Chlorambucil plus rituximab with or without maintenance rituximab as first-line treatment for elderly chronic lymphocytic leukemia patients

Robin Foà, 1 Ilaria Del Giudice, 1* Antonio Cuneo, 2 Giovanni Del Poeta, 3 Stefania Ciolli, 4 Francesco Di Raimondo, 5 Francesco Lauria, 6 Emanuele Cencini, 6 Gian Matteo Rigolin, 7 Agostino Cortelezzi, 7 Francesco Nobile, 8 Vincenzo Callea, 8 Maura Brugiatelli, 9 Massimo Massaia, 10 Stefano Molica, 11 Livio Trentin, 12 Rita Rizzi, 13 Giorgina Specchia, 13 Francesca Di Serio, 14 Lorella Orsucci, 15 Achille Ambrosetti, 16 Marco Montillo, 17 Pier Luigi Zinzani, 18 Felicetto Ferrara, 19 Fortunato Morabito, 20 Maria Angela Mura, 20 Silvia Soriani, 21 Nadia Peragine, 1 Simona Tavolaro, 1 Silvia Bonina, 1 Marilisa Marinelli, 1 Maria Stefania De Propris, 1 Irene Della Starza, 1 Alfonso Picciocchi, 22 Alessandra Alietti, 23 Eva Josephine Runggdalier, 23 Enrica Gamba, 23 Francesca Romana Mauro, 1 Sabina Chiarietti, 1 and Anna Guarini1

In a phase II trial, we evaluated chlorambucil and rituximab (CLB-R) as first-line induction treatment with or without R as maintenance for elderly chronic lymphocytic leukemia (CLL) patients. Treatment consisted of eight 28-day cycles of CLB (8 mg/m²/day, days 1–7) and R (day 1 of cycle 3, 375 mg/m²; cycles 4–8, 500 mg/m²). Responders were randomized to 12 8-week doses of R (375 mg/m²) or observation. As per intention-to-treat analysis, 82.4% (95% CI, 74.25–90.46%) of 85 patients achieved an overall response (OR), 16.5% a complete response (CR), 2.4% a CR with incomplete bone marrow recovery. The OR was similar across Binet stages (A 86.4%, B 81.6%, and C 78.6%) and age categories (60–64 years, 92.3%; 65–69, 85.2%; 70–74, 75.0%; ≥ 75, 81.0%). CLB-R was well tolerated. After a median follow-up of 34.2 months, the median progression-free survival (PFS) was 34.7 months (95% CI, 33.1–39.5). TP53 abnormalities, complex karyotype, and low CD20 gene expression predicted lack of response; SF3B1 mutation and BIRC3 disruption low CR rates. IGHV mutations significantly predicted PFS. R maintenance tended towards a better PFS than observation and was safe and most beneficial for patients in partial response and for unmutated IGHV cases. CLB-R represents a promising option for elderly CLL patients.

Introduction

Over 40% of patients with chronic lymphocytic leukemia (CLL) are diagnosed at ≥75 years and over 25% at 65–74 years [1]. Elderly patients have been consistently underrepresented in clinical trials, as age-related comorbidities may violate inclusion criteria [2].

Current standard of care for physically fit patients with untreated CLL is fludarabine, cyclophosphamide, and rituximab (FCR) [3], which induces the longest progression-free survival (PFS) and overall survival (OS) [4]. Although in the CLL8 trial no difference was noted in terms of response and PFS, patients >65 years showed significantly higher rates of grade 3–4 hematologic toxicity and infections compared to younger patients and no advantage in OS due to FCR [4]. Moreover, only 10–11% of patients >70 years entered each arm, underlying that elderly CLL are often ineligible for fludarabine-containing therapies [4,5].

Additional Supporting Information may be found in the online version of this article.

Conflict of interest: RF received compensation by Roche and Celgene as expert testimony and by Roche, BMS, Janssen and ARIAD as member of advisory boards. AC received honoraria from Roche. AA has an employment by Roche as Hematology Medical Manager. EJR has an employment by Roche as Local Safety Responsible. EG has an employment by Roche as Medical Manager. All other authors declare no potential conflict of interest.

R.F. and I.D.G. contributed equally to this work.

*Correspondence to: Ilaria Del Giudice, Division of Hematology, Department of Cellular Biotechnologies and Hematology, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy. E-mail: delgiudice@bcce.uniroma1.it

Contract grant sponsors: Associazione Italiana per la Ricerca sul Cancro, Milan, the Fondazione Buzzi-Straverso, Rome, and Compagnia di San Paolo, Turin (RF).

Received for publication: 18 December 2013; Revised: 30 December 2013; Accepted: 8 January 2014

Published online: 11 January 2014 in Wiley Online Library (wileyonlinelibrary.com).

DOI: 10.1002/ajh.23668

© 2014 Wiley Periodicals, Inc.
Chlorambucil (CLB) remains therefore a widely used first-line treatment for such patients [3], but has limited effectiveness as mono-therapy, with overall response (OR) rates up to 75%, but uncommon complete responses (CRs) and short PFS [6–9]. Management of elderly patients has remained a primary unmet need until recently, when evidence-based therapeutic strategies exploring the association between CLB and anti-CD20 monoclonal antibodies are being reported [10–12].

Several biologic properties of CLL cells allow patient stratification into risk categories that predict PFS and OS [4,13]. The impact of novel gene mutations (NOTCH1, SF3B1, and BIRC3) on CLL treatment outcome is currently under investigation.

We conducted a single-arm, phase II, open-label, multicenter study of CLB plus R (CLB-R) as induction, followed by a randomized maintenance with R or observation (protocol ML21445), to determine if CLB-R is feasible and beneficial as first-line treatment for elderly CLL patients. Treatment outcome has been correlated with biologic parameters, including gene expression profiling (GEP) and novel mutations. Furthermore, we explored the impact of R as maintenance treatment.

Methods

Patients. The study included patients aged >65 years (or 60–65 years not eligible for fludarabine-based regimens) with previously untreated CLL (Binet stage A or B with active disease or stage C), diagnosed according to the International Workshop on CLL (iwCLL) update of the National Cancer Institute (NCI) 1996 guidelines [14]. Exclusion criteria included: history of other malignancies within 2 years prior to study entry or severe cardiac disease, comorbidities requiring >1 month use of systemic corticosteroids, creatinine clearance <50 mL/min, or trans-formation to aggressive B-cell malignancy.

Study design and treatment. This study was designed to assess the efficacy and safety of CLB-R as induction therapy and explore the role of a maintenance phase with R or observation in responders. The primary endpoint was OR at the end of induction. Secondary endpoints included CR, CR with incomplete bone marrow recovery (CRI), and partial response (PR) at the end of the induction and OR, CR, and PR at the end of the maintenance phase, immunophenotypic CR, molecular CR, event-free survival (EFS), PFS, time to new CLL treatment (TTNT) or death, and OS, safety of the induction phase and the R maintenance arm, response and survival endpoints in biologically defined subgroups.

Response assessment was performed 2 months after induction completion. Definition of response was based on iwCLL criteria updating the NCI 1996 guidelines [14]. The first dose of R maintenance was scheduled 3 months after the last induction cycle in randomized patients.

The study was approved by the Institutional Review Board of the coordinating center and by the ethics committees of the 19 participating centers. All patients provided written informed consent. The trial was conducted in respect of the Helsinki Declaration, of Good Clinical Practice, and of applicable national regulations. The study period was from October 2008 to January 2013.

Results

Patients’ characteristics

Ninety-seven patients entered the induction phase (safety population) and 85 received ≥1 dose of R (intention-to-treat, ITT population). Upon induction completion, 34 patients were randomized to R maintenance and 32 to observation (Fig. 1b). Table I summarizes the characteristics of the ITT and the maintenance randomized population.

In the ITT population, the median age was 70 years (range: 61–84). Forty-four patients (51.8%) had ≥1 documented comorbidity at baseline: 6/13 patients aged 60–64 years (46.1%), 12/27 aged 65–69 (44.4%), 11/24 aged 70–74 (45.8%), 12/17 aged 75–79 (70.3%) and 3/4 aged ≥80 (75%).

Cytogenetic analysis using immunostimulatory CpG-oligonucleotide (CpG-ODN) 1666 and interleukin-2 [16] identified 12 cases with complex karyotypes—that is, the presence of three or more cytogenetic aberrations in the same clone—5 of which devoid of 17p/11q−.

Induction efficacy

The OR rate in the ITT population (N = 85) was 82.4% (95% CI, 74.25–90.46%, n = 70), with 16.5% (n = 14) CR, 2.4% (n = 2) CRI, 60.0% (n = 51) PR, and 3.5% (n = 3) nodular PR. The OR rate was similar across Binet stages—A, 86.4%; B, 81.6%; C, 78.6%—and age categories—60–64 years, 92.3%; 65–69 years, 85.2%; 70–74 years, 75.0% ≥75 years, 81.0%. Two of four patients ≥80 years responded to induction. CR was achieved in 27.3% Binet stage A, 10.2% stage B, and 21.4% stage C patients. Upon induction completion, cytometric MRD on 14/16 CR/CRI patients showed a median of 0.02% residual
CLL cells (range 0–4.8%) on peripheral blood (PB), with undetectable CLL in two cases. Bone marrow (BM) cytometric MRD showed a median of 0.34% residual CLL cells (range 0–4.3%), with undetectable CLL in two cases. None achieved a molecular CR.

Survival endpoints

The median follow-up of the ITT population was 34.2 months (range 3.0–43.5). The over 3-year PFS and EFS rates were 42.7% (95% CI, 27.3–57.4%) and 38.2% (95% CI, 24.4–51.9%), respectively (Fig. 2a,b). The median PFS and EFS were 34.7 (95% CI, 33.1–39.5) and 34.5 months (95% CI, 25.2–38.2), respectively. The median OS was not reached.

Induction safety

CLB was used at 56 mg/m² for 8 cycles (total dose: 448 mg/m²). CLB dose reduction occurred in 51/657 cycles (7.8%), mostly for toxicity (40 cycles, 6.1%) and in 7/103 (6.7%), 18/210 (8.5%), 10/168 (5.9%), 14/136 (10.2%), and 2/40 cycles (5.0%) for patients aged 60–64, 65–69, 70–74, 75–79, and ≥80 years, respectively.

In the safety population (N = 97), 76 patients (78.4%) had at least one AE during induction: 84.6% in patients aged 60–64 years, 75% aged 65–69, 80.7% aged 70–74, 70.0% aged 75–79, and 90.0% aged ≥80. Thirty-three of ninety-seven patients (34%) experienced general disorders, the most frequent being pyrexia (12.4%), infusion-related reaction (6.2%), fatigue (5.2%), asthenia (4.1%), and chest pain and influenza-like symptoms (3.1%). Nineteen serious AEs (SAE) occurred in seventeen patients (17.5%) during induction: 30.7% aged 60–64 years, 14.2% aged 65–69, 15.3% aged 70–74, 5% aged 75–79, and 40% aged ≥80. The most common was anemia. Of them, five were CLB-related (herpes zoster infection, erythematous rash, lumbar pain, anemia, and fever of unknown origin) and three CLB-R-related (pleural effusion, anemia, and neutropenia). One fatal SAE during induction (renal failure and paralytic ileus) was not considered.
treatment related. Eight other deaths occurred after induction interruption: three from disease progression/relapse, one each from pulmonary infection, spinocellular carcinoma, anaplastic oligoastrocytoma, respectively, and two from unknown causes.

Maintenance

Among the 66 randomized patients (4 CR/CRi and 30 PR/nPR in the R arm, 12 CR/CRi and 20 PR in the observation arm), the OR rate after maintenance was 55.9% (95% CI, 39.19–72.57%) in the R arm and 34.4% (95% CI, 17.92–50.83%) in the observation arm, respectively (P = 0.079); the CR and PR rate were 29.4% and 26.4% in the R arm, and 18.7% and 12.5% in the observation arm, respectively. Notably, among the 50 PR/nPR patients randomized after induction, the proportion of responders to the R arm (17/30, 56.7%; 5/20, 25%; 1 CR, 5%, 4 PR, 20%) (P = 0.027).

At R maintenance completion, 5/10 CR were evaluated for MRD: one proved MRD− in the PB and BM both immunophenotypically and molecularly, two were MRD− by flow in the PB and MRD+ in the BM; two were MRD+ in both compartments. All of them were in PR after induction (four PR, one nPR). At completion of the observation arm, none of the six CR patients was MRD−: four CR with MRD+ after induction experienced a MRD level increase, one MRD− CR after induction became MRD+, one PR after induction achieved a MRD+ CR.

In the randomized population, the median follow-up was 34.9 months (34.4 and 35.2 months for R and observation arm, respectively). The over 3-year PFS and median PFS rates were 48.6% and 38.2 months for R arm and 31.8% and 34.7 months for observation arm, respectively. There was a trend towards a longer PFS for patients receiving R maintenance (P = 0.07) (Fig. 2c).

In the R maintenance arm, 73.5% patients had at least one AE compared to 56.3% in the observation arm, with no significant difference (P = 0.141); no differential distribution of AE was recorded according to age. No difference in neutropenia (P = 0.101) or infections was recorded between the two arms (Table II). Ten SAE occurred in eight patients (12.1%) during maintenance, with an equal distribution according to arm and only one was R treatment-related (neutropenia). No fatal SAE occurred during maintenance; three patients (one in the R arm for lymphoma, two in the observation arm for disease progression/relapse and second tumor, respectively) died after maintenance interruption.

Biologic characteristics and patients’ outcome

Univariate analysis in the population with response assessment (N = 77) evaluated the impact of prognostic factors on OR (Supporting Information Table SI) and CR (Supporting Information Table SII) achievement after induction and on PFS.

Only TP53 disruption and a new model including complex karyotype within the high-risk FISH category (17p− and 11q−) were significantly associated to a poor response (each P = 0.022). The latter also predicted CR achievement (P = 0.0225). Contrariwise, 11q− was not associated to a poor response (P = 0.403): 13/15 patients (86.7%) achieved a response, including 3 CR and 10 PR.

Immunoglobulin heavy chain variable region gene (IGHV) mutations were the only significant predictor of PFS (P = 0.0011), with unmaturated CLL having a 6.12 (2.070–18.077) higher risk of progression than mutated CLL.

Univariate analysis on the randomized population (N = 66) showed a significant difference in OR according to the IGHV mutation status in the observation arm (OR, 60% for mutated IGHV CLL vs. 12.5% for IGHV mutated cases, P = 0.009) but not in the R arm (OR, 69.2% for mutated IGHV CLL vs. 45.0% for unmaturated IGHV cases, P = 0.284), and according to the maintenance arm among unmaturated IGHV patients (P = 0.067) but not among mutated IGHV CLL (P = 0.705). Consistently, a significantly different PFS within unmaturated IGHV patients according to the maintenance arm was found (P = 0.012): the median PFS was 38.2 months (95% CI, 30.4–39.5) and 22.8 (95% CI, 20.1–33.1), respectively, for R and the observation arm.

A similar trend was observed for +12 CLL (OR, 66.67% in the R arm vs. 14.3% in the observation arm, P = 0.06). On multivariate analysis on the randomized population, unmaturated IGHV independently predicted a significantly shorter PFS (P = 0.0048) and TTNT (P = 0.0189). Maintenance arm and +12 showed a trend towards significance for PFS (P = 0.0747 and P = 0.0512, respectively).

Novel gene mutations and patients’ outcome

Novel gene mutations were evaluable in 74 cases with response assessment. Nine patients were NOTCH1 mutated: all responded to induction and 44% achieved a CR, with no significant difference with wild-type cases. Nine showed SF3B1 mutations: 8/9 responded, not differently from wild-type cases; however, only 1/9 (11%) SF3B1 mutated cases obtained a CR, as opposed to 14/65 (21.5%) wild-type cases. Similarly, 7/8 BIRC3 mutated/deleted patients had an OR, with only 1 CR. For each mutation, PFS was assessed stratifying patients according to the presence of: (1) one of the novel mutations; (2) TP53 disruption; (3) no mutations/disruptions. Only SF3B1 mutations showed a trend towards a shorter PFS (P = 0.0761).

Neither in the R or observation arm, a significant impact on response was recorded according to the presence of mutations in 65 evaluable cases.

GEP and response to therapy

The GEP of 62 patients (CR/CRi = 16, PR = 41, no response [NR] = 5, including SD = 2 and PD = 3) was analyzed: samples did...
Table II. Treatment Emergent AE During Induction and Maintenance

<table>
<thead>
<tr>
<th>Adverse events</th>
<th>Grade 3-4</th>
<th>Any grade</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patients, %</td>
<td>Patients, %</td>
<td>Patients, %</td>
</tr>
<tr>
<td>Hematologic system disorders</td>
<td>47 48.5</td>
<td>3 3.1</td>
<td>9 9.4</td>
</tr>
<tr>
<td>Anemia</td>
<td>15 15.5</td>
<td>3 3.1</td>
<td>1 1.0</td>
</tr>
<tr>
<td>Hemorrhagic anemia</td>
<td>5 5.2</td>
<td>1 1.0</td>
<td>1 3.1</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>52 53.0</td>
<td>19 19.6</td>
<td>5 14.7</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>32 33.0</td>
<td>19 19.6</td>
<td>5 14.7</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>16 16.5</td>
<td>1 1.0</td>
<td>1 3.1</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>6 6.2</td>
<td>2 2.1</td>
<td>1 3.1</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>17 17.5</td>
<td>2 2.1</td>
<td>3 8.8</td>
</tr>
<tr>
<td>General disorders and infusion-related side effects</td>
<td>33 34.0</td>
<td>31 31.8</td>
<td>4 12.5</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>2 2.1</td>
<td>1 1.0</td>
<td>1 3.1</td>
</tr>
<tr>
<td>Infections</td>
<td>15 15.5</td>
<td>1 1.0</td>
<td>8 25.0</td>
</tr>
</tbody>
</table>

Only AE judged clinically relevant and/or more frequent within safety population were selected.

In our study, AEs were generally hematologic, with neutropenia being the most common and affecting approximately one-third of patients in induction. Infections occurred in 15.5% of patients, although rarely of grade 3–4 (1%). Thus, CLB-R toxicity compares favorably with other trials using CLB alone or with R [6–8,11,23]. Infusion-related side effects were limited.

The role of maintenance in CLL is still an open issue, so far investigated by the use of monoclonal antibodies or lenalidomide. As in other chronic B-cell malignancies, the use of R after induction chemotherapy suggests a benefit in sustaining the response duration in CLL patients [28–31]. Most of the published studies used R after fludarabine-based regimens; the most recent one after FCR plus mitoxantrone, with a remarkable efficacy but a relevant hematologic

Discussion

The primary objective of this study was to evaluate the efficacy of CLB-R induction on OR achievement in elderly CLL patients. The trial provided very satisfactory results: the response rate—82.4% OR, including 16.5% CR and 2.4% CRi, with cytometric MRD—in 14% of CR cases—compares favorably with the 31–55% OR rates of trials using single-agent CLB at comparable doses [7,8,23], the 72% OR of the LRF CLL4 trial, using higher doses of single-agent CLB [6] and is supported by a similar British trial using CLB-R (OR 82%) [11]. Furthermore, in our study, PFS (34.7 months) is higher than that reported in trials using single-agent CLB (8.3–18 months) [6–8,12,23]. A preliminary analysis of the German CLL11 trial, comparing CLB alone, obinutuzumab + CLB, and CLB-R in untreated CLL patients with comorbidities, has been released [12]. The CLB-R arm provides inferior results (OR 65%, CR 7%, PFS 15.2 months) compared to ours, probably due to the lower CLB dosage/cycle and number of cycles. Interestingly, our OR and EFS results are also not inferior to those achieved by bendamustine plus R, although with less CR, and with a remarkably lower grade 3–4 hematologic toxicity [24].

Even though these comparisons have strong limitations due to different age inclusion criteria, CLB dosage, and treatment duration [9], it is worth noting that our study included patients with a median age of 70 years and is the only one including the maintenance with R [25–27].

At variance from fludarabine-based regimens, CLB-R was well tolerated: over three-quarter of patients completed all 8 induction cycles, regardless of age. CLB dose reduction was needed in 7.8% of cycles, due to toxicity in 6.1%.

In our study, AEs were generally hematologic, with neutropenia being the most common and affecting approximately one-third of patients in induction. Infections occurred in 15.5% of patients, although rarely of grade 3–4 (1%). Thus, CLB-R toxicity compares favorably with other trials using CLB alone or with R [6–8,11,23]. Infusion-related side effects were limited.

The role of maintenance in CLL is still an open issue, so far investigated by the use of monoclonal antibodies or lenalidomide. As in other chronic B-cell malignancies, the use of R after induction chemotherapy suggests a benefit in sustaining the response duration in CLL patients [28–31]. Most of the published studies used R after fludarabine-based regimens; the most recent one after FCR plus mitoxantrone, with a remarkable efficacy but a relevant hematologic
and infectious toxicity [31]. Our study is the first to explore R maintenance after CLB-R induction. Although we could not formally demonstrate a clear advantage of R maintenance in responders after CLB-R induction, as maintenance was not the primary objective of the study, a better PFS was recorded compared to the control arm. In particular, PR/NPR patients after induction completion benefited the most from R maintenance in terms of response improvement. Moreover, R maintenance determined a MRD clearance in induction responders in contrast to the observation arm, where MRD levels increased in all patients.

Remarkably, under R maintenance AE, SAE, neutropenia, or infections were as frequent as in the observation arm. Infections were the most common AE during maintenance, affecting one-fourth of patients, although never of grade 3–4. This supports the feasibility of maintenance strategies in elderly and/or unfit patients provided that the induction is not intensive and/or immunosuppressive [31].

Among several biologic markers, most had a limited value in predicting response to CLB-R, with the exception of genetic abnormalities. 17p−/TP53 mutations and complex karyotype were significantly associated to a poor response and CR rate. Contrarily, our data suggest that an induction therapy combining R and an alkylating agent may be beneficial for 11q− patients who are elderly and/or unfit for FCR [32].

Neither NOTCH1, SF3B1, or BIRC3 mutations impacted on OR after induction, in line with other reports [33,34]; however, SF3B1 mutations and BIRC3 disruption were rarely detected in CR patients.

The only biologic marker significantly associated to a worse PFS was an unmutated IGHV status, although this did not impact on response to induction. Unmutated IGHV independently predicted a shorter PFS and TTNT also among randomized patients. However, the significant difference in response and PFS according to the IGHV mutational status found in the observation arm but not in the R arm suggests a benefit for unmutated IGHV in receiving R maintenance.

GEP may be useful in predicting response to induction and to R maintenance. NR patients in induction displayed a distinct signature from that of CR patients, with the concomitant downmodulation of pro-apoptotic and upmodulation of anti-apoptotic and pro-proliferative genes. Of interest is the overexpression of KRAS and NRAS [35], and the downregulation of the CD20 gene in NR patients. The latter observation, in line with intr [36] and in vivo data [31], suggests that higher doses or new anti-CD20 antibodies may be beneficial in biologically identified subsets of patients.

In conclusion, this study shows that: (i) CLB-R induction is an active first-line treatment for elderly CLL patients, regardless of age and disease stage; (ii) the toxicity is limited and manageable, regardless of age; (iii) PFS is promising and higher than that reported with CLB alone; (iv) CLB-R seems active also among 11q− patients; (v) NR patients may be identified by TP53 abnormalities/simple karyotype, a distinctive GEP, and low CD20 gene expression; (vi) IGHV mutations strongly influence PFS; (vii) low CR rates are recorded among SF3B1 mutated and BIRC3 disrupted cases. Moreover, we suggest that R maintenance is doable in elderly CLL patients and tends to improve PFS in patients responders to a CLB-R induction, not increasing toxicity compared to observation in terms of AE, SAE, neutropenia, or infections. It seems beneficial mostly in PR/NPR patients after induction in terms of response improvement and in unmutated IGHV patients. Therefore, we support the need of prospective phase III clinical trials to conclusively define the role of maintenance in maintaining response and prolonging survival also in elderly CLL patients. Rituximab, ofatumumab, and obinutuzumab are the candidates that deserve a comparison in this context.

Acknowledgments

Paola Canese was the country hematology manager (Roche Italia S.p.A.) for this study. Sara Colli at Quintiles gave support for biostatistical analyses. Michela Alecchi at Quintiles was the Clinical Research Specialist for this study. Institutional Review Board Approval: Ethical Committee n°1438 on 29/05/2008. Registry of Clinical Trials: www.clinicaltrialsregister.eu EUDRACT NUMBER 2008-001612-20.

References

