affected µmax (i.e., it was reduced from 1 h
-1

 to 2 

0.4 h
-1

). A moderate final biomass increase (up to 1.4 g.L
-1

) was observed up to malate 3 

concentration of 40 g.L
-1

 (298 mM). Higher malate supplementation caused reduction of final 4 

biomass to levels lower than control conditions.  5 

Cultures of L. lactis NCDO 2118 in glucose-CDM medium containing 20 g.L
-1

 (149 mM) 6 

malate were performed in fermenter also. This condition was chosen since the GABA produced was 7 

significantly increased compared to the reference condition while the growth rate was similar. 8 

Maximal specific growth rate, final biomass and final extracellular pH were coherent with results 9 

obtained in tube cultures with the same malate concentration. This condition was the one 10 

stimulating the consumption of the highest amount of glucose compared to reference conditions or 11 

supplementations with glutamate or arginine at 48 h (Table 1). Actually, glucose was almost 12 

depleted after 12 h of culture, although specific glucose consumption rate was similar the other 13 

growth conditions tested. However, malate supplementation did not stimulate any further GABA 14 

accumulation with respect to control conditions (Table 1). Curiously, malate seems to increase 15 

arginine consumption rate (2.69 mmol.g
-1

.h
-1

) with respect to cultures on CDM.  16 

 17 

3.3. Cultures supplemented with glutamate plus arginine or glutamate plus malate 18 

3.3.1. Effect of simultaneous arginine and glutamate supplementation  19 

The simultaneous addition of arginine and glutamate to the glucose-CDM medium was studied in 20 

fermenter. The concentrations of arginine (5 g.L
-1

, 29 mM) and glutamate (5 g.L
-1

, 34 mM) were 21 

chosen according to the individual fermenter conditions previously tested. A slightly decreased 22 

maximal growth rate (µmax = 0.89 h
-1

) was observed while final pH was similar to cultures 23 

supplemented with glutamate only (Table 1). Final biomass at the growth arrest was also 24 

significantly higher like cultures supplemented with arginine only. However, GABA production 25 

was strongly enhanced since 8.6 mM were accumulated in the medium, that is almost three-fold 26 

higher that in cultures supplemented with glutamate only. This was the highest amount of GABA 27 

accumulation observed in this study and was likely the result of both higher substrate availability 28 

(i.e., glutamate supplementation) and stimulation of GABA production by arginine, confirming 29 

results obtained in cultures supplemented with arginine only. 30 

 31 

3.3.2. Effect of simultaneous malate and glutamate supplementation 32 

In a similar way, the effect of simultaneous malate and glutamate supplementation was 33 

tested in fermenter. This condition noticeably reduced µmax (0.81 h
-1

) with respect to control 34 

conditions as observed in cultures supplemented with glutamate only (Table 1). However, the 35 
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specific glucose consumption rate was similar (Table 1). Final biomass and extracellular pH at the 1 

growth arrest, as well as glucose consumption and lactate production at 48 h were higher than the 2 

reference but similar to that measured in cultures fortified with malate only. Hence, contribution of 3 

glutamate to energy metabolism seems negligible. This is confirmed by the fact that in this 4 

condition only 2.54 mM of GABA was accumulated at 48 h. This value is not significantly different 5 

from GABA amounts observed in culture supplemented with glutamate only. These data, taken 6 

together with the fact that in malate-plus-glutamate-supplemented cultures biomass production was 7 

higher than in culture supplemented with glutamate only, suggest that malate somehow repressed 8 

GABA production pathway(s). On the other hand, specific malate consumption rate was slightly 9 

lower than in cultures supplemented with malate only (Table 1).  10 

 11 

3.4. Cultures supplemented with glutamate plus arginine plus malate 12 

Cultures of L. lactis NCDO 2118 were performed in CDM supplemented with 5 g.L
-1

 arginine (29 13 

mM), 20 g.L
-1

 malate (149 mM) and 5 g.L
-1

 glutamate (34 mM). Since usual glucose concentration 14 

(20 g.L
-1

, 110 mM) was exhausted after 10 h of growth (in agreement with the high sugar 15 

consumption rate observed in other malate-supplemented cultures) initial glucose concentration was 16 

increased to 45 g.L
-1

 (250 mM) so as to avoid growth limitation by sugar depletion.  17 

As for other malate supplemented cultures, growth was at slightly lower µmax (0.85 h
-1

) with respect 18 

to control cultures supplemented with glutamate. Simultaneous supplementation of glutamate, 19 

malate and arginine had additive effects on i) attenuating extracellular acidity caused by lactic acid 20 

accumulation (353.3 mM was produced 48 h after inoculum), since pH at both time of growth arrest 21 

and after 48 h was the highest observed among the growth conditions tested in this study and ii) 22 

increasing biomass formation up to 2.2 g.L
-1

. Growth arrest occurred 9 h after inoculum. At that 23 

time, while malate had already been depleted, only 71.1 mM of glucose had been consumed, 24 

leading to accumulation of  228.05 mM lactic acid. The high amount of lactic acid observed in these 25 

conditions could contribute to growth arrest for reasons independent from acidification. 26 

The specific consumption rates for glucose and glutamine were of the same order of magnitude of 27 

values measured in control conditions (Table 1). Specific malate consumption rate was slightly 28 

lower than in the other malate-supplemented cultures described above, while arginine was 29 

consumed at a highest specific rate (14.58 mmol.g
-1

.h
-1

, Table 1). 30 

Finally, GABA was produced until a maximal concentration of 5.22 mM at 48 h, which is 31 

higher than amounts accumulated in glutamate- and glutamate-plus-malate-supplemented cultures 32 

but lower than those accumulated in glutamate-plus-arginine supplemented cultures. This data 33 

confirmed that arginine enhances while malate decreases GABA accumulation. Interestingly, 34 

simultaneous glutamate-malate-arginine supplementation triggered an earlier production of GABA 35 
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with respect to all the other tested conditions: a concentration of 2.86 mM was already detected 12 1 

h after inoculum and it reached 4.28 mM at 24 h. This earlier production of GABA can be observed 2 

in Figure 5 which combines the kinetics of the different experiments. When glutamate, arginine and 3 

malate were contemporarily supplemented to L. lactis NCDO 2118 cultures, GABA production 4 

started at the beginning of the exponential growth phase and at a pH as high as 6.6 while only 5 

tardive GABA production in acidic conditions (pH<5.1) was observed in all other tested conditions. 6 

 7 

DISCUSSION 8 

Several systems can be activated or enhanced by LAB to attenuate acidic environments 9 

and/or to improve metabolic energy. If the most obvious strategy involves F0F1-ATPase, other 10 

mechanisms such as the ADI pathway or the decarboxylation of malate and amino acids can be 11 

used to neutralize or reduce acidity (Budin-Verneuil et al., 2004). ADI pathway and malate 12 

decarboxylation by MLF are often present in LAB which live in wine ecological niche in which 13 

both malate and arginine are abundant. In LAB, biogenic amine production (including GABA 14 

biosynthesis) through amino acid decarboxylation usually occurs in response to adverse conditions, 15 

e.g., as a mean to counteract acidic environments (Van De Guchte et al., 2002) and to obtain 16 

metabolic energy when the primary substrates (e.g., glucose) are exhausted (Molenaar et al., 1993; 17 

Pessione et al., 2010). However, little is known about the relative role of the considered metabolic 18 

pathways in pH homeostasis, their possible synergistic/antagonist effects and consequences on 19 

global metabolism and growth of LAB. In the present study, the contribution of energy 20 

supplying/alkalinizing routes (i.e. ADI pathway, malate fermentation and production of GABA), to 21 

growth and metabolism of L. lactis NCDO 2118 and their reciprocal relationships was investigated. 22 

Effects of supplementation of different amounts of substrates (arginine, malate and glutamate) or 23 

their mixtures on growth (specific growth rate, final biomass), substrate consumption and GABA 24 

production have been quantitatively determined. 25 

Growth Parameters  26 

In all tested conditions, the growth profile was characteristic of L. lactis cultures, in which 27 

the growth rate was maximal in the early phase and then progressively decreased. Growth arrest 28 

was likely caused by low pH and/or lactic acid accumulation in every condition considered here. 29 

The increase in final biomass seems inversely correlated to the pH decrease: the higher the initial 30 

concentration of arginine or malate, the higher was likely the activation of corresponding acid 31 

resistance mechanisms (ADI pathway and MLF, respectively) resulting in weaker and slower pH 32 

decrease, hence the growth could be supported for longer time periods. It is worth noting that while 33 

in arginine-supplemented cultures the pH acidification caused by lactic acid accumulation by 34 

glycolysis is neutralized by release of ammonia, pH increase by MLF leads to additional lactate 35 
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production. It can be speculated that huge lactic acid accumulation is likely the main growth 1 

inhibiting factor in malate-supplemented cultures, for reasons independent from medium 2 

acidification. For instance, this could explain why in cultures supplemented with 149 mM malate 3 

cell growth stopped at lower final biomass, i.e. 1.86 g.L
-1

, and higher pH, i.e. pH = 5.76, with 4 

respect to cultures supplemented with arginine. However, we cannot exclude that arginine and/or 5 

malate stimulate biomass production by additional mechanisms (other than homeostasis), such as 6 

production of biosynthetic intermediates, for instance through malate conversion by ME (Landete et 7 

al., 2013) or arginine conversion to pyrimidine precursors. 8 

The maximal glucose consumption rate was similar in all tested conditions, and the central 9 

metabolism remained homolactic. From this macro-kinetic analysis, no evidence that glycolytic flux 10 

was affected by alternative acid-resistance related pathways could be inferred. This is in agreement 11 

with the observation that the expression of two enzymes of the central metabolism, namely 12 

phosphoglucomutase and pyruvate dehydrogenase, was unaffected by arginine or malate in 13 

Lactobacillus hilgardii (Lamberti et al., 2011). The efficiency of arginine, glutamate and malate 14 

dissimilation pathways of L. lactis NCDO 2118 was very diverse, as demonstrated by specific 15 

substrate consumption rates. Malate was consumed at the highest rate (maximal qmalate was 16 

comprised between 21.5 and of 29.5 mmol.g
-1

.h
-1

), followed by the arginine (maximal qArg 17 

comprised between 1.2 and of 14.6 mmol.g
-1

.h
-1

), and finally by glutamate (maximal qGlu ≤ 0.2 18 

mmol.g
-1

.h
-1

). These data suggest that MLF is the most rapid system for neutralizing acidity in this 19 

strain. In fact, the slowest acidification was observed in cultures supplemented with malate. Malate 20 

consumption rate seems negatively affected by both glutamate and arginine supplementation, 21 

suggesting that in these conditions MLF is inhibited. It has been previously reported that malate 22 

consumption was not affected by histidine in the culture medium in L. hilgardii ISE5211 (Mazzoli 23 

et al., 2009; Lamberti et al., 2011). Similarly ornithine-putrescine conversion does not affect MLF 24 

in Oenococcus oeni (Mangani et al., 2005). Hence amino acid and malate decarboxylation can be 25 

activated in parallel without reciprocal interference in these two wine-isolated strains. This is not 26 

the case in L. lactis NCDO 2118 in which also glutamate decarboxylation is negatively affected by 27 

malate suggesting that these routes are competing. One possible explanation for this different 28 

behaviour is that L. lactis NCDO 2118 has been isolated from another ecological niche (frozen 29 

peas) and can be encountered in milk fermentation. Arginine consumption rate is strongly 30 

influenced by environmental conditions. Notably, both arginine and malate supplementation 31 

increases maximal specific consumption rate of arginine (Table 1). These data suggest that both 32 

arginine and malate may activate ADI pathway. The activation of ADI by arginine has been 33 

previously described for many LAB species (Manca de Nadra et al., 1986; Tonon et al., 2001; De 34 

Angelis et al., 2002; Lamberti et al., 2011). However, positive regulation of ADI by malate has 35 
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never been reported so far. Proteomic analyses showed that the expression of ADI pathway 1 

enzymes is not affected by malate in L. hilgardii (Lamberti et al., 2011). Furthermore, malate 2 

inhibited arginine consumption in some lactobacilli and pediococci isolated from wine (Araque et 3 

al., 2011). However, Rallu and co-workers (1996) previously suggested that lactic acid can activate 4 

arginine metabolism, including ADI pathway, in L. lactis. We can hypothesize that malate is able to 5 

enhance ADI pathway in L. lactis NCDO 2118 through additional lactate production by MLF 6 

although a direct activation of this pathway by malate cannot be excluded to be specific to the strain 7 

considered in this study. 8 

GABA production 9 

GABA production was clearly dependent on the environmental conditions. In absence of 10 

glutamate, only low amounts of GABA were produced likely as a consequence of the conversion of 11 

glutamine (which is a CDM component) into glutamate. The higher glutamate supplementation, the 12 

higher the final concentration of GABA (Figure 3A). However, relationship between the amount of 13 

supplemented glutamate and produced GABA is not linear but rather looks like a Michaelis-Menten 14 

plot. Since glutamate amount did not affect significantly final biomass and growth rate, these data 15 

suggest that the same amount of enzymes involved in glutamate/GABA conversion (i.e., glutamate 16 

decarboxylase and/or glutamate/GABA antiporters) were present in all these conditions, i.e. 17 

glutamate did not improve their biosynthesis. In these conditions, the system is semi-saturated for 18 

glutamate concentrations of about 7 mM. The present data therefore confirm previous results 19 

obtained on L. lactis NCDO2118 which indicated that glutamate supplementation did not induce 20 

overexpression of GAD (Mazzoli et al., 2010). 21 

Arginine supplementation significantly enhanced GABA production in both absence or 22 

presence of glutamate fortification. The latter condition corresponds with the production of the 23 

highest GABA amount observed in this study (8.6 mM). It is possible to hypothesize that arginine 24 

can replace glutamine/glutamate in some metabolic function, allowing a higher proportion of these 25 

compounds to be directed towards GABA production. For instance, it is well known that in L. lactis 26 

glutamine can be converted to carbamoyl phosphate, the building block for pyrimidine biosynthesis, 27 

by carbamoyl phosphate synthase (EC 6.3.5.5) (Martinussen and Hammer, 1998). Since also 28 

arginine can generate carbamoyl phosphate through the ADI pathway, it could replace glutamine 29 

allowing it to be used for GABA biosynthesis. Similarly, arginine could replace glutamate as amino 30 

group donor allowing higher glutamate conversion to GABA. 31 

An analysis of GABA production as a function of the pH of the culture confirmed the strong 32 

dependency of this metabolic system on pH (Figure 5). Significant GABA production was observed 33 

only at pH lower than 5.1 during stationary phase (Figure 5), thus confirming previous observations 34 

on the same strain (Mazzoli et al., 2010). These data also agree with recent studies reporting that 35 
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acidic pH is necessary for activating glutamate/GABA antiport by GadC (Lu et al., 2013; Tsai et al., 1 

2013). However, when glutamate, arginine and malate were contemporarily supplemented to L. 2 

lactis NCDO 2118 cultures, GABA production started at the beginning of the exponential growth 3 

phase and at a pH as high as 6.6 (Figure 5). At pH 6.6, the intracellular pH is estimated to be close 4 

to the neutrality (Even et al., 2002) and is not compatible with the GAD activity that was found to 5 

be highly inhibited above pH 5.4 in our bacteria (results not shown). This suggests that another 6 

enzyme probably ensures decarboxylation of glutamate in neutral conditions. As far as we know, 7 

this is the first evidence of significant GABA production during the exponential growth phase and 8 

at nearly neutral pH. The biomass profile could not explain this production since it was similar to 9 

cultures supplemented with arginine plus glutamate, where early activation did not occur. Since this 10 

effect was not observed when each of these three metabolites was supplemented individually or as 11 

binary mixtures (glutamate plus arginine, or glutamate plus malate) it can be speculated that the 12 

simultaneous activation of ADI pathway and malolactic fermentation is susceptible to activate 13 

GABA production, even at higher pH and during exponential growth. Although more work is 14 

needed to understand the biochemical basis of this phenomenon, this observation could have 15 

significant impact on industrial GABA production process. 16 

 17 

CONCLUSION 18 

Acidic environments constitute a major stress for LAB which developed several acid-19 

counteracting systems which include ADI pathway, MLF and amino acid decarboxylation. 20 

Regulation and reciprocal interactions of these pathways seem to vary among microbial species. 21 

The present study indicated that glutamate decarboxylation plays minor roles in L. lactis NCDO 22 

2118 physiology with respect to malate and arginine dissimilation. In fact, glutamate 23 

supplementation had very limited effect in neutralizing acidity and in stimulating biomass 24 

production in contrast to results obtained through malate and arginine supplementation. 25 

Furthermore, GABA production was restrained to narrower environmental conditions than malate 26 

or arginine dissimilation, since both acidic pH (pH < 5.1) and stationary phase were generally 27 

required for its activation. However, this study indicated some strategies which enabled activation 28 

of glutamate decarboxylation system outside of this compass. Notably, arginine was able to strongly 29 

stimulate GABA production, while simultaneous addition of arginine and malate was able to trigger 30 

glutamate decarboxylation in earlier growth phase (i.e., exponential phase) at near neutral pH. Even 31 

if understanding the molecular basis of these phenomena will require further studies, these results 32 

are valuable tracks for developing more performant industrial processes for enhanced and earlier 33 

GABA production through fermentation. 34 

 35 
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Figure legends 1 

 2 

Figure 1 Schematic representation of metabolic pathways potentially contributing to acid resistance 3 

in Lactococcus lactis. ADI, arginine deiminase; Arg, arginine; CK, carbamate kinase; GABA, -4 

aminobutyric acid; GAD, glutamate decarboxylase; Gln, glutamine; Glnase, glutaminase; Glu, 5 

glutamate; ME, malic enzyme; MLE, malolactic enzyme; Orn, ornithine; OTC, ornithine 6 

transcabamylase. 7 

 8 

Figure 2 Evolution of biomass (g.L
-1

) (square), specific growth rate (h
-1

) (triangle) and pH (circle) 9 

during growth of L. lactis NCDO 2118 in CDM. 10 

 11 

Figure 3 Specific growth rate (h
-1

) (♦) of L. lactis subsp. lactis NCDO 2118, biomass (g.L
-1

) (), 12 

pH (□) and GABA production (mM) () in CDM containing various concentrations of glutamate 13 

(A), arginine (B) or malate (C) at 48 h of culture. (---) trend curve. 14 

 15 

Figure 4 GABA production (mM) (grey) and percentage of glutamate converted to GABA (black) 16 

according to various initial glutamate concentrations in CDM, at 48 h of culture. 17 

 18 

Figure 5 GABA production (mM) as a function of the pH of the medium in all conditions tested at 19 

48 h of culture : CDM (■), CDM with glutamate (♦), with arginine (), with malate (), with 20 

arginine and glutamate (○), with malate and glutamate (∆) and with arginine, malate and glutamate 21 

(). 22 

  23 
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 1 

Table 1 Maximal specific rates; maximal biomass, time and pH at the growth arrest; glucose 2 

consumption, lactate and GABA production, and pH at 48 h; during growth of L. lactis NCDO 2118 3 

on seven different synthetic media. lactate  is calculated only with lactate coming from glucose, and 4 

not from malate. Arg, arginine; Glu, glutamate. 5 

 6 

 7 

Parameter CDM CDM
1
 CDM

1
 CDM

1
 CDM

2
 CDM

2
 CDM

2
 

    + Glu + Arg +Malate +Arg+Glu  +Glu+Malate  +Arg+Glu+Malate 

Maximal specific rates 
       

µmax (h
-1) 0.97 ± 0.10 0.97 ± 0.04 1.01 ± 0.11 0.90 ± 0.02 0.89* ± 0.01 0.81* ± 0.01 0.85* ± 0.00 

qglucose (mmol.g-1.h-1) 27.7 ± 3.4 26.9 ± 5.3 24.6 ± 2.1 26.6 ± 4.4 27.0 ± 3.6 32.0 ± 3.1 28.8 ± 7.9 

 lactate (mmol.g-1.h-1) 46.5 ± 3.0 49.9 ± 6.8 43.8 ± 3.6 42.1 ± 8.1 41.6* ± 4.8 56.2** ± 2.2 56.2 ± 13.9 

qmalate (mmol.g-1.h-1) 
   

29.5 ± 0.2 
 

24.8 ± 0.1 21.5 ± 2.4 

q glutamine (mmol.g-1.h-1) 1.22 ± 0.27 0.72 ± 0.22 0.97 ± 0.25 1.69 ± 0.67 0.51 ± 0.14 1.39** ± 0.31 1.20** ± 0.15 

q arginine (mmol.g-1.h-1) 1.44 ± 0.26 1.39 ± 0.58 9.80** ± 2.26 2.69** ± 0.44 7.91** ± 1.18 3.3** ± 0.35 14.58** ± 0.83 

  
       

At growth arrest:  
       

Biomass (g.L-1) 0.98 ± 0.00 1.00 ± 0.11 1.96** ± 0.06 1.86* ± 0.17 1.98** ± 0.20 1.67** ± 0.02 2.20** ± 0.01 

time (h) 5 6 6 7 6 9 9 

pH 4.94 ± 0.09 5.14 ± 0.18 5.07 ± 0.05 5.76* ± 0.13 5.31 ± 0.30 5.78** ± 0.06 6.22** ± 0.00 

glucose cons. (mM) 34.4 ± 4.0 43.4 ± 5.9 70.7* ± 5.1 85.7** ± 5.0 63.4** ± 3.8 80.4** ± 0.9 71.1** ± 0.07 

lactate produced (mM) 65.6 ± 0.5 78.6 ± 8.4 123.3** ± 6.8 275.2* ± 4.7 112.5 ± 7.1 267.7** ± 6.9 228.05** ± 3.1 

GABA (mM) 0 0.08 ± 0.01 0.32 ± 0.88 0.14 ± 0.61 0.17 ± 0.20 1.89** ± 0.14 1.71** ± 0.13 
  

       
At 48h 

       
glucose cons. (mM) 51.31 ± 1.7 68.93 ± 17.9 89.9** ± 8.7 105.5** ± 0.7 89.4 ± 12.6 106.8** ± 3.7 121.2** ± 2.7 

lactate produced (mM) 102.2 ± 4.7 130.3 ± 24.8 153.3** ± 7.1 318.5** ± 10.6 166.2 ± 13.6 325.3** ± 8.0 353.3** ± 4.0 

GABA (mM)  0.44 ± 0.02 3.12* ± 0.85 1.88** ± 0.25 0.38 ± 0.13 8.60* ± 2.0 2.54 ± 0.03 5.22 ± 0.33 

pH  4.20  ± 0.02 4.52* ± 0.09 4.47** ± 0.03 4.95** ± 0.08 4.50  ± 0.21 4.90** ± 0.01 4.97** ± 0.00 

Ornithine (mM)  0.42 ± 0.03 0.58 ± 0.37 34.90** ± 4.40 0.47 ± 0.18 36.95** ± 2.41 0.07 ± 0.01 25.81** ± 1.04 

Citrulline (mM)  0 0 2.07** ± 0.46 0 1.14** ± 0.07 0 3.63** ± 0.23 

8 
9 
Notes:  10 
Values are means ± standard deviation. 11 
Parameters were compared to (1) CDM or (2) CDM+Glu condition with Student t-test. The statistical significance of the test 12 
was represented with (*) or (**) according to p-value threshold of 0.025 and 0.01, respectively. 13 
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