The State of Seriola spp. Other Than Yellowtail (S. quinqueradiata) Farming in the World

<table>
<thead>
<tr>
<th>This is a pre print version of the following article:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Citation:</td>
</tr>
</tbody>
</table>

| Availability: |
| This version is available | http://hdl.handle.net/2318/1578143 | since 2016-06-30T14:41:40Z |

| Published version: |
| DOI: 10.1080/23308249.2016.1187583 |

| Terms of use: |
| Open Access |

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
The state of Seriola spp. other than Yellowtail (S. quinqueradiata) farming in the world.

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Reviews in Fisheries Science & Aquaculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>BRFS-2016-0012.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Review</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Sicuro, Benedetto; University of Torino, Animal Production, Ecology and Epidemiology Luzzana, Umberto; Skretting</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Amberjack, Seriola dumerili, Seriola lalandi, Carangids, Yellowtail farming</td>
</tr>
</tbody>
</table>
The state of *Seriola* spp. other than yellowtail (*S. quinqueradiata*) farming in the world

Benedetto Sicuro1, Umberto Luzzana2

1 Department of Veterinary Sciences, University of Torino, Grugliasco (TO), Italy

2 Skretting, Mozzecane (VR), Italy

Corresponding author:

Benedetto Sicuro

Department of Veterinary Sciences, University of Torino

Largo Paolo Braccini, 2

10095 Grugliasco (Torino) - Italy

Email: benedetto.sicuro@unito.it

Tel.: +390116709260

Fax: +390116709240
Abstract

The aim of this review is to provide an update of Seriola spp. farming in the world, excluding yellowtail (S. quinqueradiata), and to identify strengths and weaknesses of these species as candidates for aquaculture diversification in different areas of the world. Farmed Seriola species other than yellowtail are yellowtail kingfish (S. lalandi) in Japan and Australia, longfin yellowtail (S. rivoliana) in the United States, greater amberjack (S. dumerili) in Japan, the Mediterranean and more recently Vietnam, and Pacific yellowtail (S. mazatlanensis) in North and Central America. Candidate countries for Seriola spp. farming development are China (although there are no published production statistics to date), New Zealand and the Canary Islands. The main bottlenecks for further expansion of Seriola spp. farming appear to be disease impact, lack of genetic improvement programs and incomplete knowledge of nutrient requirements. Extensive experience from Japan, where the success of Seriola spp. farming has been based on an integrated system between producer associations, research institutes and central government, it is clear that the aforementioned technical bottlenecks need to be addressed within a framework of medium-term public policies supporting aquaculture development.

Key words: Aquaculture diversification, Amberjack, Carangids, Seriola dumerili, Seriola lalandi, yellowtail
Introduction

Diversification is an urgent need for aquaculture (Teletchea and Fontaine, 2014) and new candidate species must be highly appreciated by consumers so to get high prices on the market. *Seriola* spp., belonging to the *Carangidae* family, are one such group of fish with exceptional consumer acceptance. The species within this family with the longest history of commercial farming is yellowtail (*Seriola quinqueradiata* Temminck & Schegel, 1844) which has been farmed in Japan since the 1960’s (Masumoto, 2002). *Seriola* spp. farming in Japan initially relied on collection of wild juveniles, caught in Spring and grown until they reached market size (2-5 kg) (Masumoto, 2002). Following the experience of yellowtail, other species have been considered for artificial rearing such as greater amberjack (*Seriola dumerili*, Risso 1810), yellowtail kingfish (*S. lalandi* Valenciennes, 1833) and longfin yellowtail (*S. rivoliana* Valenciennes, 1833). In 2014 the production of *Seriola* spp in Japan was of 150387 tonnes, with 107059 tonnes of yellowtail and 38770 tons of greater amberjack (http://www.maff.go.jp/j/tokei/kouhyou/kaimen_gyosei/index.html). World production of *Seriola* spp., largely dominated by yellowtail, peaked at 160477 tonnes in 2011 (Lovatelli et al., 2013) with Japan and China (figures for the latter reported in FAO Fishstat as *Seriola nei* but likely to be *Seriola quinqueradiata*) as the major producers (Fig. 1). Yellowtail kingfish (*S. lalandi*) has the second highest production volume within *Seriola* species, with an annual production estimated at 4558 tonnes in Japan in 2013 and 3000-4000 tonnes (expected to increase in the near future to ≥5000 t) in South Australia (Miller et al., 2011) (Fig. 1). Yellowtail kingfish is a temperate and subtropical epipelagic species naturally occurring in the Australasian region, Southern Japan and East China Sea. It has a good adaptability to cage culture conditions. *Seriola lalandi* is currently farmed in Japan (Nakada, 2008; Shiraishi et al., 2010), New Zealand (Kolkovski and Sakakura, 2004, Camara and Symonds, 2014; Symonds et al., 2014), California (Buentello et al., 2015; Stuart and Drawbridge, 2011), Australia (Kolkovski and Sakakura, 2004, Hutson et al., 2007; Miegel et al., 2010), Chile (Aguilera et al., 2013; Orellana et al., 2014) and, in limited amount, in the Netherlands in recirculation aquaculture systems RAS (Abbink et al., 2011; Orellana et al., 2014; Garcia et al., 2015).
Recently, *S. lalandi* has been targeted as potential new species for aquaculture in South Africa and Namibia (O’Neill et al., 2015). Limited production of other *Seriola* spp. species is reported, with *S. rivoliana* at 400 – 500 tonnes/year in southern US and Hawaii (Fig. 2), (Sims, 2013) and possibly similar volumes for greater amberjack in the Mediterranean (De la Gándara, 2006; Ottolenghi et al., 2004) and Taiwan (Lu et al., 2012) (Fig. 3). Greater amberjack is an epipelagic fish species diffused in the circumglobal temperate area, showing high growth rate (reaching 6 kg within 2.5 years of culture), excellent flesh quality and high economic value (Mazzola et al., 2000). Greater amberjack has the second longest history as a farmed *Seriola* species; its culture started in 1978 in Japan where it is still considered an important species (Miwa et al., 2011; Matsunari et al., 2013a), with a production volume of 38770 tons in 2013. Greater amberjack farming further developed in the Mediterranean region in the second half of the 1980’s, and more recently in Vietnam (Ottolenghi et al., 2004), Korea, some coastal areas of China (Wu and Pan, 1997; Rongxing et al., 2008; Yokoyama et al., 2013; Ouqin et al., 2014) and in Taiwan (Lu et al., 2012). Major producers of greater amberjack in the Mediterranean have been Spain (in Balearic Islands, Murcia and Tarragona) (Grau 1999) and Italy (Giovanardi et al., 1984; Pipitone and Andaloro 1995; Lazzari et al., 2000), followed by Malta (http://www.fao.org/fishery/countrysector/naso_malta/en), Croatia (Benovic, 1980), Turkey (Yılmaz and Şereflişan, 2011) and Saudi Arabia. Longfin yellowtail (*S. rivoliana*) can be found in the East Atlantic coasts from Portugal to Azores and Madeira (Smith-Vaniz, 1986) and, less frequently, in Galicia (Spain) (Bañón and Garazo, 2006), the British Isles (Wheeler, 1986) and Mediterranean Sea (Castriota et al.,2004). This species is commercially cultured in Hawaii (Verner- Jeffreys et al. 2006) and it shows good potential for aquaculture diversification. Longfin yellowtail (*Seriola rivoliana*) in fact adapts well to rearing conditions and to dry commercial feeds. This species also responds positively to hormonal treatments to induce reproduction, although broodstock are reported to give poor spawns and low larval survival (Roo et al., 2012; Roo et al., 2014; Roo et al 2015). A further amberjack species, the Pacific yellowtail (*Seriola mazatlanana*) has been reported to spawn in Ecuador (Benetti 2000; Venizelos and Benetti, 1996), USA and Latin America (Tucker 2012). Recently, Florida Pompano
(Trachinotus carolinus) has been introduced in commercial farm in Florida, thus confirming the high commercial interest in Carangid fish (Schrandt and Powers, 2015).

The aim of this review is to provide an update of *Seriola spp.* farming in the world, excluding yellowtail, and to identify strengths and weaknesses of these species as candidates for aquaculture diversification in different areas of the world.

Feeding

In the early years of amberjack farming, farmed amberjack were fed raw frozen fish. Today extruded pellets are successfully used to grow this species (Garcia-Gomez, 2000), while trash fish is still occasionally used for broodstock feeding (Tab. 1). The higher efficiency of formulated feeds versus trash fish for amberjack feeding is reflected in the improved feed conversion rate (FCR), reported to decrease from 5 to 1.22 (Mazzola et al., 2000). This is similar to data reported for yellowtail, where FCR ranges from 0.9-2.6 with extruded pellets, compared to figures ranging up to 17.5 in the case of raw fish, depending on fish size (Talbot et al., 2000; Nakada, 2008). In terms of nutrient levels in amberjack feeds, research efforts have been devoted to quantify macronutrient (Garcia-Gomez, 2000; Jover et al. 1999; Talbot et al. 2000, Ottolenghi et al., 2004), amino acid (Limine et al. 2006) and gross energy requirements (Vidal et al., 2008) (Tab. 1). With respect to *S. lalandi*, optimal crude protein and fat levels (Jirsa et al., 2011; Jirsa et al., 2014) and gross energy requirements (Aguilera et al. 2013) have been quantified (Tab. 1), while nitrogen loading from cage operations has also been investigated (Fernandez and Tanner 2008). Being the most recent candidate for aquaculture, little information is available on *S. rivoliana* artificial feeding; Fernández-Palacios et al (2015) used mackerel at 2% of body weight for broodstock feeding, while requirements for growout should be presumably comparable with those reported for other *Seriola spp.* species. In order to reduce production costs and improve sustainability of the *Seriola spp.* aquaculture industry, extensive research has been carried out to quantify optimal inclusion levels of vegetable proteins (Ottolenghi et al., 2004). Following the experiences on several piscivorous fish species, different fish meal substitutes have successfully been tested, such as soybean meal at 10%
inclusion level in feeds for *S. lalandi* (Bowyer et al., 2013a) and at 20-30% for *S. dumerili* (Tomas et al., 2005). A novel non-GM soybean cultivar with reduced levels of heat-resistant oligosaccharides (raffinose and stachyose) and protease inhibitors has been tested at levels up to 40 – 48% inclusion in feeds for *S. lalandi* (Buentello et al., 2014; Jirsa et al., 2011) and soy protein concentrate (SPC) up to 20% inclusion again in feed for *S. lalandi* (Bowyer et al., 2013b). Recently, 80% replacement of fish meal with squid meal, defatted *Haematococcus pluvialis* and *Schizochytrium limacinum* meals has also been successfully achieved in *S. rivoliana*, thus showing potential application for single-cell protein (SCP) utilization (Kissinger et al 2016). Animal by-products such as poultry meal have also been successfully tested in Japanese amberjack (Nakada, 2008) and yellowtail (Bowyer et al 2012a). Less information is available on the substitution of fish oil with alternative lipid sources: in *S. lalandi* the use of canola oil and poultry oil, alone or in combination, to replace fish oil led to reduced activity of digestive enzymes (Bowyer et al 2012a; Bowyer et al 2012b). Among micronutrients, only selenium has been investigated in *S. lalandi* for possible toxic effects (Le and Fotedar, 2014).

Feeding is known to significantly impact product quality of farmed fish and in this respect, O’Neil et al (2014) stated that nutritional characteristics of farmed *S. lalandi* can be potentially better respect to their wild counterpart. Broodstock nutrition impacts reproductive success and juvenile quality (Talbot et al., 2001; Fernández-Palacios et al., 2013). Rodríguez-Barreto et al (2014) found that gonad maturation of female broodstock is improved by increasing dietary eicosapentaenoic to arachidonic acid ratio up to 9. Inclusion of krill meal and astaxantin in *S. lalandi* broodstock feeds improved egg quality (Kolkovski and Sakura, 2004), while feeding *S. dumerili* and *S. rivoliana* broodstock with raw fish such as mackerel and squid are reported to have positive effect on artificial spawn induction and fecundity (Roo et al 2015; Fernández-Palacios et al., 2015b). Larval rearing has been successfully achieved by feeding *Artemia* and rotifers appropriately enriched or by mesocosm technology (Papandroulakis et al., 2005; Hamasaki et al 2009; Matsunari et al., 2013; Yamamoto et al., 2013). Artemia replacement will certainly be a further step to improve sustainability of *Seriola spp.* farming. Supplemental inclusion of Vitamin E and C (Kolkovski and Sakakura 2004), increase of temperature of larval
culture water for *S. lalandi* (Cobcroft et al., 2013) and supplemental inclusion of
docosohesenoic acid (DHA) in feeds for *S. rivoliana* (Mesa-Rodríguez A, Hernández et al.,
2013) are reported to decrease the incidence of skeletal deformities during larval rearing. The
natural predatory behavior of these fish sometimes causes cannibalism, particularly at larval
stages, which has even been observed at low density for *S. lalandi* and *S. quinqueradiata* (Stuart
and Drawbridge, 2012; Kolkovski and Sakakura 2004). Light intensity, water temperature and
turbidity are all reported to affect larval predatory behavior (Carton 2005; Ma, 2014; Stuart and
Drawbridge 2012). Feeding management also needs optimization in order to ensure full
utilization of feed and reduce competition in rearing cages (De la Gandara et al., 2004; Talbot et
al., 1999).

Feed additives

Feed additives are a heterogeneous category of compounds traditionally utilized in fish feeds
such as feeding stimulants, immunostimulants, probiotics and prebiotics (Zhang et al., 2014).
Different additives have been tested for amberjack feeding. Considerable work has been
reported on feeding stimulants. Hidaka et al (2000) tested squid and jack mackerel muscle
extracts on Japanese amberjack and found that amino acids were the main palatability enhancers
together with inosine-5’-monophosphate (IMP) and inosine. Taurine is an organic acid acting as
an osmolyte and cytoprotectant as well as being involved in bile acid conjugation and bile flow.
Recent studies demonstrated that the ability of taurine synthesis greatly differs between fish
species (Yang et al., 2013; Salze and Davis, 2015). Matsunari and coll. extensively investigated
the role of taurine in Japanese amberjack (Matsunari et al. 2003; Matsunari et al. 2005;
Matsunari et al. 2006; Matsunari et al. 20013b), which is reported as having low or negligible
ability of taurine synthesis due to the low cysteinesulphinate decarboxylase activity during
metabolism from methionine to cystathionine (El-Sayed 2014). Research suggests that fish fed
artificial feeds with significant inclusion of plant proteins—mainly from soybean which is
known to reduce enterohepatic circulation of taurine in higher vertebrates—may require
taurine supplementation. In fact, supplemental taurine has been reported to be needed for Japanese amberjack fed soybean-based diets (Takagi et al., 2008), while a recent study suggests that somewhere between 0.20% and 0.32% dietary taurine is required for *S. lalandi* fed a diet containing soybean protein concentrate as the major protein raw material (Jirsa et al., 2014). The importance of intestinal microbiota is increasingly recognized in fish nutrition, and has also been subject of research in some *Seriola* spp. species, such as *S. dumerili* (Buntuello et al. 2015; Aguilera, 2013) and *S. lalandi* (Aguilera et al., 2013).

Pathology

Many pathogens are reported to affect *Seriola* spp. under farm conditions (Tab. 2). In Japan amberjack farming has been hardly constrained by disease diffusion since its beginning and yellowtail culture industry periodically experiences epidemic diseases and mass mortalities, caused by encephalomyelitis (Yokoyama et al., 2010), pseudotuberculosis from *Photobacterium damselaee* (Nagano et al., 2011), lactococciosis and meningoencephalitis from *Lactococcus garvieae* (Ooyama et al., 1999; Nakaima et al., 2014). Considering the high mobility of these species and their diffusion in the temperate area, climate change could impact the future disease diffusion as reported with *S. lalandi* in southern Australia (Doubleday et al., 2013). In the Mediterranean region the most dangerous pathogens for greater amberjack are *Photobacterium damsella subsp. piscicida*, which induces symptoms in both acute and chronic patterns(Crespo et al. 1994) and *Vibrio harveyi* (Rigos and Katharios, 2010). In Spain, mycosis from *Ichthyophonus hoferi* caused mortalities up to 23% (De la Gandara 2006). The digeneid *Paradeontacylix sp.* caused up to 80% mortality together with *Zeuxapta seriolae* (Heteraxinidae) or *Cryptocaryon irritans* (Ciliophora) (De la Gandara 2006). Gill fluke infections caused by monogeneans such as *Heteraxine heterocerca* caused mortalities in greater amberjack (Grau et al., 1999; Shirakashi et al., 2013) and other parasites such as the copepod *Caligus curtus* and the isopod *Gnathia vorax* have also been reported to cause mass mortalities (Grau et al., 1999). Transfer of juveniles between countries has been reported to spread...
pathologies to native areas, for example the spread of encephalomyelitis into Japan when *S. dumerili* juveniles were imported from China or tropical areas (Yokoyama et al., 2013; Nakada 2008; Yoshinaga et al., 2006). Also in China diseases outbreak is a major constraint to the potential of greater amberjack farming, in particular vibriosis (Rongxing et al., 2008). The main diseases of *S. lalandi* in Australia and New Zealand include flatworm parasites (*Benedenia seriola*) and *Zeuxapta seriola*, which inhabit the gills and the skin, respectively (Kolkovski and Sakakura 2004), facilitating secondary microbial infections. These infestations are typically treated with hydrogen peroxide disinfection baths but an anthelmintic orally administered, praziquantel, has also been tested (Williams et al., 2007). Metazoan parasite infestations in *S. lalandi* in southern Australia are a major threat to sea-cage aquaculture, in particular *Paradeontacylix spp.* (*Digenea*), *Kudoa sp.* and *Unicapsula seriola* (*Myxozoa*) (Hutson et al 2007). In California, the presence of *Anisakis sp.* and the first case of cutaneous myxoma in fish has been reported in *S. lalandi* (Keller et al. 2011). In *S. rivoliana*, disease caused by a monogenean (*Neobenedenia sp.*) is reported as the main cause of broodstock mortality (Roo et al., 2014). In Ecuador, epitheliocystis was found in *S. mazatlana* when first farming attempts started at the end of 1990’s (Venizelos and Benetti, 1996). Vaccination has proven effective in modern *Seriola sp.* farming, since its early application in Japan with the use of oral vaccine against *Listonella garvieae* in 1997 (Ooyama et al., 1999). In the following years, monovalent, divalent and trivalent vaccines, water-based injection vaccines containing iridovirus, *L. anguillarum* and *L. garvieae* or *L. garvieae*, *L. anguillarum* and *Streptococcus dysgalactiae*, were introduced (Brudeseth et al., 2013). Yellowtail vaccination against pasteurellosis (Gravningen et al., 2008) and lactococciosis (Nakaima et al., 2014) has been very effective, leading to decreased antibiotic use. Vaccination has been suggested as the best strategy to prevent vibriosis in Chinese greater amberjack farming (Rongxing et al., 2008). Most of the vaccines currently available are based on classical fermentation, cultivation or recombinant technologies, while it is likely that future vaccines will be inactivated vaccines, live-attenuated vaccines and DNA vaccines (Brudeseth et al., 2013). Environmental factors such as water temperature influence fish health, and in fact water temperature below 10 °C can lead to inflammation of distal
intestine that can cause in turn mortality in *S. quinqueradiata* and *S. lalandi* (Miegel et al., 2010), while the decrease of water temperature from 22 °C to 18 °C is related with increase of sub-acute enteritis in *S. lalandi* (Bansemer et al., 2015). *S. lalandi* reared at 18 °C reduced growth, feed efficiency and nutrient retention respect those held at 22 °C of water temperature (Bowyer et al., 2012a; Bowyer et al., 2012b).

Artificial reproduction

In Japan the artificial reproduction of *S. dumerili* was first obtained in the Aquaculture Research Laboratory of Nagasaki Prefectural Institute of Fisheries in the early 1990’s (Tachihara et al., 1993, Garcia and Diaz, 1995) and several years later it was accomplished in other regions, such as Mediterranean (Mazzola et al., 2000; Muraccioli et al., 2000) and Australia (Poortenaar et al., 2001). The first reports of spontaneous reproduction of greater amberjack came from fish held in large tanks (500 mc) (Jerez et al., 2006). In following trials tank volumes were reduced, still obtaining high quality spawns as long as good broodstock nutrition and health were maintained (Fernández-Palacios et al., 2013). *S. dumerili* females reared in captivity reach sexual maturity later compared to wild fish and inappropriate rearing conditions may negatively affect spawning activities and reproductive physiology (Kozul et al 2001; Micale et al., 1999). For these reasons hormonal treatments are used, initially based on human chorionic gonadotropin (Kozul et al 2001). Roo et al (2013) obtained gonadal maturation induction with intramuscular injections of GnRHa (20 µg/kg of body weight) in broodfish of *S. dumerili* under controlled conditions. Mylonas et al (2004) then demonstrated the existence of a reproductive dysfunction of greater amberjack in captivity and proved that releasing-hormone agonist (GnRHa) implants can be successfully used for the induction of multiple spawns of viable eggs. Fernández-Palacios et al (2015b) recently developed a protocol based on intramuscular injections of GnRHa (20 µg/kg of body weight) administered every 10 days to *Seriola dumerili* fluent males and 500 µm oocyte-bearing females. In other amberjack species, the control of artificial reproduction has been achieved only recently. The first studies on *S. lalandi* artificial reproduction aimed to understand the spawning behavior of wild caught broodstock and early larval development.
Temperature-induced spawning was demonstrated in California in 2010 (Stuart and Drawbridge 2013). Muncaster et al. (2013) showed that GnRHa (500 µg/kg-1 of body weight) implants did not stimulate reproduction or spawning of this species, while Nocillado et al. (2013) showed that kisspeptin treatment stimulate gonadal development in pre-pubertal male _S. lalandi_. As with other _Seriola_ species, skeletal deformities are also described in hatchery-reared _S. lalandi_ (Martínez-Montano et al. 2014). First successful attempt of artificial reproduction of _S. rivoliana_ was obtained in Hawaii in 2003 (Laidley et al., 2004), while more recently protocols for artificial spawning of this species have been described by Roo et al (2014) and Fernández-Palacios et al (2015a).

Bottlenecks and needs

In the light of the literature consulted, the main bottlenecks for further expansion of _Seriola_ spp. farming appear to be disease impact, lack of genetic improvement programs and incomplete knowledge of nutrient requirements for these species. The availability of modern vaccines, as the one used against Lactococciosis (Nakaima et al 2014) represents a potential tool for reducing disease impact in _Seriola_ spp. farming. From the technological point of view, some best practices have also been suggested for _S. dumerili_ rearing, such as deeper cage submersion. In fact Shirakashi et al (2013) obtained a reduction up to 80% and 95% in the incidence of skin fluke infection when _S. dumerili_ cages were submerged at a depth of 2 and 4 m, respectively. These results can be explained by positive phototactic behavior of parasite larvae, more concentrated in the superficial water layers and more active during the central part of the day.

The most innovative and promising research on different _Seriola_ spp. species are focused on modern genetic techniques, such as parentage allocation and pedigree reconstruction, focused on disease resistance and better growth (Whatmore et al., 2013; Kolkovski and Sakakura 2004). Genomic techniques are also considered a promising perspective for yellowtail farming. In Japan a whole genome radiation hybrid panel for _Seriola quinqueradiata_ gene mapping has been recently obtained (Aoki et al., 2014), which is considered as an important step for the
identification of genes related to important farming traits. Selective breeding and genome selection approaches are used in New Zealand at the National Institute of Water and Atmospheric Research (NIWA), in order to provide the industry high-performance *S. lalandi* offspring (Camara and Symonds, 2015). A better understanding of the nutrient requirements and of the nutritional value of different raw materials for *Seriola* spp. is also needed, in order to allow sustainable farming of these species. Application of experimental models already used for other species may allow rapid development in the area of nutrition of *Seriola spp.*

Conclusions

It is very well known that world aquaculture production is dominated by species on the lower end of the food chain, but from a realistic point of view, production of piscivorous, high value fish species for international markets, like amberjacks, will presumably continue (Subasinghe and Hishamunda 2012). Developed and developing countries can benefit from aquaculture of high value species since it has been estimated that fishery and aquaculture trade in some cases can reach more than half of the total of traded commodities (FAO 2014). The investments needed to resolve the current bottlenecks to increased *Seriola* production are far below the capacity of single commercial operators, and may benefit from cooperative organizational systems that align the priorities of fish producers, research associations and regulatory bodies. Such policies have successfully been implemented in Japan, where the aquaculture industry is an integrated and efficient system based on such cooperation between stakeholders, combined with a central government that has been supporting Japanese amberjack farming since its beginning (Nakada 2008). Similarly, governmental may facilitate development of *Seriola spp.* farming in other countries. In New Zealand for instance, significant investments from the Foundation for Research Science and Technology and the Ministry of Business, Innovation and Employment have highlighted the potential for *S. lalandi* farming (Martınez-Montano et al., 2014; McKenzie 2014; Symonds et al., 2014). In the Canary Islands (Spain), during the last decade the Autonomic Government of Canary Islands has started an intensive program aiming
at development of farming techniques for *S. rivoliana* and *S. dumerili*. New Zealand and the Canary Islands are, in fact, areas where further development of *Seriola spp.* farming is expected. Looking at world production figures (Fig. 1), a further obvious candidate for *Seriola spp.* farming development is China, due to its geographical proximity to Japan and being first country in the world for aquaculture production, although the lack of published production statistics make it difficult to derive a clear perspective of the progress to date. Considering that most of modern high-value farmed fish species need significant technological development, the case of amberjack farming can be used as an example for further emerging piscivorous species.

Acknowledgments

We would like to thank Rhys Hauler, Yuta Hamasaki, Leo Nankervis and Giovanni Turchini for their critical revision and helpful suggestions on our paper. We also thank Leo Nankervis for the English revision of the manuscript.

References

De la Gándara F. ¿Por qué no se ha desarrollado el cultivo de Seriola dumerili en el Mediterráneo? Actav IV Congreso Iberoamericano Virtual de Acuicultura CIVA 326 – 340 (2006)

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

Nagano I., Oshima S and M. Kawai. In vivo analysis on the adherence and infection route of Photobacterium damselae subsp. piscicida in yellowtail. Fish Pathol. 46 (2): 45-50 (2011)

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

URL: http://mc.manuscriptcentral.com/brfs Email: sandra.shumway@uconn.edu

Zhang, Q., Yu, H., Tong, T., Tong, W., Dong, L., Xu, M. and Z. Wang. Dietary supplementation of Bacillus subtilis and fructooligosaccharide enhance the growth, non-specific
immunity of juvenile ovate pompano, *Trachinotus ovatus* and its disease resistance against
Fig. 1
Fig. 2
Fig. 3
Tab. 1 - Composition of feeds used for *Seriola spp.* in experimental trials

<table>
<thead>
<tr>
<th>Species</th>
<th>Feed composition</th>
<th>Stage</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. dumerili</td>
<td>Raw mackerel</td>
<td>Broodstock</td>
<td>Jerez et al., 2006</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>Horse mackerel,</td>
<td>Broodstock and</td>
<td>Fernández-Palacios et al., 2013</td>
</tr>
<tr>
<td></td>
<td>Atlantic mackerel, juveniles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>European anchovy,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>European pilchard,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>European hake, cephalopods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. dumerili</td>
<td>54% CP; 18% CL</td>
<td>Broodstock</td>
<td>Fernández-Palacios et al., 2013</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>54- 52% CP; 20.2</td>
<td>Broodstock</td>
<td>Rodriguez-Barreto et al., 2014</td>
</tr>
<tr>
<td></td>
<td>– 21.2% CL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. dumerili</td>
<td>45 - 50% CP; 14 –</td>
<td>Growth out</td>
<td>Jover et al., 1999</td>
</tr>
<tr>
<td></td>
<td>17% CL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. dumerili</td>
<td>47 – 48% CP; 10.5</td>
<td>Growth out</td>
<td>Mazzola et al., 2000</td>
</tr>
<tr>
<td></td>
<td>– 18 % CL; fish scraps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. dumerili</td>
<td>42.4 – 43.6% CP; 18.4 – 29.3% CL</td>
<td>Growth out</td>
<td>Talbot et al., 2000</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>42% CP; 20% CL</td>
<td>Growth out</td>
<td>Papadakis et al., 2008</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>50% CP; 17% CL</td>
<td>Growth out</td>
<td>Haouas et al., 2010</td>
</tr>
<tr>
<td>S. lalandi</td>
<td>Fresh and frozen</td>
<td>Broodstock</td>
<td>Kolkovski and Sakakura 2004</td>
</tr>
<tr>
<td></td>
<td>fish, mussels with</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
inclusion of HUFA and vitamins

<table>
<thead>
<tr>
<th>Species</th>
<th>Protein Range</th>
<th>Lipid Range</th>
<th>Growth Out</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. lalandi</td>
<td>41.7% - 46.2% CP</td>
<td>10.6% – 18.8% CL</td>
<td>Growth out</td>
<td>Jirsa et al., 2011</td>
</tr>
<tr>
<td>S. lalandi</td>
<td>48.2% - 50.6% CP</td>
<td>12.8% - 14.7% CL</td>
<td>Growth out</td>
<td>Jirsa et al., 2014</td>
</tr>
<tr>
<td>S. rivoliana</td>
<td>Raw mackerel</td>
<td>Broodstock</td>
<td>Fernández-Palacios et al., 2015</td>
<td></td>
</tr>
<tr>
<td>S. rivoliana</td>
<td>50% CP; 15% CL</td>
<td>Growth out</td>
<td>Kissinger et al., 2016</td>
<td></td>
</tr>
</tbody>
</table>

CP = crude protein; CL = crude lipids
Tab. 2 - Main pathologies reported in farmed Seriola spp. (except Japanese amberjack)

<table>
<thead>
<tr>
<th>Species</th>
<th>Pathology or pathogen</th>
<th>Region or country</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. dumerili</td>
<td>Photobacterium damsella subsp. piscicida</td>
<td>Mediterranean</td>
<td>Crespo et al., 1994</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>Vibrio harveyi</td>
<td>Mediterranean</td>
<td>Rigos and Katharios, 2010</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>Paradeontacylix sp., Zeuxapta seriolae, Cryptocaryon irritans, Ichthyophonus hoferi</td>
<td>Mediterranean</td>
<td>De la Gandara, 2006</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>Heteraxine heterocerca, Caligus curtu, Gnathia vorax</td>
<td>Mediterranean</td>
<td>Grau et al., 1999</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>Epitheliocystis, Sanguinicoliasis, Pseudotuberculosis</td>
<td>Mediterranean</td>
<td>García and Díaz, 1995</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>Epitheliocystis, Microsporidiasis, Nocardia kampachi, Benedernia seriolae</td>
<td>Japan</td>
<td>García and Díaz, 1995</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>Meningitis</td>
<td>Japan</td>
<td>Iida et al., 1998</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>Microsporidians</td>
<td>Japan</td>
<td>Miwa et al., 2011</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>Enterococcus seriolicida, Myxosporean parasite, Iridovirus</td>
<td>Japan</td>
<td>Nakada, 2008</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>Lactococcus garvieae</td>
<td>Japan</td>
<td>Nakajima et al., 2014</td>
</tr>
<tr>
<td>Species</td>
<td>Organism</td>
<td>Location</td>
<td>Authors</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>Neobenedenia girellae</td>
<td>Japan</td>
<td>Shirakashi et al., 2013</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>Anisakid</td>
<td>Japan</td>
<td>Yoshinaga et al., 2006</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>Vibrio hollisae</td>
<td>China</td>
<td>Rongxing et al., 2008</td>
</tr>
<tr>
<td>S. dumerili</td>
<td>Vibrio harveyi</td>
<td>China</td>
<td>Wu and Pan, 1997</td>
</tr>
<tr>
<td>S. lalandi</td>
<td>Paradeontacylix sp., Kudoa sp., Unicapsula seriolae, Benedenia seriolae, Zeuxapta seriolae</td>
<td>Southern Australia</td>
<td>Hutson et al., 2007</td>
</tr>
<tr>
<td>S. lalandi</td>
<td>Benedenia seriolae, Zeuxapta seriolae</td>
<td>Australia and New Zealand</td>
<td>Kolkovski and Sakakura, 2004; Lackenby et al., 2007</td>
</tr>
<tr>
<td>S. lalandi</td>
<td>Zeuxapta seriolae, Benedenia seriolae</td>
<td>South Australia</td>
<td>Williams et al., 2007; Mooney et al., 2006</td>
</tr>
<tr>
<td>S. lalandi</td>
<td>“Candidatus Parilichlamydia carangidicola”</td>
<td>South Australia</td>
<td>Stride et al., 2013</td>
</tr>
<tr>
<td>S. lalandi</td>
<td>Viral nervous necrosis</td>
<td>Japan</td>
<td>Arimoto et al., 1993</td>
</tr>
<tr>
<td>S. lalandi</td>
<td>Vibrio harveyi</td>
<td>Western Australia</td>
<td>Stephens and</td>
</tr>
<tr>
<td>S. lalandi</td>
<td>Anisakiasis sp., cutaneous myxoma</td>
<td>California</td>
<td>Keller et al., 2011</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>S. rivoliana</td>
<td>Vibrio ssp., Pseudoalteromonas sp., Photobacterium damsella</td>
<td>Hawaii</td>
<td>Verner-Jeffreys et al., 2006</td>
</tr>
<tr>
<td>S. mazatlan</td>
<td>Epitheliocystis</td>
<td>Ecuador</td>
<td>Venizelos and Benetti, 1996</td>
</tr>
</tbody>
</table>