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Abstract

In this paper we study factor-based subordinated Lévy processes in their VG and NIG

specifications, and focus on their ability to price multivariate exotic derivatives. Different

model specifications, calibrated to a dataset of multivariate Barrier Reverse Convertibles

listed at the Swiss market, show diverse ability in capturing smile patterns and recovering

empirical correlations. We show how the range of the correlation spanned by the model is

linked to the process marginal distributions. Our analysis finds that there exists a trade-

off between marginal and correlation fit. A sensitivity analysis is performed, showing

how the product’s characteristics and the model’s features affect Multi Barrier Reverse

Convertible prices. Market and model prices are analyzed, highlighting and explaining

discrepancies.
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1 Introduction

Multi-asset derivative pricing is still an active field of research in financial modelling,

calling for multivariate stochastic models that reproduce well-known stylised facts such

as skewness and excess kurtosis of marginal return distributions. In this paper we

focus on a class of multivariate subordinated Lévy processes, the ρα models introduced

by Luciano and Semeraro (2010). Among non-Gaussian multivariate processes, Lévy

models are appealing in that they preserve analytical tractability.

An interesting testing ground for multivariate models is represented by barrier reverse

convertible on multiple assets, one of the most successful instruments at the Swiss market

for structured financial products. The product consists specifically in a long position

on a coupon bond and in a short position on a worst-of down-and-in European put

option. The worst-of feature requires a pricing model that can capture downside risk

and correlation between assets.

A study on a large dataset of multi barrier reverse convertible has been conducted by

Wallmeier and Diethelm (2012). They considered two multivariate Lévy processes with

VG marginal specification: the model introduced by Leoni and Schoutens (2008) and

the αVG model by Semeraro (2008). Both models were shown to be able to capture op-

tion smile patterns, but they exhibit limitations in their potential to match empirically

observed correlations. The ρα models extend the αVG model, by considering differ-

ent marginal specifications and improving the correlation flexibility. In particular, two

marginal specifications are considered in this work: Variance Gamma (VG) and Normal

Inverse Gaussian (NIG), which, being closed under convolution, allow for straightforward

pricing simulation procedures.

The purpose of this paper is two-fold. Firstly, we investigate marginal distributions

and correlation structure in the ρα models. This analytical study shows how the range

of the correlation spanned by the model is linked to the process marginal distributions.

By calibrating the model, we empirically confirm a trade-off beetween marginal and

correlation fit, as observed in Guillaume (2012) and Luciano et al. (2013). In particular,

a joint calibration of the marginal distributions and the correlation structure is required

to obtain an accurate fit to market prices.

Secondly, we examine the pricing performance of ρα models with regard to barrier

reverse convertibles, one of the most popular segments of the Swiss market. A sen-

sitivity analysis quantifies the impact of model parameters on prices and allows us to

assess the relative importance of dependence structure and marginal processes, given the

characteristics in terms of barrier and maturity of the contract. Accordingly, the joint

calibration procedure can then be fine-tuned to the specific contract’s features. Market

and model prices are analysed, highlighting and explaining discrepancies.

The structure of the paper is as follows: in Section 2 we describe the structure

and characteristics of a typical (multi) barrier reverse convertible as well as the pricing

model. Sections 3 and 4 present the theoretical multivariate model and its specifications
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in terms of VG and NIG subclasses. The dataset is described in Section 5. Section 6 is

devoted to model calibration. Section 7 presents a sensitivity analysis while Section 8

shows the empirical results. The final Section 9 concludes.

2 Multi Barrier Reverse Convertible: Market and

Features

The Swiss market for structured financial products is one of the largest in the world,

providing the opportunity to study complex financial produtcs. Very popular structured

products on the Swiss market are multi barrier reverse convertibles (MBRC). Each day

about 4,000 MBRC are listed on the SIX Swiss Exchange, the principal Swiss stock

exchange. Among the main issuers, there are Bank Julius Bär, Bank Vontobel, Banque

Cantonale Vaudoise, Credit Suisse, Leonteq Securities, Notenstein Privatbank, UBS and

Zurcher Kantonalbank.

Multibarrier reverse convertible are yield enhancing products. The investor gives

up the capital protection in exchange for high coupons. More specifically, a MBRC

offers the investor a high coupon rate during its lifetime, whilst, according to the price

evolution of a basket of underlying assets, we can have different scenarios at maturity.

If none of the prices of the underlying assets has hit a downside barrier or all the final

prices are above their initial fixing level, the investor will receive 100% of principal.

Otherwise, the investor will receive a given number of shares of the worst performer

stock. The conversion ratio is calculated such that the product of the initial fixing level

of any underlying and the conversion ratio is equal to 100. The payoff is illustrated in

Figure 1.

Let S = {S(t), t ≥ 0} be a price process with n components. Suppose that Sj(0) =

S(0) = 100 for all j = 1, ..., n (this assumption is coherent with the conversion feature

explained above) and that B = (B1, B2, ..., Bn) is a vector of barrier levels. Let’s define

the two events

A = {∀t ∈ [0, T ] ,S(t) > B},
Ac = {∃t ∈ [0, T ] ,S(t) ≯ B}.

Then the payoff at maturity T can be written in compact form

100− 100

(
1−min

j

(
Sj(T )

S(0)

))+

1{Ac}. (2.1)

From (2.1), it is easy to see that the product can be represented as a portfolio consisting

of a long position in a bond and of a short position in a worst-of European put with

down-and-in feature.
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Figure 1: MBRC Payoff at Maturity. Red line: in case barrier has been triggered. Blue

line: in case barrier has not been triggered.

3 Factor-based subordinated Brownian motions

This section recalls the ρα models introduced in Luciano and Semeraro (2010) and their

specifications with Variance Gamma (VG) and Normal Inverse Gaussian (NIG) marginal

processes.

The ρα models are factor-based subordinated Brownian motions constructed as the

sum of two independent subordinated Brownian motions. The first has independent

components, while the second is a Brownian motion with correlated marginal processes

which are subordinated by a common subordinator.

Formally, let B be a n-dimensional Brownian motion with independent components

and Lévy triplet (µ,Σ, 0)

Σ = diag(σ2
1, ..., σ

2
n) :=

 σ2
1 0... 0

0 σ2
2.... 0

0 0... σ2
n

 , µ = (µ1, ..., µn).

LetBρ be a correlated n-dimensional Brownian motion, with corralations ρij, marginal

drifts µρ = (µ1α1, ..., µnαn) and diffusion matrix

Σρ :=


σ2

1α1 ρ12σ1σ2
√
α1
√
α2 · · · ρ1nσ1σn

√
α1
√
αn

ρ12σ1σ2
√
α1
√
α2 σ2

2α2 · · · ρ2nσ2σn
√
α2
√
αn

...
...

. . .
...

ρ1nσ1σn
√
α1
√
αn ρ2nσ2σn

√
α2
√
αn · · · σ2

nαn

 . (3.1)
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The Rn-valued subordinated process Y = {Y (t), t > 0} defined by

Y (t) =

 B1(X1(t)) +Bρ
1(Z(t))

....

Bn(Xn(t)) +Bρ
n(Z(t))

 , (3.2)

where Xj and Z are independent subordinators, independent from B and Bρ is a factor-

based subordinated Brownian motion, also indicated as ρα model.

Obviously, whenever all the parameters ρij collapse to 0 across different components,

i.e. ρij = 0, for i 6= j, ρij = 1, for i = j, we have a version of the model in which

the Brownian motions are independent. This version has been introduced in Semeraro

(2008) and is named α model.

Luciano and Semeraro (2010) (Theorem 5.1) proved that each marginal return j

is a Brownian motion with parameters µj and σj subordinated by the j-th marginal

process Gj(t) of a factor based-subordinator G(t). A multidimensional factor-based

subordinator {G(t), t ≥ 0} is defined as follows

G(t) = (X1(t) + α1Z(t), ..., Xn(t) + αnZ(t)), αj > 0, j = 1, ..., n,

where X(t) = {(X1(t), ..., Xn(t)), t ≥ 0} and {Z(t), t ≥ 0} are independent subor-

dinators with zero drift, and X(t) has independent components. They represent the

idiosyncratic and the common factors of trading activity. Indeed, the following equality

in law holds

L(Yj(t)) = L(µjGj(t) + σjW (Gj(t)),

The marginal laws of Y (t) are therefore one-dimensional subordinated Brownian motions

and we can specify the parameters of Y (t) so to have VG and NIG marginal distributions.

Before introducing the two specifications we discuss the correlation structure of the

model. Correlations are independent of time.

ρY (i, j) =
Cov(Bρ

i , B
ρ
j )E(Z) + E(Bρ

i )E(Bρ
j )V (Z)√

V (Yi)V (Yj)

=
ρijσiσj

√
αi
√
αjE(Z) + µiµjαiαjV (Z)√
V (Yi)V (Yj)

,

The following equation shows that correlation in these models is higher than in the

the α models, i.e. the submodels with independent Brownian motions:

ρY (i, j) =
ρijσiσj

√
αi
√
αjE(Z)√

V (Yi)V (Yj)
+ ρY α(i, j),

where ρY α(i, j) are the correlations of the α models. Correlations are increasing in

αi, αj and in particular if αM = maxj∈{i,...,n}{αj}, it holds:

ρY (i, j) ≤ αMσiσjE(Z) + α2
MµiµjV (Z)√

V (Yi)V (Yj)
.
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This is true in general. However the convolution conditions required to recover VG

and NIG marginal distributions link the weight parameters αj to the common subordi-

nator parameters, thus changing the role of αj. The following Section 4 discusses the role

of αj for each of the two model specifications with VG and NIG marginal distributions.

4 Specifications

We now specify the process Y so that it has VG and NIG marginal distributions, as in

Luciano and Semeraro (2010). The different specifications are obtained using subordi-

nators with different distributions. For each specification we introduce the notation and

parameter conditions used in the practical implementation.

4.1 Variance Gamma marginal distributions

The Variance Gamma (VG) univariate process, introduced by Madan and Seneta (1990),

is a real Lévy process LV G = {LV G(t), t ≥ 0} which can be obtained as a Brownian

motion time-changed by a Gamma process {G(t), t ≥ 0}. Let σ > 0 and µ be real

parameters, then the process LV G is defined as

LV G(t) = µG(t) + σB(G(t)),

where B is a standard Brownian motion. Its characteristic function is

ψV G(u) =

(
1− iuµα +

1

2
σ2αu2

)− t
α

.

We now specify G to have Gamma marginal distributions. Let Xj and Z be distributed

according to Gamma laws:

L(Xj) = Γ

(
1

αj
− a, 1

αj

)
and L(Z) = Γ(a, 1).

and let the parameters αj and a satisfy the constraints 0 < αj <
1
a
, j = 1, ..., n. The

subordinator G(t) has marginals L(Gj) = Γ
(

1
αj
, 1
αj

)
and the process Y defined in (3.2)

has VG marginal processes with parameters µj, αj, σj - denoted as V G (µj, αj, σj) - i.e.

L(Yj) = L(µjGj(t) + σjW (Gj(t))).

We name Y a ρα Variance Gamma process, shortly ραVG. The αρVG model has a

total of 1 + 3n + n(n−1)
2

parameters: one common parameter a; the marginal parame-

ters µj, αj, σjand as many additional parameters as the Brownian motions correlations

ρij, i, j = 1, ..., n.
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We now discuss the correlation structure of the VG specification. Linear correlations

are:

ρY (i, j) =

(
µiαiµjαj + ρijσi

√
αiσj
√
αj
)√

(σ2
i + µ2

iαi)(σ
2
j + µ2

jαj)
a.

They are increasing in a, which satisfies the constraint

0 < a < min
j

(
1

αj

)
.

This provides a bound for admissible correlations, depending on αM = maxj∈{1,...,n}{αj}:

ρY (i, j) <
µiµjαiαj + ρijσiσj

√
αi
√
αj√

(σ2
i + µ2

iαi)(σ
2
j + µ2

jαj)

1

αM
.

Remark 1. Suppose αj = α for all j (as discussed in Leoni and Schoutens (2008)).

Inequality in (4.1) becomes

ρY (i, j) <
µiµjα + ρijσiσj√

(σ2
i + µ2

iα)(σ2
j + µ2

jα)
.

It can be shown that the upper bound for ρY (i, j) depends on α, and, in particular, it is

increasing in α if

α >
σiσj(ρijµ

2
iσ

2
j − 2µiµjσiσj + ρijµ

2
jσ

2
i )

µ3
iµjσ

2
j − 2ρijµ2

iµ
2
jσiσj + µiµ3

jσ
2
i

and decreasing otherwise.

The parameter αj is linked to kurtosis kYj of process Yj and kurtosis kGj of subordi-

nator Gj. Furthermore, the latter is dominated by the former, being

kYj = 3(1 + 2αj − 4αjσ
4
j (σ

2
j + αjθ

2
j )
−2) < 3(1 + 2αj) = kGj .

As a consequence, the asset with the highest αj drives the maximum correlation achiev-

able. This implies a trade-off between fit of marginal kurtosis and range of model

admissible correlations.

If we consider the symmetric case, by setting µi = µj = 0, we get

ρY (i, j) < ρij

√
αi
αM

√
αj
αM

.

We notice that in this case the bound does not depend on the kurtosis level, but only on

the range spanned by the kurtosis coefficients of different marginal distributions. More

generally, we conclude that the upper bound for correlation coefficients crucially depends

not only on the maximum kurtosis level, but also on the kurtosis range.
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The VG process has a Gamma subordinator G(t) which satisfy the assumption

E[G(t)] = t, to let stochastic time go like real time in mean. We preserve this as-

sumption for each marginal subordinator in the construction above. By so doing we

impose a constraint on the subordinator parameters. Since the VG process is the only

process to have this restriction we now remove this assumption to see if the trade-off

between marginal kurtosis and correlation still remain.

Let αj, λj ∈ R+ and a be such that 0 < a < λj. Let L(Xj) = Γ(λj − a, 1
αj

)

and L(Z) = Γ(a, 1) and assume that Xj, j = 1, ..., n, and Z are independent random

variables, then the random vector W defined as

W = (W1,W2, . . . ,Wn)T = (X1 + α1Z,X2 + α2Z, . . . , Xn + αnZ)T ,

satisfies L(Wj) = Γ(λj,
1
αj

), j = 1, ..., n and the Lévy process G = {G(t), t ≥ 0}
associated to the distribution of W ,

L(Gj(t)) = Γ(λjt,
1

αj
), j = 1, ..., n,

is a multivariate subordinator with marginal Gamma distributions. Being kurtosis of

Gj equal to 3
(
1 + 2λ−1

j

)
, parameter λj drives the subordinator’s kurtosis. With this

specification of G, the process Y is of VG type with marginal processes of VG type

with four parameters (µj, σj, αj, λj).

Return correlations become:

ρY (i, j) =
ρijσiσj

√
αi
√
αj + µiµjαiαj√

σ2
jλjαj + µ2

jα
2
jλj
√
σ2
i λiαi + µ2

iα
2
iλi

a.

In this case the convolution condition implies that the bound for a is given by a < λm,

where λm = minj∈{1,...,n}{λj}. The following inequality holds

ρY (i, j) <
ρijσiσj

√
αi
√
αj + µiµjαiαj√

σ2
jλjαj + µ2

jα
2
jλj
√
σ2
i λiαi + µ2

iα
2
iλi

λm ≤
ρijσiσj

√
αi
√
αj + µiµjαiαj√

σ2
jαj + µ2

jα
2
j

√
σ2
i αi + µ2

iα
2
i

λm

λijm
,

where λijm = min{λi, λj}. With these assumption, the correlation bound depends on the

new parameters λj.The parameters λj play a role similar to 1
αj

in the traditional VG

specification. In fact they are linked to marginal kurtosis of the subordinator and the

processes Yj since

kYj = 3(1 + 2λ−1
j − λ−1

j (1 + 2α2
jµ

4
jλ
−1
j

(
αjµ

2
j + σ2

j

)2
) ≤ 3(1 + 2λ−1

j ) = kGj .

Therefore one asset with marginal kurtosis much higher then other assets in the portfolio

implies λm << λijm. This highlights a trade off between marginal kurtosis and model

correlation: while to have high marginal kurtosis the idyiosyncratic component must

have λj low, the correlation parameter a is bounded by the minimum λj. It emerges
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that the trade off depends on the convolution condition, which provides a bound for the

common parameter a. The bound depends on the marginal kurtosis parameters and

not on the common component weights αj. Since the trade-off between marginals and

correlation still remain, we decide to use the traditional VG in the application.

4.2 Normal Inverse Gaussian marginal distributions

A NIG process with parameters γ > 0, −γ < β < γ, δ > 0 is a Lévy process LNIG =

{LNIG(t), t ≥ 0} with characteristic function

ψNIG(u) = exp
(
−δt

(√
γ2 − (β + iu)2 −

√
γ2 − β2

))
.

It can be constructed by subordinating a Brownian motion with an Inverse Gaussian

distribution. Let

Xj ∼ IG

(
1− a√αj,

1
√
αj

)
, j = 1, ..., n and Z ∼ IG(a, 1),

where

0 < a <
1
√
αj
, j = 1, ..., n; (4.1)

let now γj, βj, δj be such that

γj > 0, −γj < β < γj, δj > 0;

further, let
1
√
αj

= δj

√
γ2
j − β2

j . (4.2)

If we set µj = βjδ
2
j and σj = δj in (3.1) the process Y defined in (3.2) has NIG marginal

processes, i.e.

L(Yj) = L(βjδ
2
jGj(t) + δjW (Gj(t)))

We name Y a ρα Normal Inverse Gaussian process, shortly ραNIG. Note that the process

has a total of 1+3n+ n(n−1)
2

parameters: a is a common parameter; γj, βj, δj, j = 1, ..., n

are marginal parameters and ρij, i, j = 1, ..., n, are the Bρ correlations.

Setting ζj = δj
√
γ2
j − β2

j , the linear correlations of the ραNIG process are

ρY (i, j) =
βi

δ2i
ζ2i
βj

δ2j
ζ2j

+ ρij
δi
ζi

δj
ζj√(

γ2
i δi (γ

2
i − β2

i )
− 3

2

)(
γ2
j δj
(
γ2
j − β2

j

)− 3
2

)a.
They are increasing in a, and, under (4.1) and (4.2) , must satisfy the constraint

0 < a < min
j
ζj.
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Thus

ρY (i, j) <

(
βi

δ2i
ζ2i
βj

δ2j
ζ2j

+ ρij
δi
ζi

δj
ζj

)
√(

γ2
i δi (γ

2
i − β2

i )
− 3

2

)(
γ2
j δj
(
γ2
j − β2

j

)− 3
2

)ζm, (4.3)

where ζm = minj ζj.

Remark 2. Suppose ζj = ζ for all j, then (4.3) becomes

ρY (i, j) <
βiβjδ

2
i δ

2
j

γiγj
+
ρijδiδjζ

2

γiγj
,

that is increasing in ζ.

Since β2 ≤ γ2 and 1√
αj

= ζj, the kurtosis of Yj(t) is bounded by the kurtosis of the

subordinator Gj

kYj = 3

1 +
γ2
j + 4β2

j

δjγ2
j

√
γ2
j − β2

 ≤ 3

(
1 +

5

ζj

)
= kGj .

As in the VG case, the asset with the highest ζj drives the maximum correlation achiev-

able, implying a trade-off between fit of marginal kurtosis and range of model admissible

correlations.

If we consider the symmetric case, by setting δi = δj = 0, we get

ρY (i, j) < ρij

√
ζm
ζi

√
ζm
ζj
,

As in the VG model, in this case the bound does not depend on the kurtosis level, but

only on the range spanned by the kurtosis coefficients of different marginal distributions.

Again, we conclude that also for the NIG specification, the upper bound for the correla-

tion coefficients crucially depends not only on the maximum kurtosis level, but also on

the kurtosis range.

5 Data

As Lindauer and Seiz (2008) pointed out, in the primary market we typically observe

large overpricing, while in the secondary market the overpricing tends to decrease and

disappear, and other factors seem to be decisive in the valuation of the product. For

this reason, in our work we use data coming from the secondary market of multi barrier

reverse convertibles.

Our dataset consists of 92 MBRC traded on 10th April, 2015, with 39 different un-

derlying baskets. The number of underlyings ranges from two to five, being the majority
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of products linked to three underlyings. Product characteristics are collected from the

termsheets. We only consider products whose underlyings are Swiss stocks for which

Eurex options are available. For simplicity and comparability with previous works, we

exclude from our dataset any MBRC product with early redemption features. Time

to maturity ranges from 1 to 2 years. Issuers are Bank Julius Bär, Bank Vontobel,

Banque Cantonale Vaudoise, Credit Suisse, Leonteq Securities, Notenstein Privatbank

and UBS. The underlyings considered are ABB, Credit Suisse Group, Holcim, Nestlé,

Novartis, C.F. Richemont, Roche Holding, Swatch, Swisscom, SwissLife, SwissRE, Syn-

genta, UBS and Zurich Financial Services. Barriers range from 38% to 81% of stock

prices at issuance. Coupon payments are annual, semiannual or quarterly. The annual

coupon rate ranges from 3.5% to 9.75% of nominal. Continuous compound dividend

yields is taken from Bloomberg and refers to the implicit dividend yield coming from

the put-call Parity for American options. Risk-free rates are interpolated from the in-

terbank offered rate curve in the CHF currency. We assume a credit spread of 25 basis

points for issuers whose credit spread is not available in the product’s termsheet. His-

torical correlations are computed on daily log returns over the previous year.

6 Calibration

Define an n−dimensional price process, S = {S(t), t ≥ 0}, by

S(t) = S(0) exp(ct+ Y (t)), c ∈ Rn,

where c is the compensator and Y (t) is one of the Lévy specifications introduced above.

Ideally, factor-based Lévy processes should be calibrated to the market prices of

MBRCs. However, since closed form pricing formulas are unlikely to be available for

multi-asset exotic derivatives, this is not a feasible approach in practice. Therefore, we

calibrate the correlation structure to historical correlations, as in Luciano and Schoutens

(2006) and Leoni and Schoutens (2008).

The ρα models allow for a two-step calibration. Firstly, we fit marginal parameters

to the univariate volatility surfaces of each relevant underlying, and, secondly, we fit

the common parameters to the sample correlations of the underlying basket. Although

this procedure is very appealing, the bound on the common parameter a can restrict

the admissible correlation range for the VG and NIG specifications. Therefore, in the

spirit of Guillaume (2012), we introduce a joint calibration procedure for each basket of

underlyings to enhance goodness-of-fit of the correlation structure.

6.1 Two-step calibration procedure

Firstly, marginal calibration is performed on Eurex settlement data, matching model

and market put option prices. We consider only at-the-money and out-of-the-money
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options with maturity between 10 days and 2 years, price greater than 0.1 CHF and open

interest greater than 50, in order to have reliable data. To account for the American

style of Eurex stock options, we apply the FST method proposed in Jackson et al. (2008).

Calibration is achieved by minimisation of the Root Mean Square Error (RMSE) between

model and market prices

RMSE =

√√√√ 1

N

N∑
i=1

(Pmkt − Pmodel)2.

Another suitable choice could be the Average Relative Percentage Error (ARPE)1. Sec-

ondly, we calibrate the dependence structure for each basket of underlyings by min-

imising the root-mean-squared error between the empirical and the ρα-model return

correlations. This yields an estimate of the common parameter a and the Brownian

correlations ρij of the basket.

Table 1 shows the calibrated marginal parameters for each model. As one can notice,

VG and NIG provide reduced errors with respect to the multivariate Gaussian model (G),

both in terms of RMSE and ARPE. This is due to the ability of VG and NIG models to

capture skewness and excess kurtosis, yielding a better smile-replication. However, the

correlation error for both ρα-models is significant. The average RMSE is 0.348 in the VG

specification and 0.487 in the NIG one. This result empirically supports the link between

marginal processes and correlation structure of the multivariate process discussed in

Section 4. For both model specifications, the bound on the pairwise correlation depends

on the marginal kurtosis of the subordinators, obtained in the first calibration step.

6.2 Joint calibration procedure

In this section, we introduce a joint calibration procedure. Setting a given tolerance on

the maximum absolute error in matching asset correlations, we fit all option surfaces

together. In particular, for each basket of n underlyings, we numerically solve the

problem:

min
{θ,a,ρ}

n∑
i=1

RMSEi

s.t. max|ρempY (j, k)− ρY (j, k)| ≤ ε, j 6= k

where θ is the vector of all marginal parameters, ρ = {ρij, i = 1, . . . n, j = 2, . . . n}
are the correlation coefficients between the Brownian components collected in Bρ and

ρempY (i, j) and ρY (i, j) are the sample and model return correlations, respectively. The

threshold ε represents the maximum acceptable level of correlation errors. Setting ε

small (e.g., 0.01 or 0.05) ensures an almost perfect replication of the correlation struc-

ture, but larger errors in the calibration of the marginal distributions can arise. The

1ARPE = 1
N

∑N
i=1

|Pmkt−Pmodel|
Pmkt
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relative importance of marginal versus correlation fit can then be fine-tuned through the

threshold ε. Tables 2 and 3 show the ranges of calibrated marginal parameters in the ρα-

model specifications. The joint calibration procedure yields an average RMSE (ARPE)

of 0.347 (16.77%) in VG case and an average RMSE (ARPE) of 0.467 (18.36%) in the

NIG case. Marginal fit slightly worsen in the joint calibration with respect to the two-

step procedure. However, the error in the correlation structure is significantly reduced.

By setting ε = 10%, on the correlation fit we observe an average RMSE (MAE) of 0.073

(7.90%) in the VG case and an average RMSE (MAE) of 0.0078 (0.71%) in the NIG case.

Interestingly, the NIG correlation fit is very good. Only for one basket out of 39 the

constraint is binding at 10%. Nevertheless, while the numerical optimization procedure

is straighforward in the VG specification, depending the kurtosis of the subordinators

on parameters αj only, in the NIG case, the bound depends on ζj = δj
√
γ2
j − β2

j , i.e. on

the interaction of all marginal parameters. How marginal parameters interplay in the

multivariate process is examined in more detail in the next section.

7 Sensitivity Analysis

In this section we perform a sensitivity analysis, examining how model parameters affect

the value of MBRC products. We consider a MBRC product with two underlyings and

typical features: barrier levels are set to 70% of the price of each underlying at issuance,

risk-free rate is 0.25%, credit-spread is 42 basis points and dividend-yield is 0. We

examine two different maturities, 6 months and 1 year, and three correlation scenarios,

setting the correlation coefficient to 0, 0.25 and 0.75. We define a base case, assuming

the same marginal distributions for both assets, with parameters chosen consistently

with the calibration results of Section 6. Different cases are obtaind by either halving or

doubling each parameter of the base case. Put prices are expressed as percentage of the

base put price. Our analysis shows that the MBRC prices move consistently with the

changes in moments of marginal distributions. We discuss below put price variations due

to changes in marginal moments and correlation. While marginal moments are directly

linked to marginal parameters in the VG case, this is not true for the NIG case.

In Table 4 the VG model is considered. Marginal parameters of the base case are

σ = 0.230, α = 0.377 and µ = 0 for both marginal processes. We find that the put value

increases with the marginal parameter σ, which drives the variance of the marginal

distribution. More specifically, if the variance of one marginal distribution increases,

the put value is almost insensitive to the variance level of the other marginal, due to

the worst-of feature of the product. The effect of the sign of the skewness can be read

through the parameter µ. When the skewness parameter moves to negative values, the

put price increases (and viceversa). The effect of marginal kurtosis on option prices

depends on time to maturity. We find a direct relationship between kurtosis and option

value for short maturities and an inverse relationship for long maturities, as observed

12



also in Wallmeier and Diethelm (2012). This can be interpreted observing Figure 2 which

shows the distribution of the minimum for the two scenarios of time to maturity. When

parameter α, that mainly controls kurtosis in the VG model, changes from the original

level of 0.377 to αL = α/2 = 0.188, both marginal distributions of log-returns present

6-months kurtosis of 4.1310. In the case of αH = 2α = 0.754, 6-months kurtosis raises

to 7.5238. However, this implies kurtosis levels for the 1-year distributions of 3.5655

and 5.2619. In this analysis we keep the barrier level constant for both time to maturity

scenarios. This implies a shift in the distribution of the minimum of the two assets

at maturity without a shift in the barrier, then the probability of hitting the barrier

changes by construction. As one can notice in Figure 2, the probability of hitting the

barrier is very similar in Subfigures 2a, 2c and 2e, with a slightly higher probability in

the case of high kurtosis. On the contrary, in the case of 1-year maturity, the probability

of hitting the barrier is higher when the kurtosis is lower (Subfigures 2b, 2d and 2f). We

then observe different effects of the marginal distributions kurtosis, depending on the

combination of barrier levels and maturity of the product. In particular the more the

barrier level differs from the strike price, the more a direct relation between kurtosis and

put value is magnified. This is because the hitting event will depend more and more

on the heaviness of the left tail of the distribution. On the other hand, barriers very

close to the strike price increase the probability of the hitting event in the case of more

platykurtic marginal distributions. Of course, strong positive correlation implies lower

put values for both short and long maturities. In our simulation, the VG model can

recover a correlation level between the marginal processes of 0.75 in 9 cases out of 21

possible combinations of marginal parameters.

Table 5 shows the sensitivity results for the NIG model. The base case has marginal

parameters γ = 7.15, β = 0 and δ = 0.378. We notice that the option value in the case of

independence between marginal processes and short maturity is very similar to the VG

price, since the marginal processes present almost identical moments up to the fourth

one. The moments of the NIG process cannot be moved by changing a single parameter,

as in the VG setting. In the symmetric case, however, we can overcome this limitation,

moving along the main diagonal of each subtable, i.e., considering processes with the

same marginal distributions. In fact, we can find some parameter combination which

allows to move only one moment at a time2. From Table 5 it emerges that the effect on

the put value of a change in the marginal variances depends on the kurtosis levels of the

marginal distributions. Furthermore, we observe the same relationship between kurtosis

and option value as in the VG model. Similarly to µ in the VG economy, changing

2For instance, compare two different cases along the main diagonal: (0, 2γ, δ) and (0, γ, 2δ) for both

marginal processes. They have different marginal variances and the same skewness and kurtosis. In

fact, we have V (Y ) = δ/(2γ) in the first case and V (Y ) = 2δ/γ in the second one, while kurtosis is

kY = 3(1 + 1/2δγ) in both cases. The same applies with (0, γ/2, δ) and (0, γ, δ/2) . To have different

marginal kurtosis and the same variances and skewness, we can consider for instance (0, 2γ, δ) ,and

(0, γ, δ/2) for both marginal processes.
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the β parameter has a direct effect on the skewness of marginal distributions, with an

inverse relation with respect to the worst-of put value. A correlation level of 0.75 can

be recovered in 6 cases out of 21 possible combinations of marginal parameters.

Finally, Figure 3 shows the sensitivity of put prices to differrent correlation levels for

our base case.

8 Pricing

Since no analytical pricing formula is available, we price the MBRCs of our dataset by

Montecarlo simulation, with daily time step and 217 paths. The time change represen-

tation of the ρα models allows for a straightforward simulation procedure. Montecarlo

standard errors are very little in economic sense and therefore they are not reported.

Figure 4 compares bid and ask market prices with model prices, when the the ρα

models are calibrated according to the joint calibration procedure. On top of that,

we set the common parameters to match two correlation scenarios: maximum pairwise

correlations and independence. This allows us to understand how model prices react to

different correlation assumptions consistent with the marginal parameters of the joint

calibration. Hence, Figure 4 shows also model prices corresponding to our correlation

scenarios. MBRC are ordered depending on the time to issue, indicated on the horizontal

axis of each graph. In general, the lower the time to issue, the higher the time to maturity

of the product. Figure 4a, 4b and 4c show prices under the G, VG and NIG specification,

respectively. The difference between G and VG prices ranges from −0.99% to 2.12%,

while the difference between G and NIG prices ranges from −1.96% to 2.00%.

Model prices lie beneath bid market prices for just-issued products in all model

specifications. This confirms the findings by Wallmeier and Diethelm (2008) who report

an overpricing of 3.4% at issuance on their dataset of MBRCs under the multivariate

Gaussian model, and a typical overpricing range of 3% to 6%. Overpricing disappears

for shorter dated products, on the right hand side of figure 4. In fact, there is a slight

underpricing for products with shorter time to maturity in all models.

The difference in terms of MBRC value between independent and highly positively

correlated processes (i.e., the effect of correlation) is decreasing as the time to maturity

decreases for all three specifications. Hence, correlation flexibility is crucial in pricing

long term products. Instead, we observed a lower impact of correlation on prices of

products on the left side of figure 4, which have both lower time to maturity and barrier

levels. Here, the model’s smile-replication ability, driven by the marginals, strongly

affects prices, due to the worst-of feature of MBRCs.

The ρα models with the joint calibration procedure, while preserving marginal fea-

tures of pure jump processes, allow for a range of correlations sufficiently wide to explain

market prices, even for just issued products. We notice that the best fit is provided by

the NIG specification, which has a correlation error below 1% for most of the products.
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Figure 5 provides a deeper insight on the calibration approaches, focusing on a specific

basket: Nestlé, Novartis and RocheGS. The two-step calibration procedure provides a

good smile replication (in terms of marginals) but underestimates correlations. This

implies a sistematic overestimate of the put component of the MBRC for just issued

products, corresponding to an underestimate of the price of the overall product. As

soon as the role of correlation dies out, prices are replicated also by using this calibration

approach.

9 Conclusions

In this work we explore the pricing performance of the VG and NIG specifications of

the Lévy ρα model introduced by Luciano and Semeraro (2010) for multi-asset products

traded in a liquid market. We extend the study by Wallmeier and Diethelm (2012) who

considered the αV G model and the model introduced in Leoni and Schoutens (2008). We

empirically investigate the trade-off between marginal and correlation fit, by calibrating

the model with two different approaches. In the first one, marginal parameters are

calibrated on single-asset options and then common parameters are calibrated on the

observed correlation matrix (two-step calibration). In the second approach, the whole set

of model parameters is calibrated at the same time for each basket of underlyings (joint

calibration). The second approach allows for a better fit of the correlation structure,

slightly worsening the marginal fit. Not only the joint calibration improves the overall

fit of the model but it also improves the pricing performance. However, both model

specifications, VG and NIG, are flexible enough to outperform the G model in the smile

replication, presenting the NIG the best marginal fitting performance.

We analyse critical factors affecting the price of MBRCs in terms of contract features

and model parameters. Path-dependency and worst-of features strongly influence MBRC

prices. In particular, the price of a MBRC decreases with its time to maturity. It depends

negatively on the variance and positively on the skewness of one underlying (almost

independently of the others). Correlation levels are negatively related to MBRC prices.

Finally, prices depend in a nonlinear way on the kurtosis of the marginal distributions.

For just-issued products, we observe a significant overpricing regardless of the model

under consideration. This stylised fact tends to decrease along the life of the product

for all models.

This study shows that the class of ρα models is well suited to price multi-asset

derivatives. A joint calibration approach is able to exploit the trade-off between marginal

distributions and correlation fit. Furthermore, under the NIG specification, we find that

most market prices lie between model prices generated by assuming independence and

model prices generated by assuming maximal linear dependence.
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Table 1: Marginal Calibration - First Step

G VG NIG

σ ARPE RMSE σ α µ ARPE RMSE γ β δ ARPE RMSE

ABB 0.2021 19.25% 0.0598 0.2007 0.3332 -0.1040 6.57% 0.0296 10.1334 -4.2212 0.3363 5.31% 0.0246

CS 0.2469 24.56% 0.0850 0.0867 0.0515 -1.0140 10.48% 0.0580 158.3844 -145.3693 0.6025 10.68% 0.0588

Holcim 0.2476 20.06% 0.1974 0.1061 0.0490 -1.0042 7.82% 0.1342 131.3436 -117.8635 0.6887 8.03% 0.1356

Nestlé 0.1522 41.01% 0.2753 0.1452 0.3968 -0.0922 22.24% 0.1619 2.9097 -0.2709 0.0982 12.50% 0.0939

Novartis 0.1872 36.82% 0.2207 0.1528 0.2188 -0.2190 17.47% 0.0895 20.6542 -12.4337 0.3609 15.28% 0.0815

Richemont 0.2305 29.78% 0.2275 0.2195 0.2425 -0.1772 14.91% 0.0999 9.2194 -3.5550 0.4134 12.41% 0.0826

RocheGS 0.1892 39.77% 0.5448 0.1251 0.1493 -0.3538 19.71% 0.2480 50.2539 -40.2075 0.3771 18.05% 0.2394

Swatch 0.2316 35.42% 1.1685 0.2210 0.2315 -0.1664 19.06% 0.5235 8.6782 -2.9513 0.4087 16.32% 0.4492

Swisscom 0.1802 35.19% 1.1611 0.1261 0.1906 -0.2827 15.09% 0.5507 25.7756 -17.1639 0.3417 13.16% 0.5132

SwissLife 0.2034 38.95% 0.9066 0.1889 0.3405 -0.1522 19.92% 0.4957 5.6198 -1.5276 0.2414 18.74% 0.4238

SwissRE 0.1945 36.20% 0.3190 0.2008 0.3963 -0.0471 11.55% 0.2303 3.7111 -0.2429 0.1771 11.99% 0.2092

Syngenta 0.1977 41.84% 1.1007 0.2035 0.3961 -0.0731 16.34% 0.6060 5.2121 -1.1472 0.2277 15.56% 0.5289

Zurich 0.1820 49.13% 0.8487 0.0890 0.2671 -0.3052 19.88% 0.2897 82.6999 -75.2100 0.1990 18.12% 0.2759

Table 2: Marginal calibration (joint calibration procedure). VG model

σ α µ ARPE RMSE

min max min max min max mean mean

ABB 0.1356 0.2183 0.3716 0.7653 -0.1971 -0.0468 8.85% 0.0432

CS 0.1420 0.2299 0.3906 0.5929 -0.2777 -0.1817 15.90% 0.1115

Holcim 0.2071 0.2405 0.1193 0.2335 -0.3990 -0.1712 8.14% 0.1733

Nestlé 0.0566 0.1558 0.4181 0.8370 -0.2166 -0.0538 22.35% 0.1511

Novartis 0.0801 0.1642 0.2089 0.7053 -0.3225 -0.1056 18.88% 0.1294

Richemont 0.2322 0.2326 0.2883 0.4346 -0.1163 -0.1052 14.13% 0.1185

RocheGS 0.0049 0.1672 0.1606 0.5153 -0.4561 -0.1297 19.16% 0.3561

Swatch 0.2075 0.2280 0.1978 0.3423 -0.2044 -0.1178 19.90% 0.5353

Swisscom 0.0036 0.1189 0.2829 0.6301 -0.3007 -0.1761 13.78% 0.8118

SwissLife 0.2088 0.2091 0.5198 0.5265 -0.0912 -0.0901 24.48% 0.5747

SwissRE 0.1756 0.2076 0.4092 0.7093 -0.1429 -0.0311 14.97% 0.2374

Syngenta 0.2025 0.2162 0.3412 0.7922 -0.1192 -0.0355 18.77% 0.6216

Zurich 0.0357 0.1090 0.3794 0.6108 -0.2783 -0.1839 18.68% 0.6448

Table 3: Marginal calibration (joint calibration procedure). NIG model.

γ β δ ARPE RMSE

min max min max min max mean mean

ABB 3.3271 5.5675 -1.2059 -0.5034 0.1467 0.2797 9.59% 0.0516

CS 3.7098 4.5953 -0.9468 -0.7751 0.1256 0.3384 33.45% 0.2482

Holcim 3.9842 9.9134 -3.3284 -0.6896 0.2938 0.5538 11.23% 0.2146

Nestlé 3.3455 4.7812 -0.9263 -0.4483 0.1039 0.1362 14.61% 0.1366

Novartis 3.6708 264.8336 -256.3779 -0.6022 0.1367 0.2736 19.98% 0.2096

Richemont 3.8377 5.0015 -1.2969 -0.6127 0.2491 0.2667 14.69% 0.1751

RocheGS 3.3124 114.1302 -104.5217 -0.5140 0.1166 0.2823 22.68% 0.6470

Swatch 3.5760 9.1174 -3.9210 -0.6229 0.2243 0.4282 22.50% 0.5870

Swisscom 3.6769 220.3856 -213.2334 -0.4735 0.1087 0.3117 13.07% 1.4213

SwissLife 3.9136 4.5566 -0.9440 -0.4700 0.1961 0.2313 20.33% 0.4807

SwissRE 3.5030 4.4791 -1.3061 -0.4064 0.1374 0.2099 15.78% 0.2259

Syngenta 3.5653 4.8997 -1.0248 -0.6043 0.1789 0.2241 19.12% 0.5534

Zurich 3.0402 9.9509 -4.0551 -0.5641 0.1100 0.2400 21.67% 1.1188

16



Table 4: Sensitivity to marginal parameter changes. VG model.

Put price: T = 0.5 ρY = 0 Put price: T = 1 ρY = 0

2.0345 (σ,α,µ) (σL,α,µ) (σH ,α,µ) (σ,αL,µ) (σ,αH ,µ) (σ,α,µL) (σ,α,µH) 6.8241 (σ,α,µ) (σL,α,µ) (σH ,α,µ) (σ,αL,µ) (σ,αH ,µ) (σ,α,µL) (σ,α,µH)

(σ,α,µ) 100.00% (σ,α,µ) 100.00%

(σL,α,µ) 54.34% 3.28% (σL,α,µ) 53.14% 5.35%

(σH ,α,µ) 375.34% 334.17% 620.74% (σH ,α,µ) 250.49% 218.38% 376.15%

(σ,αL,µ) 103.39% 51.17% 372.56% 94.50% (σ,αL,µ) 102.69% 57.92% 255.26% 103.12%

(σ,αH ,µ) 105.31% 60.23% 386.53% 104.57% 110.88% (σ,αH ,µ) 95.72% 50.26% 250.75% 98.79% 91.65%

(σ,α,µL) 189.25% 145.40% 448.30% 185.59% 196.14% 281.59% (σ,α,µL) 140.58% 98.64% 284.49% 141.41% 137.28% 175.17%

(σ,α,µH) 80.41% 31.72% 363.05% 76.48% 84.02% 172.91% 53.75% (σ,α,µH) 107.30% 65.96% 259.97% 113.40% 105.20% 148.25% 120.99%

Put price: T = 0.5 ρY = 0.25 Put price: T = 1 ρY = 0.25

1.9730 (σ,α,µ) (σL,α,µ) (σH ,α,µ) (σ,αL,µ) (σ,αH ,µ) (σ,α,µL) (σ,α,µH) 6.0863 (σ,α,µ) (σL,α,µ) (σH ,α,µ) (σ,αL,µ) (σ,αH ,µ) (σ,α,µL) (σ,α,µH)

(σ,α,µ) 100.00% (σ,α,µ) 100.00%

(σL,α,µ) 54.98% 2.83% (σL,α,µ) 60.86% 6.21%

(σH ,α,µ) 373.13% 349.81% 576.90% (σH ,α,µ) 272.94% 243.99% 385.26%

(σ,αL,µ) 99.72% 51.70% 379.87% 97.94% (σ,αL,µ) 106.47% 64.67% 273.41% 111.08%

(σ,αH ,µ) 103.63% 56.68% 379.64% 100.12% 106.28% (σ,αH ,µ) 98.90% 55.99% 267.70% 103.29% 92.66%

(σ,α,µL) 182.76% 148.82% 422.09% 184.69% 182.25% 265.01% (σ,α,µL) 140.66% 110.45% 294.48% 147.81% 137.92% 182.11%

(σ,α,µH) 76.62% 31.98% 357.59% 74.33% 83.30% 165.63% 54.75% (σ,α,µH) 116.41% 73.02% 277.59% 118.92% 113.98% 152.96% 129.97%

Put price: T = 0.5 ρY = 0.75 Put price: T = 1 ρY = 0.75

1.6097 (σ,α,µ) (σL,α,µ) (σH ,α,µ) (σ,αL,µ) (σ,αH ,µ) (σ,α,µL) (σ,α,µH) 5.1856 (σ,α,µ) (σL,α,µ) (σH ,α,µ) (σ,αL,µ) (σ,αH ,µ) (σ,α,µL) (σ,α,µH)

(σ,α,µ) 100.00% (σ,α,µ) 100.00%

(σL,α,µ) 66.69% 3.60% (σL,α,µ) 66.47% 6.20%

(σH ,α,µ) 427.57% 422.64% 586.70% (σH ,α,µ) 293.43% 280.18% 379.43%

(σ,αL,µ) *100.18% *61.32% *436.30% 98.44% (σ,αL,µ) *107.59% *74.25% *298.61% 108.95%

(σ,αH ,µ) *110.37% *73.45% *426.89% *122.11% 113.84% (σ,αH ,µ) *97.83% *64.56% *288.90% *114.62% 89.75%

(σ,α,µL) 187.28% 174.55% 459.97% *209.82% *199.20% 254.95% (σ,α,µL) 135.16% 127.00% 308.76% *156.31% *145.55% 173.06%

(σ,α,µH) 82.65% 35.15% 421.94% *77.13% *92.05% *189.86% 56.40% (σ,α,µH) 113.31% 81.99% 293.19% *124.94% *119.06% *171.56% 128.44%

Marginal Moments T = 0.5 Marginal Moments T = 1

(σ,α,µ) (σL,α,µ) (σH ,α,µ) (σ,αL,µ) (σ,αH ,µ) (σ,α,µL) (σ,α,µH) (σ,α,µ) (σL,α,µ) (σH ,α,µ) (σ,αL,µ) (σ,αH ,µ) (σ,α,µL) (σ,α,µH)

V ar(Y ) 0.0284 0.0071 0.1134 0.0284 0.0284 0.0403 0.0403 V ar(Y ) 0.0567 0.0142 0.2268 0.0567 0.0567 0.0806 0.0806

Skew(Y ) 0.0000 0.0000 0.0000 0.0000 0.0000 -1.2789 1.2789 Skew(Y ) 0.0000 0.0000 0.0000 0.0000 0.0000 -0.9043 0.9043

Kurt(Y ) 5.2619 5.2619 5.2619 4.1310 7.5238 6.4056 6.4056 Kurt(Y ) 4.1310 4.1310 4.1310 3.5655 5.2619 4.7028 4.7028

Marginal parameters: {σL, σ, σH} = {0.115, 0.230, 0.460}, {αL, α, αH} = {0.188, 0.377, 0.754}, {µL, µ, µH} =

{−0.252, 0, 0.252}. * indicates that the correlation level can not be reached. Base put prices are reported at the top

left corner of each table. In each column we change one marginal parameter of one process, while in each row we change

one marginal parameter of the other process. On the main diagonal, the two marginal distributions are identical. Marginal

moments corresponding to different parameter sets are shown at the bottom of the table.
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Table 5: Sensitivity to marginal parameter changes. NIG model.

Put price: T = 0.5 ρY = 0 Put price: T = 1 ρY = 0

2.0356 (γ,β,δ) (γL,β,δ) (γH ,β,δ) (γ,βL,δ) (γ,βH ,δ) (γ,β,δL) (γ,β,δH) 6.5146 (γ,β,δ) (γL,β,δ) (γH ,β,δ) (γ,βL,δ) (γ,βH ,δ) (γ,β,δL) (γ,β,δH)

(γ,β,δ) 100.00% (γ,β,δ) 100.00%

(γL,β,δ) 188.16% 269.71% (γL,β,δ) 149.97% 205.14%

(γH ,β,δ) 56.42% 143.31% 17.34% (γH ,β,δ) 64.38% 122.64% 27.73%

(γ,βL,δ) 145.78% 225.28% 99.61% 194.38% (γ,βL,δ) 117.43% 177.87% 86.02% 140.51%

(γ,βH ,δ) 81.46% 170.89% 42.26% 132.98% 71.31% (γ,βH ,δ) 100.37% 158.16% 65.78% 121.92% 102.42%

(γ,β,δL) 64.27% 150.40% 24.66% 109.99% 52.19% 29.04% (γ,β,δL) 64.75% 125.55% 30.04% 86.63% 66.30% 30.56%

(γ,β,δH) 208.78% 285.65% 173.43% 254.49% 198.17% 179.41% 311.18% (γ,β,δH) 169.43% 220.00% 144.28% 191.18% 173.07% 143.49% 236.56%

Put price: T = 0.5 ρY = 0.25 Put price: T = 1 ρY = 0.25

1.8406 (γ,β,δ) (γL,β,δ) (γH ,β,δ) (γ,βL,δ) (γ,βH ,δ) (γ,β,δL) (γ,β,δH) 5.8367 (γ,β,δ) (γL,β,δ) (γH ,β,δ) (γ,βL,δ) (γ,βH ,δ) (γ,β,δL) (γ,β,δH)

(γ,β,δ) 100.00% (γ,β,δ) 100.00%

(γL,β,δ) 196.75% 271.40% (γL,β,δ) 160.05% 208.01%

(γH ,β,δ) 61.22% 157.71% 17.77% (γH ,β,δ) 67.51% 132.20% 30.50%

(γ,βL,δ) 146.64% 236.04% 108.04% 188.68% (γ,βL,δ) 122.32% 177.40% 93.11% 145.26%

(γ,βH ,δ) 92.82% 177.46% 50.33% 132.88% 73.15% (γ,βH ,δ) 104.75% 164.02% 74.60% 124.42% 112.21%

(γ,β,δL) 63.98% 162.27% 24.67% 118.44% 56.22% 33.30% (γ,β,δL) 68.43% 133.61% 31.30% 93.06% 74.44% 30.98%

(γ,β,δH) 215.83% 303.89% 188.98% 257.50% 207.85% 188.19% 325.53% (γ,β,δH) 179.98% 230.71% 154.59% 196.11% 184.00% 153.66% 242.81%

Put price: T = 0.5 ρY = 0.75 Put price: T = 1 ρY = 0.75

1.5166 (γ,β,δ) (γL,β,δ) (γH ,β,δ) (γ,βL,δ) (γ,βH ,δ) (γ,β,δL) (γ,β,δH) 4.8473 (γ,β,δ) (γL,β,δ) (γH ,β,δ) (γ,βL,δ) (γ,βH ,δ) (γ,β,δL) (γ,β,δH)

(γ,β,δ) 100.00% (γ,β,δ) 100.00%

(γL,β,δ) *68.01% 270.20% (γL,β,δ) *66.36% 207.65%

(γH ,β,δ) *12.15% *11.94% 17.44% (γH ,β,δ) *19.00% *18.45% 28.54%

(γ,βL,δ) 142.99% *128.89% 11.44% 186.98% (γ,βL,δ) 120.82% *100.56% 19.35% 140.84%

(γ,βH ,δ) 90.59% *46.35% *10.18% 135.38% 76.09% (γ,βH ,δ) 104.39% *70.95% 19.24% 122.04% 111.52%

(γ,β,δL) *67.75% 188.90% *11.75% *132.24% *48.26% 30.50% (γ,β,δL) *68.94% 148.81% *19.38% *101.56% *71.38% 31.24%

(γ,β,δH) *209.19% *216.71% 221.84% *220.71% *224.16% *209.07% 330.53% (γ,β,δH) *172.06% *173.55% 177.34% *171.11% *172.43% *171.19% 240.77%

Marginal Moments T = 0.5 Marginal Moments T = 1

(γ,β,δ) (γL,β,δ) (γH ,β,δ) (γ,βL,δ) (γ,βH ,δ) (γ,β,δL) (γ,β,δH) (γ,β,δ) (γL,β,δ) (γH ,β,δ) (γ,βL,δ) (γ,βH ,δ) (γ,β,δL) (γ,β,δH)

V ar(Y ) 0.0264 0.0529 0.0132 0.0321 0.0321 0.0132 0.0529 V ar(Y ) 0.0529 0.1057 0.0264 0.0643 0.0643 0.0264 0.1057

Skew(Y ) 0.0000 0.0000 0.0000 -0.9322 0.9322 0.0000 0.0000 Skew(Y ) 0.0000 0.0000 0.0000 -0.6592 0.6592 0.0000 0.0000

Kurt(Y ) 5.2200 7.4400 4.1100 6.5283 6.5283 7.4400 4.1100 Kurt(Y ) 4.1100 5.2200 3.5550 4.7642 4.7642 5.2200 3.5550

Marginal parameters used in the sensitivity analysis: {γL, γ, γH} = {3.575, 7.150, 14.300}, {βL, β, βH} =

{−2.500, 0.000, 2.500}, {δL, δ, δH} = {0.189, 0.378, 0.756}. * indicates that the correlation level can not be reached.

Base put prices are reported at the top left corner of each table. In each column we change one marginal parameter

of one process, while in each row we change one marginal parameter of the other process. On the main diagonal, the

two marginal distributions are identical. Marginal moments corresponding to different parameter sets are shown at the

bottom of the table.
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(a) 6-months, ρY = 0 (b) 1-year, ρY = 0

(c) 6-months, ρY = 0.25 (d) 1-year, ρY = 0.25

(e) 6-months, ρY = 0.75 (f) 1-year, ρY = 0.75

Figure 2: Distribution of the minimum of log-returns at maturity. VG model.

(a) Put prices under the VG model

(b) Put prices under the NIG model

Figure 3: Sensitivity to correlation changes.
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(a) MBRC prices under the G model

(b) MBRC prices under the VG model

(c) MBRC prices under the NIG model

Figure 4: MBRC prices (full dataset). Joint calibration. Observed bid and ask prices

are represented by squares and triangles, respectively. Solid line represents model prices,

with common parameters calibrated to historical correlations. Dashed lines are model

prices with with common parameters set to reproduce maximum pairwise correlations

(upper dashed line) and independence between marginal processes (lower dashed line).

MBRCs are ordered depending on the time to issue, indicated on the horizontal axis of

each graph.
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(a) MBRC prices under the G model.

(b) MBRC prices under the VG model. Joint calibration (left) and two-step calibration (right).

(c) MBRC prices under the NIG model. Joint calibration (left) and two-step calibration (right).

Figure 5: MBRC prices on Nestlé, Novartis, RocheGS only. Parameters:

σG = {0.1522, 0.1872, 0.1892}; σ
(Joint)
V G = {0.1338, 0.1142, 0.1080}, α

(Joint)
V G = {0.4181, 0.3142, 0.1985},

µ
(Joint)
V G = {−0.1263,−0.2508,−0.3321}, a

(Joint)
V G = 2.3918, ρ

(Joint)
V G = {0.7178, 0.6063, 0.5899}; γ

(Joint)
NIG =

{3.6748, 3.6708, 3.6650}, β
(Joint)
NIG = {−0.7746,−0.8606,−0.7193}, δ

(Joint)
NIG = {0.1079, 0.1367, 0.1509}, a

(Joint)
NIG =

2.3918, ρ(Joint)NIG = {0.7124, 0.6124, 0.6899}.
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