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ABSTRACT
We perform a linear analysis of the stability of a magnetized relativistic non-rotating cylindrical
flow in the approximation of zero thermal pressure, considering only the |m| = 1 mode. We
find that there are two modes of instability: Kelvin–Helmholtz and current driven. The Kelvin–
Helmholtz mode is found at low magnetizations and its growth rate depends very weakly on
the pitch parameter. The current-driven modes are found at high magnetizations and the value
of the growth rate and the wavenumber of the maximum increase as we decrease the pitch
parameter. In the relativistic regime the current-driven mode is split in two branches, the branch
at high wavenumbers is characterized by the eigenfunction concentrated in the jet core; the
branch at low wavenumbers is instead characterized by the eigenfunction that extends outside
the jet velocity shear region.
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1 IN T RO D U C T I O N

The formation and propagation of astrophysical jets are strongly
affected by plasma instabilities, whose study is therefore of fun-
damental importance for understanding their dynamics and their
associated phenomenology. In jets there are several possible dif-
ferent kinds of instability, among them the most studied are the
Kelvin–Helmholtz instability (KHI) driven by the velocity shear
between the jet and the ambient medium and the current-driven
instability (CDI) associated with a longitudinal current and there-
fore with the toroidal component of magnetic field. Since the most
promising models for the acceleration and collimation of jets in-
volve the presence of a magnetic field with footpoints anchored to
a rotating object (an accretion disc or a spinning star or black hole),
the presence of a toroidal field component is a natural consequence
and CDI may play an important role in the jet propagation. Among
CDI, the |m| = 1 kink mode is the most effective, leading to a helical
displacement of the whole jet body, and for this reason is the only
one we will consider in this paper. Recent numerical simulations
have shown the development of such instabilities both in Newtonian
(Nakamura & Meier 2004; Moll, Spruit & Obergaulinger 2008) and
in relativistic (McKinney & Blandford 2009; Mignone et al. 2010)
jets. An important step towards a better understanding of simula-
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tion results is a linear analysis of the instabilities, that is still largely
missing for the relativistic magnetohydrodynamic (MHD) regime.

KHI have been extensively studied in several different config-
urations in the Newtonian (see e.g. Bodo et al. 1989; Birkinshaw
1991; Hardee et al. 1992; Bodo et al. 1996; Hardee 2006) and rel-
ativistic (see e.g. Ferrari, Trussoni & Zaninetti 1978; Hardee 1979;
Urpin 2002; Perucho et al. 2004, 2010) cases, but very few lin-
ear analyses have been presented for a relativistic magnetized jet
(Mizuno, Hardee & Nishikawa 2007). Similarly, CDI have been
widely studied in the Newtonian limit (see e.g. Appl & Camenzind
1992; Appl 1996; Begelman 1998; Appl, Lery & Baty 2000; Baty
& Keppens 2002); however, for the relativistic MHD case, only
the force-free limit has been considered (Istomin & Pariev 1994,
1996; Lyubarskii 1999; Tomimatsu, Matsuoka & Takahashi 2001;
Narayan, Li & Tchekhovskoy 2009). Istomin & Pariev (1994, 1996)
have considered the case in which the longitudinal magnetic field is
constant, showing that in this case the jet is stable, on the contrary
Lyubarskii (1999) showed that jets with longitudinal magnetic field
decreasing outward can be unstable. Tomimatsu et al. (2001) finally
derived a general necessary condition for instability.

The force-free limit is valid when the energy density of electro-
magnetic fields is much larger than the energy density of matter, i.e.
when the jet energy flux is mainly in the form of Poynting flux. Ac-
celeration models predict that jets start being Poynting dominated
and progressively undergo a transition to a matter-dominated state,
but how fast the transition occurs is uncertain. From the observa-
tional point of view, the evidence is that, above the parsec scale, jets
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cannot be Poynting dominated (Sikora et al. 2005; Celotti & Ghis-
ellini 2008). On the other hand, it has been suggested (Sikora et al.
2005) that jet instabilities may play a role in this conversion and
that blazar activity could be linked to the development of such insta-
bilities either through shock formation or through direct magnetic
energy dissipation processes. These considerations suggest that it
is very important to go beyond the force-free limit in the instability
analysis and this is exactly the aim of the present paper in which
we will analyse the linear stability properties of a cylindrical mag-
netized relativistic flow, taking into account the effects of matter
inertia, but still neglecting thermal pressure. Since the equilibrium
configurations of the jet may be quite complex, with many possible
sources of instabilities, like the longitudinal jet velocity, the toroidal
field and the jet rotation, we will not start from a full configuration
where all the above elements are present, but from a simpler case
where one of the above elements, namely rotation, is absent. The
additional effects introduced by rotation will then be examined in a
following paper. In Section 2 we will describe the physical problem,
the relevant equations, and the general equilibrium configuration,
while in Section 3 we will derive the linearized equations and de-
scribe the procedure for finding the normal modes. In Section 4 we
will present the results of our analysis for the non-rotating case,
first for a static configuration and then for a moving jet. Finally in
Section 5 we will summarize our findings.

2 PRO BLEM D ESCRIPTION

We study the stability of a cold (zero pressure) relativistic mag-
netized cylindrical flow. The relevant equations are continuity and
momentum coupled with Maxwell equations:

∂

∂t
(γρ) + ∇ · (γρv) = 0 , (1)

γρ
∂

∂t
(γ v) + γρ(v · ∇)(γ v) = J × B + (∇ · E)E

4π
, (2)

∂B
∂t

= −∇ × E , (3)

∂E
∂t

= ∇ × B − 4π J , (4)

where ρ is the proper density, γ is the Lorentz factor, and v, B, E,
J are, respectively, the velocity, magnetic field, electric field and
current 3-vectors. The units are chosen so that the speed of light
is c = 1; we also remark that in the following a factor of

√
4π

will be reabsorbed in the definitions of E and B. The first step in
the stability analysis is to define an equilibrium state satisfying the
stationary form of equations (1)–(4) and this will be done in the
next subsection.

2.1 Equilibrium configuration

We adopt a cylindrical system of coordinates (r, ϕ, z) (with versors
er , eϕ, ez) and seek for axisymmetric steady-state solutions for a
relativistic magnetized jet, i.e. ∂t = ∂ϕ = ∂z = 0. We assume that
the jet propagates in the vertical (z) direction and the magnetic field
configuration consists of a vertical (poloidal) component Bz and a
toroidal component Bϕ and can be expressed as

B = Bϕ(r)eϕ + Bz(r)ez . (5)

The magnetic field configuration can be characterized by the pitch
parameter

P = rBz

Bϕ

. (6)

From the stationarity condition, the continuity equation and the
independence of vr on z and ϕ, we get vr = 0; we obtain that the
velocity can then be written as

v = vz(r)ez + vϕ(r)eϕ = κ(r)B + �(r)reϕ , (7)

where vϕ is the fluid toroidal velocity and � is the angular velocity
of field lines and they are related by

� = vϕ

r
− vzBϕ

rBz

= vϕ

r
− vz

P
. (8)

The electric field is always directed radially and can be expressed
as

E = −�rBzer . (9)

The only remaining non-trivial equation is given by the radial
component of the momentum equation (2) which simplifies to

ργ 2v2
ϕ = 1

2r

d(r2H 2)

dr
+ r

2

dB2
z

dr
, (10)

where H 2 = B2
ϕ − E2

r . In the non-relativistic limit H reduces to
Bϕ and the equilibrium condition acquires the classical Newtonian
form

ρv2
ϕ = 1

2r

d
(
r2B2

ϕ

)
dr

+ r

2

dB2
z

dr
. (11)

Equations (10) or (11) leave the freedom of choosing the radial
profiles of all flow variables but one and then solve for the remaining
profile. We begin by prescribing the profiles of the proper density
and Lorentz factor that well describe a jet configuration, with the
velocity and density variations concentrated inside the jet radius rj

ρ(r) = η + 1 − η

cosh(r/rj)6
, (12)

γz(r) = 1 + γc − 1

cosh(r/rj)6
, (13)

where η is the ambient/jet density contrast, γ z(r) is the Lorentz
factor relative to the z component of the velocity only, while
γc = 1/

√
1 − v2

c is the Lorentz factor on the axis where the vertical
flow velocity is vz(0) = vc. From now on, we will use the subscript
c to denote values at r = 0.

We note that, in the Newtonian case, the presence of a longitudinal
velocity has no effect on the radial equilibrium equation (11), while
it changes the relativistic equation (10) modifying the centrifugal
term.

In the Newtonian limit, it is then customary to prescribe the profile
of the azimuthal field Bϕ and this choice is more arbitrary since
we have no direct information about the magnetic configuration in
astrophysical jets. The choice of the Bϕ distribution is equivalent
to a choice of the distribution of the longitudinal component of the
current and also determines the behaviour of the pitch parameter
P(r), that is important for the stability properties. In principle, one
can then have several equilibria characterized by different forms of
the current distribution, that can be more or less concentrated, can
peak on the axis or at the jet boundary, and can close in different
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ways (see e.g. Appl et al. 2000; Bonanno & Urpin 2008, 2011). In
this limit, we start by considering the azimuthal field profile

B2
ϕ = B2

ϕc

(r/rj)2

[
1 − exp

(
− r4

a4

)]
, (14)

where a is the magnetization radius and Bϕc determines the maxi-
mum field strength. This profile corresponds to a current distribution
peaked on the jet axis and, choosing a < rj, concentrated inside the
jet. In addition, one can assume that the current closes at very large
distances from the jet. In the relativistic limit the most natural gen-
eralization is to prescribe in a similar way the behaviour of H

H 2 = H 2
c

(r/rj)2

[
1 − exp

(
− r4

a4

)]
. (15)

We observe that, in the absence of rotation, H represents the az-
imuthal field strength measured in the proper frame. Prescribing
the profile of H instead of Bϕ modifies the current profile in the
laboratory frame, introducing a return current in the region of the
velocity shear and this has consequences for the stability properties
as it will be discussed below.

Furthermore, the equilibrium configuration may be modified by
the presence of rotations to different degrees: in one extreme case
the gradient of r2H2 in equation (10) [or the gradient of r2B2

ϕ in
equation (11)] is exactly balanced by the centrifugal force and Bz is
constant, in the other extreme it is balanced by the gradient of B2

z .
This suggests to introduce, more generally, a parameter α ∈ [0, 1]
so that the equilibrium poloidal magnetic field is given by

B2
z = B2

zc − (1 − α)
H 2

c

√
π

(a/rj)2
erf

(
r2

a2

)
(16)

where erf is the error function, α = 0 corresponds to the absence of
rotation, while α = 1 corresponds to maximum rotation. Introducing
the expression for Bz given by equation (16) in equation (10) we
can get the azimuthal velocity from

2ργ 2v2
ϕ = α

r

d(r2H 2)

dr
. (17)

Finally, the azimuthal field is obtained from the definition of H2

using Er = −(vϕBz − vzBϕ). This yields a quadratic equation in Bϕ

with solution

Bϕ =
−vϕvzBz ∓

√
v2

ϕB2
z + H 2

(
1 − v2

z

)
1 − v2

z

. (18)

Here we consider the negative branch because it guarantees that Bϕ

and vϕ have opposite signs, as suggested by acceleration models.
Thus, in our model the radial profile of the pitch parameter, equa-
tion (6), is always negative. We choose to control the magnetic field
configuration by specifying the value of the pitch on the axis Pc and
the ratio between the energy density of the matter and the magnetic
energy density M2

a , where

Pc ≡
∣∣∣∣ rBz

Bϕ

∣∣∣∣
r=0

, M2
a ≡

(
ργ 2

c

)〈
B2

〉 , (19)

and
〈

B2
〉

represents the average across the beam:

〈
B2

〉 =
∫ rj

0

(
B2

z + B2
ϕ

)
r dr∫ rj

0 r dr
. (20)

We note that Pc > 0 by construction although the radial profile of
the pitch parameter (equation 6) using the negative branch of equa-
tion (18) in the definition of Bϕ is always negative. The constants

B2
zc and H 2

c appearing in the above equations can be found in terms
of Pc and Ma from the simultaneous solution of the two expressions
given in equation (19), together with (20). In particular, from the
definition of the pitch parameter, after some algebra we find (in the
r → 0 limit)

a4B2
zc = H 2

c P 2
c

1 − (HcPc

√
ζ − vz)2

(21)

where ζ = 2α/(γ 2
c ρa4). In practice, equation (21) is used to com-

pute B2
zc for trial values of H 2

c until the prescribed value of magnetic
energy is satisfied.

Summarizing, our equilibrium configuration depends on the five
parameters η, γ c, α, Pc and M2

a specifying, respectively, the jet
density contrast, bulk flow velocity, strength of centrifugal force,
magnetic pitch and the ratio between the energy density of the
matter and the magnetic energy density.

3 L I N E A R I Z E D E QUAT I O N S

Let us consider small perturbations ρ1, v1, B1, E1 to the equilib-
rium state described above, which hereafter will be identified by
a zero subscript. The linearized continuity, momentum, induction
equations and the ideal MHD conditions are

∂

∂t
(γ0ρ1 + γ1ρ0) + ∇ · (γ0v0ρ1 + γ1v0ρ0 + γ0ρ0v1) = 0 , (22)

ρ0γ0

(
∂

∂t
+ v0 · ∇

)
(γ1v0 + γ0v1) + ρ0(γ1v0 + γ0v1) · ∇(γ0v0)

+ ρ1γ0v0 · ∇(γ0v0) = (∇ × B0) × B1 + (∇ × B1) × B0

+ B0 × ∂E1

∂t
+ E1(∇ · E0) + E0(∇ · E1) , (23)

∂B1

∂t
= −∇ × E1 , (24)

E1 = −v1 × B0 − v0 × B1 . (25)

Assuming now the perturbations to be of the form ∝
exp (iωt − imϕ − ikz), after lengthy algebraic manipulations de-
scribed in Appendix A, we arrive at a system of two first order
differential equations in the radial coordinate for the two basic
variables – the radial displacement ξ 1r and the perturbed electro-
magnetic pressure 
1 defined as

ξ1r = −iv1r /ω̃ , (26)

and


1 = B0 · B1 − E0 · E1 = B0ϕB1ϕ + B0zB1z − E0rE1r . (27)

The system of equations can then be written as

D
dξ1r

dr
=

(
C1 + C2 − Dk′

B

kB

− D

r

)
ξ1r − C3
1 (28)

D
d
1

dr
=

[
A1D − ρ0γ

2
0 v2

0ϕ

r

(
C1 + C2 − Dk′

B

kB

+ C4

r
+ C5

)]
ξ1r

+
[

1

r

(
ρ0γ

2
0 v2

0ϕC3 − 2D + C6

r
+ C7

)]

1 (29)
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where

D = (σ + 1)B2
0 ω̃2 + σkB

[
2ω̃(v0 · B0) − kB

γ 2
0

]
, (30)

σ = B2
0

ρ0γ
2
0

, ω̃ ≡ ω − m

r
v0ϕ − kv0z, kB ≡ m

r
B0ϕ + kB0z .

(31)

The quantities A1, C1, C2, C3, C4, C5, C6, C7 depend on the chosen
profiles of the equilibrium solution and are given in Appendix B.
These two equations together with the appropriate boundary con-
ditions represent an eigenvalue problem, where ω is the eigenvalue
(we observe that we here adopt a temporal approach to the stabil-
ity analysis). We have instability when ω has a negative imaginary
part.

The domain of integration for equations (28) and (29) covers the
interval from 0 to ∞, so we have to specify the boundary conditions
at r = 0 and for r → ∞. On the axis at r = 0 the equations are singu-
lar but the solutions have to be regular while at infinity the solutions
have to decay and no incoming wave is allowed (Sommerfeld con-
dition). For finding the eigenvalue we use a shooting method with a
complex secant root finder. The numerical integration cannot start
at r = 0 (because of the singularity), so we start at a small distance
from the origin where the solution is obtained through a series ex-
pansion of the equations described in Appendix C. Similarly, we
start a backward integration from a sufficiently large radius, where
the asymptotic solution is obtained as described in Appendix D
and then we match the two numerical solutions at an intermedi-
ate radius. Furthermore, we have to consider that equations (28)
and (29) may have singular points, that arise in the following
cases:

(i) when the Doppler shifted frequency, ω̃, appearing in the de-
nominators in A1 and A2, becomes zero at some r = rc, ω̃(rc) = 0.
This is a well-known corotation singularity, when the phase speed
of a wave perturbation coincides with the basic flow velocity at
r = rc and corresponds to resonant interaction between waves and
the background jet flow. This corotation singularity is a physical
one.

(ii) when the determinant becomes zero at some r = rA,
D(rA) = 0. The latter condition is a quadratic equation with re-
spect to ω̃ that gives

ω̃ = kB

γ 2
0

· 1

(v0 · B0) ±
√

(v0 · B0)2 + B2
0 +ρ0γ 2

0
γ 2

0

, (32)

from which we derive a phase speed equal to that of a relativistic
Alfvén wave as it is given by equation 28 of Keppens & Meliani
(2008) and by Istomin & Pariev (1996).

vph = n̂ · v0 + n̂ · B0

γ 2
0

1

(v0 · B0) ± √
ρ0 + 2pmag

, (33)

where n̂ = (k2 + m2/r2)−1(m/r, k) is the versor of the wave vector
and

pmag = B2
0

γ 2
0

+ (v0 · B0)2 (34)

is the total pressure. In other words, the above determinant is zero
and therefore equations (28) and (29) have singular, or resonant
points at r = rA, where the phase speed of the wave perturbation
coincides with that of relativistic Alfvén waves. Like the corotation

singularity, this singularity is also physical, and results from the
resonant interaction of perturbations with relativistic Alfvén waves.

Istomin & Pariev (1996) have discussed the proper way to handle
these singularities, however, since singular points are found only for
real values of ω and since we are interested in unstable modes and
therefore complex values of ω, we can assume that our integration
will always avoid singular points.

4 R ESULTS

Before discussing in detail our results, we recall in Section 4.1 the
units we will use, the full set of parameters defining our problem
and which ones will be investigated in more detail in the present
work. We then preliminarly examine the static case in Section 4.2,
the full case in Section 4.3, and finally a more detailed analysis of
the CDI is performed in Section 4.4.

4.1 Parameters and units

As discussed in Section 2.1, the basic equilibrium state is determined
by five parameters: the jet density contrast η, the bulk flow velocity
which is derived from γ c, the rotation parameter α, the pitch on the
axis Pc and the ratio M2

a between the energy density of the matter
and the magnetic energy density. We notice that our parameter M2

a

is the inverse of the magnetization parameter often used in the
literature. In the present paper, as already discussed, we consider

Figure 1. Normalized plots of the growth rate as a function of the wavenum-
ber for a static column and for different values of the pitch parameter Pc.
The values of Pc for the different curves are reported in the legend and, for
comparison, in the top panel, we plot also the case of a configuration with
constant pitch. In the bottom panel we show how well the scaling given by
equation (36) reproduces our results, a significant deviation can be observed
only for Pc/a = 1.66.
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Figure 2. Plot of the pitch profile as a function of r/a. The different curves
refer to different values of the parameter Pc/a, whose values are reported in
the legend.

only the case without rotation, so α is kept fixed to 0, and we also
consider jets with density equal to that of the ambient medium, so
η is kept fixed to 1. We focus our analysis on the dependence on
the three parameters γ c, Pc and Ma. In the following discussion,
instead of Ma we will make use of the quantity Mavc which, in the
Newtonian limit, corresponds to the ratio between the jet speed and
the Alfvén speed, while in the relativistic limit reduces to Ma. The
unit of velocity is the light speed c and we choose as unit of length
the jet radius rj, so, unless otherwise specified, the growth rate is
expressed in units of c/rj. An additional parameter is represented
by the width a of the current distribution, this parameter, unless
otherwise specified, is kept fixed to a = 0.6. Of course, in the static
case, the jet radius has no significance and is an arbitrary measure;
however we keep it as the unit of length for consistency with the
general case.

4.2 The static case, vz = 0

Static columns in the Newtonian case have been already studied
by many authors (see e.g. Appl et al. 2000; Bonanno & Urpin

2008, 2011) and differ one another in many respects, but mainly for
the parameter range considered and for the equilibrium magnetic
field configuration. In particular the studies by Bonanno & Urpin
(2008) consider cases with subthermal magnetic field strength. In
the present work, conversely, we neglect the pressure term and our
regime of investigation addresses the case of suprathermal field
strengths and can be compared with that of Appl et al. (2000), that
is performed in the same regime.

In the study of CDI, a very important role is played by resonant
surfaces, i.e. the surfaces where the condition k · B = 0 is satisfied.
On these surfaces, in fact, the stabilizing effect of magnetic tension
is absent and these regions are therefore more prone to instability.
The resonant condition can be rewritten as

k · B = kBz + m

r
Bφ = kP + m = 0 . (35)

This condition can be verified only for positive m and, for a constant
pitch distribution like that used by Appl et al. (2000), marks the
stability boundary: wavenumbers larger than this critical limit are
stable, while smaller wavenumbers are unstable. This behaviour can
be observed in the top panel of Fig. 1, where we plot the growth
rate as a function of the wavenumber for the case with m = 1 for
the constant pitch configuration (black curve, top panel) and for our
equilibrium model (coloured lines). In the top panel we measure the
wavenumber in units of 1/Pc and the growth rate in units of vA/Pc.
In these units, the constant pitch solutions of Appl et al. (2000)
are all represented by the single black curve independently of the
pitch value. Instability is present for all wavenumbers k < 1/Pc (i.e.
for wavenumbers lower than the threshold given by the resonance
condition equation 35) and, for k → 0, the growth rate decreases as
a power law. We note that, while we employ radiation condition at
infinity, Appl et al. (2000) in most of their calculations made use
of boundary conditions consistent with a rigid wall set at a finite
radial distance. This condition introduces a new scale and restricts
the unstable range in wavenumbers, with a small wavenumber cut-
off. Our equilibria are characterized by two length scales: the pitch
value on the axis Pc and the width of the current distribution a and
therefore we have the additional parameter Pc/a. The pitch profile

Figure 3. Distribution of the growth rate as a function of the wavenumber and of Mavc for the case with γ c = 1.01 and Pc = 105. As discussed in the text,
the results for the two cases m = 1 and m = −1 coincide. In the left-hand panel we have the KH ordinary mode, while in the right-hand panel we have the first
reflected KH mode. The levels are equispaced in logarithmic scale from 10−5 to the maximum value of the growth rate.
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Figure 4. Distribution of the growth rate as a function of the wavenumber and of Mavc for the case with γ c = 1.01 and Pc = 10. The top panels refer to
m = 1 while the bottom panels refer to m = −1. In the left panels, for high values of Mavc, we have the ordinary mode of the KH instability, for low values of
Mavc the case m = 1 (top) shows the CDI, while the case m = −1 (bottom) is stable. In the right panels, we have the first reflected KH mode. The levels are
equispaced in logarithmic scale from 10−5 to the maximum value of the growth rate.

P(r) plays a fundamental role for the stability properties and, for
our equilibrium configurations, it is shown in Fig. 2 for different
values of Pc/a. It is always characterized by an increase at large
radii, owing to the confinement of the current inside r < a, while
in the central region we can distinguish two regimes: for Pc/a � 1
the pitch is constant up to r/a = 1 while for Pc/a ∼ 1 it decreases
to a minimum value at r/a ∼ 1.5 immediately after the inner flat
region. Furthermore, there exists a critical value of Pc/a = 1.33
below which equilibrium configurations are not possible. Below this
critical value, the equilibrium condition would require a negative
value of B2

z meaning that the longitudinal field pressure gradient is
no longer able to balance the inward force of the azimuthal magnetic
field. The behaviour of the growth rate in the first regime (Pc/a � 1)
has a form similar to the constant pitch situation, but its value
decreases as the parameter Pc/a increases, as it is shown in the top
panel of Fig. 1. In the same limit the growth rate takes the asymptotic

form

Im(ω) ∼ vA

Pc

(
a

Pc

)2

f (kPc) , (36)

where the function f(kPc) is independent from Pc/a. The validity
of the previous scaling law for any value of Pc/a is demonstrated
in the bottom panel of Fig. 1, where we plot Im(ω)P 3

c /a2vA as a
function of kPc. The curves in the figures, therefore, represent the
function f(kPc) and should be independent from Pc/a. In fact, the
purple (Pc/a = 16.66, a = 0.6), blue (Pc/a = 8.33, a = 0.6) and
orange (Pc/a = 25, a = 0.4) curves are overimposed and almost
coincident with the green curve corresponding to Pc/a = 2.66,
a = 0.6. A significant deviation from the above scaling is observed
only for Pc/a = 1.66, as shown by the red curve. In this case,
as discussed above, we have a region of decreasing pitch whose
effect is to widen the instability range to larger values of kPc thus
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Figure 5. Distribution of the growth rate as a function of the wavenumber and of Mavc for the case with γ c = 1.01 and Pc = 1. The top panels refer to
m = 1 while the bottom panels refer to m = −1. In the left panels, for high values of Mavc, we have the ordinary mode of the KH instability, for low values of
Mavc the case m = 1 (top) shows the CDI, while the case m = −1 (bottom) is stable. In the right panels we have the first reflected KH mode. The levels are
equispaced in logarithmic scale from 10−5 to the maximum value of the growth rate.

increasing the growth rate above the value predicted by the scaling
law and moving the maximum towards somewhat larger values
of kPc.

For a static configuration, relativistic effects are introduced only
by increasing the magnetic field strength and the previous results
shown in Fig. 1 remain the same provided the Alfvén velocity is
replaced by the correct relativistic expression

vA = |B|√
w + B2

, (37)

where w is the gas enthalpy.

4.3 The case with vz �= 0

We start the discussion of the dynamic case considering a flow mov-
ing at γ c = 1.01, corresponding to a non-relativistic vc ∼ 0.14. In
this case the results obtained in the Newtonian limit coincide al-

most exactly with those obtained with the full relativistic treatment.
An overview of the mode structure can be gained by looking at
Figs 3–5, where we show the behaviour of the growth rate as a
function of the wavenumber k and of Mavc for Pc = 105, Pc = 10
and Pc = 1, respectively. Figs 4 and 5 present the results for m = 1 in
the upper panels and for m = −1 in the lower panels, while in Fig. 3
the system has no way to distinguish between m = 1 and m = −1
and the results for the two modes are coincident. As mentioned, we
now expect the appearance of two types of instability, namely, KHI
and CDI. Moreover, in the case of a purely longitudinal field, CDI
are absent and only KHI may be effective. This is the case of Fig. 3,
where we show the results for Pc = 105, i.e. for a magnetic field
almost exactly longitudinal. The two panels in the figure refer to the
ordinary mode and to the first reflected mode (for a discussion on
reflected modes, see e.g. Bodo et al. 1989). From the figure, we can
see that the jet is stable below Mavc ∼ vc/vA ∼ 2, the maximum
growth rate for the ordinary mode is Im(ωmax ) ∼ 0.01 and it is found
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Figure 6. Distribution of the growth rate as a function of the wavenumber and of Mavc for the case with γ c = 10 and Pc = 104 (corresponding to Pc = 105

in the rest frame of the jet). As discussed in the text, the results for the two cases m = 1 and m = −1 coincide. In the left-hand panel we have the KH ordinary
mode, while in the right-hand panel we have the first reflected KH mode. The levels are equispaced in logarithmic scale from 10−5 to the maximum value of
the growth rate.

at k ∼ 0.6 and Mavc ∼ vc/vA ∼ 3. Moving towards higher values of
v/vA, the relative maximum shifts towards smaller values of k and
our results show that both the wavenumber of the maximum and
the maximum itself scale as vA/vc. The first reflected mode (right
panel) has a smaller growth rate, Im(ωmax ) ∼ 0.005, and remains
unstable at larger values of k as expected.

Fig. 4 refers to Pc = 10 with the upper and lower panels showing,
respectively, the growth rates computed for the m = 1 and m = −1
modes. Clearly, the upper left panel shows a region of instability for
small values of Mavc which is completely absent in the lower panel.
This instability region corresponds to the onset of CDI modes that
become stable for m = −1 since the resonance condition (equation
35) cannot be satisfied. For small values of Mavc, the instability
behaviour is very similar to the static case discussed in the previous
subsection and its growth rate is two order of magnitude smaller
than that of the KHI. The mode becomes stable for k > 0.1, which
corresponds to the stability limit given by the condition kPc = 1.
For larger values of Mavc the CD mode merge with the KH mode
and shows essentially no difference with respect to the previous
case.

The results for Pc = 1 are shown in Fig. 5. As expected, the
CDI moves towards higher values of k as the stability limit kPc = 1
gives a limiting value of k = 1. The growth rate of the CD mode
also increases and scales as 1/P 3

c as in the static case eventually
becoming dominant over the KHI. For m = −1 (lower panels) the
CDI is absent and the KHI presents only slight differences with
the cases at larger values of Pc. Increasing the flow velocity up to
Lorentz γ c = 10, we show the growth rate behaviour as a function
of k and Mavc in Figs 6–8 corresponding, respectively, to Pc = 104,
Pc = 1 and Pc = 0.1. We remark that the pitch in the comoving
frame is obtained by multiplying the pitch in the lab frame by γ and
therefore the chosen values of Pc in the comoving frame are exactly
the same ones used for the classical case. The upper and lower panels
in Figs 7 and 8 refer, respectively, to m = 1 and m = −1. Similarly to
the classical case, we do not have any difference between the m = 1
and m = −1 modes for Pc = 104 (see Fig. 6). The right-hand panels

in each figure show, as before, the reflected KH mode. The general
instability behaviour is quite similar to the classical case and we can
easily recognize the KHI region and the CDI region. Focusing on
the KHI, we see that the stability boundary and, consequently, the
position of the maximum growth rate have moved towards larger
values of Ma (see Figs 6 and 7, left and right panels) as it is expected
to happen for relativistic flows (Osmanov et al. 2008). Decreasing
Pc, the KH instability boundary moves towards smaller values of
Mavc, as it is evident in the lower panels of Fig. 8 corresponding to
m = −1 and in the right upper panel of the same figure (reflected
mode m = 1). Indeed, the stabilizing longitudinal component of
magnetic field decreases with decreasing Pc. In the upper left panel
of Fig. 8 we see that, for m = 1, the KHI and CDI have merged.
Moreover, for each value of Pc, an increase of Mavc leads to a shift
of the relative maximum of the growth rate towards smaller values
of k (see Figs 6–8) and both the wavenumber of the maximum and
the maximum itself scale as 1/Mavc precisely as in the Newtonian
limit. In Fig. 9 we plot the value of the maximum growth rate of the
KH mode as a function of γ cvc for Pc = 1 and m = 1. This curve
can be considered representative for any value of the pitch since, as
we have seen, the growth rate of the KHI is only weakly dependent
on this parameter. In the Newtonian limit, for small values of γ cvc,
the growth rate becomes essentially proportional to vc, reaches a
maximum at γ cvc ∼ 2 and then progressively decreases. This result
is in agreement with the work of Osmanov et al. (2008) that found
that relativistic motion plays a stabilizing role on the growth of the
KHI.

4.4 The current-driven mode

The CD mode is present only for m = 1 (as in the Newtonian case)
and, by lowering Pc, it progressively shifts towards larger values
of the wavenumber and increases also its growth rate. Moreover,
for Pc = 1, we observe a splitting of the CDI in two unstable
regions (see the lower half in the top left panel of Fig. 7). This mode
splitting can be better understood by inspecting Fig. 10 where we
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Figure 7. Distribution of the growth rate as function of the wavenumber and of Mavc for the case with γ c = 10 and Pc = 1 (corresponding to Pc = 10 in the
rest frame of the jet). The top panels refer to m = 1 while the bottom panels refer to m = −1. In the left-hand panels, for high values of Mavc, we have the
ordinary mode of the KH instability, for low values of Mavc the case m = 1 (top) shows the CDI which is split in two branches (note that the region between
k = 0.04 and k = 0.3 is stable), while the case m = −1 (bottom) is stable. In the right panels we have the first reflected KH mode. The levels are equispaced in
logarithmic scale from 10−5 to the maximum value of the growth rate.

plot the normalized growth rate as a function of the wavenumber
k for Ma = 0.01 and different values of Pc. Since for Ma � 0.1
the CDI becomes essentially independent of Ma, the curves plotted
in Fig. 10 are representative of the instability behaviour for small
values of Ma. The three panels refer to different values of γ c, namely,
γ c = 1.01 in the upper panel, γ c = 2 in the middle panel and
γ c = 10 in the lower panel. In the upper panel we see that the
behaviour of CDI at small non-relativistic velocities is essentially
the same as in the static case (see Fig. 1 for comparison). When γ c

is increased to 2 (middle panel), we observe that the mode splits into
two. In order to comprehend the reason behind the observed mode
splitting, we plot in Fig. 11 the radial profiles of the Lorentz factor
(top panel), pitch (middle panel) and the eigenfunctions relative to
the electromagnetic pressure perturbation for two different values
of the wavenumber, in the case with γ c = 2 and Pc = 1 (bottom
panel). The red shading marks the shear region where the jet velocity

decreases and pitch profile becomes the steepest. In plotting the
eigenfunctions, we have chosen the wavenumbers k = 0.1 (blue
curve) and k = 0.8 (orange curve) which correspond to the maximum
growth rate of each of the two branches shown by the green curves in
the middle panel of Fig. 10. The modes present a resonant behaviour
and the peak positions are located at the radii where the condition
kP(r) = 1 is fulfilled. Looking at the form of the eigenfunctions
in the bottom panel of Fig. 11, we see that the mode with k = 0.8
peaks inside the jet core in the flat part of the pitch profile. At the
opposite, the mode with k = 0.1 reaches a maximum outside the
velocity shear region. For this reason, we denote the right branch at
large wavenumbers as the ‘inner mode’ and the left branch at small
wavenumbers as the ‘outer mode’.

Given that the absolute value of the pitch is monotonically in-
creasing with radius, we note that the resonant position, expressed
by the condition kP(r) = 1, has to shift to larger radii as k is
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Figure 8. Distribution of the growth rate as a function of the wavenumber and of Mavc for the case with γ c = 10 and Pc = 0.1 (corresponding to Pc = 1 in
the rest frame of the jet). The top panels refer to m = 1 while the bottom panels refer to m = −1. As discussed in the text, for m = 1 (top), the KH ordinary
mode and the current-driven mode merged. In the right panel we have the first reflected KH mode. The levels are equispaced in logarithmic scale from 10−5 to
the maximum value of the growth rate.

Figure 9. Plot of the maximum growth rate of the KHI as a function of
γ cvc for Pc = 1 and m = 1.

decreased. Thus, if we focus on the inner mode, the resonant posi-
tion will move from r ∼ 0 (at large k) towards the exterior until, for
a lower value of k, it will fall inside the shear region where the pitch
profile is steeper, thereby becoming stabilized. A further decrease
in the wavenumber leads the resonance point outside the velocity
shear region, where the pitch slope decreases, thus giving rise to the
outer branch of the instability. The outer mode, for the considered
parameters, has a growth rate that is always somewhat larger than
that of the inner mode and it is the one visible in Fig. 8 (upper left
panel).

For smaller values of Pc, Fig. 10 shows that the deviation of the
growth rate from the P 3

c scaling (equation 36) becomes larger and
the outer mode stretches while moving towards larger values of k. At
the same time, the inner mode widens while moving towards lower
values of k, until a region of superposition between the two modes
is formed. This behaviour can be attributed to the non-monotonic
trend of the pitch for small values of Pc, as already shown in
Fig. 2.
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Figure 10. Plots of the (normalized) growth rate as a function of the
wavenumber, for the four different values of the pitch parameter Pc given
in the legends and for Ma = 0.01. The three panels refer to three different
values of γ c, more precisely γ c = 1.01 for the top panel, γ c = 2 for the
middle panel and γ z = 10 for the bottom panel. The values of Pc are chosen
so that in the rest frame we have always P ′

c = 1, 2, 5, 10. In the relativistic
case we observe the splitting of the mode in two branches as described in
the text.

The inner mode, being confined inside the jet core, does not feel
the effect of the velocity shear and its properties may be derived
by simply applying the appropriate Lorentz transformations to the
results obtained in the static case. We can in fact relate the pitch,
growth rate and wavenumber in the jet frame to those measured in
the laboratory frame by the following relations:

Pc = P ′
c

γc

, Im(ω) = Im(ω′)
γc

, k = k′γc , (38)

Figure 11. In the top panel we plot the profile of the Lorentz factor γ (r), in
the middle panel we plot the pitch profile P(r) and in the bottom panel we
plot the eigenfunctions for the inner (orange) and outer (blue) modes, for
γ c = 2, Pc = 1. The orange curve is for k = 0.8 (inner mode) and the blue
curve is for k = 0.1 (outer mode).

where the primed quantities are measured in the jet frame, while
the unprimed quantities are measured in the laboratory frame. From
the scaling given by equation (36), we obtain

Im(ω) ∼ Im(ω′)
γc

∼ P ′3
c

γc

f
(
k′P ′

c

) ∼ P 3
c

γ 4
c

f (kPc) . (39)

The scaling of the growth rate with 1/γ 4
c is demonstrated by Fig. 12,

where we plot Im(ω)P 3
c γ 4

c as a function of the wavenumber for three
different values of γ c. The scaling is excellent around the maximum
of the growth rate, where the eigenfunction is more concentrated
in the jet core. As we move towards smaller values of k, the radial
extension of the eigenfunction increases, the effect of the velocity
shear becomes more important and the three curves deviate from one
another. Besides, from equation (38), we have that kPc = k′P ′

c and
the stabilization condition in the laboratory frame can be also written
as kPc = 1. All the results presented so far have been obtained for
a/rj = 0.6. We recall that the value of the parameter a determines
the width of the current distribution and we can then ask how the
results depend on it. The width of the current distribution is related
to the extent of the flat part in the pitch profile (see Fig. 2): thus,
if we decrease a, the pitch grows to larger values inside the jet, the
inner mode becomes stabilized at lower wavenumbers and the outer
mode is also found at lower wavenumbers. The position of the stable
region between the inner and outer branches is therefore a function
of the value of a and moves towards smaller wavenumbers (when a
is decreased) and to larger wavenumbers (when a is increased). In
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Figure 12. Plot of the growth rate as a function of the wavenumber for
three different values of the Lorentz factor γ c, as indicated in the legend.
The values of Pc are chosen so that in the jet rest frame the pitch on the axis is
equal to 2. The figure demonstrates the validity of the scaling of the growth
rate with 1/γ 4

c close the maximum. For lower values of the wavenumber the
curves deviate from the above scaling.

Figure 13. Plot of the growth rate as a function of the wavenumber, for the
three different values of the pitch parameter Pc given in the legends and for
Ma = 0.01 and γ c = 2.

addition, the growth rate of the outer branch, being found at small
values of k, decreases with a, while the growth rate of the inner
branch is only determined by Pc and does not depend on a. We then
expect that, by decreasing a, the inner mode will become dominant.
As an example, we show in Fig. 13 how the results obtained for
a = 0.3 confirm these expectations. The figure refers to γ c = 2 and
can be directly compared to the middle panel of Fig. 10.

We can now summarize the results obtained for the CDI in the
relativistic regime: we have two branches of instability: an inner
mode concentrated inside the jet and an outer mode in which the
perturbation is concentrated outside the jet. The relative importance
of the two branches depends both on the current concentration
determined by the parameter a and on the Lorentz factor γ c. In
fact, as we decrease a, the growth rate of the outer branch also
decreases and the mode shifts towards smaller wavenumbers, while
the growth rate of the inner branch does not change. Conversely, as
we increase γ c, the growth rate of the inner branch decreases while
the growth rate of the outer branch does not change.

5 SU M M A RY

We have examined the stability properties of a relativistic magne-
tized cylindrical flow in the approximation of zero thermal pres-
sure, neglecting also the effects of rotation and focusing only on
the |m| = 1 mode. In this configuration we have two kinds of in-
stability that may be present: Kelvin–Helmholtz (KH) and current
driven. The instability behaviour depends of course on the chosen
equilibrium configuration and this is somewhat arbitrary since we
have no direct information on the magnetic field structure, although
some indications are provided by the acceleration models (see e.g.
Komissarov et al. 2007). Nevertheless, the general outcome and the
properties of the solutions obtained for a particular configuration,
such as the one we adopted here, can be considered valid for a
more general class of equilibria. Our results can then be consid-
ered representative of an equilibrium configuration characterized
by a distribution of current concentrated in the jet, with the return
current assumed to be mainly found at very large distances.

We can summarize our results by considering the behaviour of the
system for different values of the ratio between matter and magnetic
energy densities. For matter-dominated flows, the dominant insta-
bility is KH and the wavenumber corresponding to the maximum
growth rate as well as the growth rate itself scale both as 1/Mavc.
Somewhat above equipartition KHI reaches its maximum growth
rate and then it becomes rapidly stabilized. Below this stabilization
limit the dominant instability becomes CDI.

The dependence of the KHI on the value of the pitch is rel-
atively weak and only for the smallest value of the axial pitch
(Pc), in the relativistic case, we observe a displacement of the
stability limit towards lower values of Mavc and a merging with
CDI. CDI are therefore prevailing for flows in equipartition or
magnetically dominated and the dependence on Mavc in these
regimes is quite weak. The wavenumber corresponding to the
maximum growth rate scales as 1/Pc, the growth rate itself in-
creases with decreasing Pc and the modes have a resonant charac-
ter with a peak in the eigenfunction at the radial position where
kP(r) = 1.

At low jet velocity, our equilibrium has no return current inside
the domain, while at relativistic velocities we have a small portion
of the return current corresponding to the velocity shear region. The
corresponding steepening of the pitch profiles induces a stabilization
of the modes for which the resonance condition corresponds to
radial positions where the return current is found. We then observe
a splitting of the CDI in two branches, one at high wavenumbers (the
inner mode) characterized by an eigenfunction with a resonant peak
in the inner radial part of the flow, and one at smaller wavenumbers
(the outer mode) for which the resonant peak is outside the jet
region. Which of the two branches is dominant depends on the
width of the current distribution and on the Lorentz factor of the
flow. An increase in the current concentration (small a) favours the
growth of the inner mode, while an increase in γ c enhances the
development of the outer mode.

The different behaviour in the explored parameter ranges may
have crucial implications for the non-linear stages as distinct types
of instability may evolve differently. This study is therefore an
essential first step for the interpretation of the results of numerical
simulations that will be presented in a following paper and for their
comparison with astrophysical data.
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A P P E N D I X A : D E R I VATI O N O F TH E L I N E A R I Z E D E QUAT I O N S

We start from the linearized system (22–25) and, assuming the perturbations to be of the form ∝ exp (iωt − imϕ − ikz), rewriting the vectorial
equations in components, substituting the condition ∇ · B1 = 0 to the z component of the induction equation, we obtain the following mixed
system of 11 differential and algebraic equations in the 11 unknowns ρ1, v1r, v1ϕ , v1z, B1r, B1ϕ , B1z, E1r, E1ϕ , E1z, 
1, where we introduced
the total electromagnetic pressure perturbation 
1:
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ωB1r = m
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E1z − kE1ϕ, (A5)

iωB1ϕ = dE1z

dr
+ ikE1r (A6)
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B1ϕ − ikB1z = 0. (A7)

E1r = B0ϕv1z − B0zv1ϕ + v0zB1ϕ − v0ϕB1z (A8)

E1ϕ = v1rB0z − v0zB1r (A9)

E1z = −v1rB0ϕ + v0ϕB1r . (A10)


1 = B0 · B1 − E0 · E1 = B0ϕB1ϕ + B0zB1z − E0rE1r (A11)
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where we defined

ω ≡ ω − m�, kB ≡ m

r
B0ϕ + kB0z, ω̃ ≡ ω − m

r
v0ϕ − kv0z = ω − κkB, (A12)

Furthermore, following Istomin & Pariev (1996), it is convenient to introduce the radial displacement of fluid elements, ξ1r = −iv1r /ω̃

and use it instead of v1r. We will now try to express all the variable in terms of ξ 1r and 
1 and substitute them in equations (A2) and (A7)
obtaining a system of two first order differential equations in the two unknowns ξ 1r and 
1.

From equations (A5), (A9) and (A10), we solve for B1r, E1ϕ and E1z in terms of ξ 1r

B1r = −ikBξ1r (A13)

E1ϕ = iω̄B0zξ1r (A14)

E1z = −i
(
�kBr + ω̄B0ϕ

)
ξ1r . (A15)

For further use it is convenient to define the velocity components parallel and transversal to the background magnetic field

u1‖ = B0ϕv1ϕ + B0zv1z, v1ϕ = B0ϕ

B2
0

u1‖ − B0z

B2
0

u1⊥ (A16)

u1⊥ = B0ϕv1z − B0zv1ϕ, v1z = B0z

B2
0

u1‖ + B0ϕ

B2
0

u1⊥, (A17)

where B2
0 = B2

0ϕ + B2
0z.

Substituting E1z from equation (A15) and E1r from (A8) into equation (A6) and eliminating the radial derivative dB1r/dr from equation (A7),
we get

kBu1⊥ − ω̃B0zB1ϕ + ω̃B0ϕB1z = FB0zξ1r , (A18)

where

F ≡ rkB

d�

dr
+ ω

(
dB0ϕ

dr
− B0ϕ

r
− B0ϕ

B0z

dB0z

dr

)
.

A second relation comes from the definition of the electromagnetic pressure, 
1, equation (A11), if we substitute into it E0r = −�rB0z and
E1r from equation (A8):

�rB0zu1⊥ + (B0ϕ + �rB0zv0z)B1ϕ + B0z(1 − �rv0ϕ)B1z = 
1. (A19)

Now expressing v1ϕ and v1z through u1‖ and u1⊥ from equations (A16) and (A17), substituting into equations (A3) and (A4) and then
eliminating u1‖, we get the third relation:

ω̃Yu1⊥ + σ (k − ωv0z)B1ϕ + σ
(
ωv0ϕ − m

r

)
B1z = Gξ1r , (A20)

where

σ = B2
0

ρ0γ
2
0

, Y = −ω

ω̃
σ − B2

0

B2
0 − E2

0

, G = W − ω̃E0(v0 · B0)

B2
0 − E2

0

H

H = 1

γ0

(
B0ϕ

d

dr
(γ0v0ϕ) + B0z

d

dr
(γ0v0z) + γ0B0ϕv0ϕ

r

)
+ kBv2

0ϕ

rω̃

W = ω̃

γ0

(
B0ϕ

d

dr
(γ0v0z) − B0z

d

dr
(γ0v0ϕ) − γ0B0zv0ϕ

r

)

+σ

[
(∇ · E0)

(
ω̄ + �rB0ϕkB

B2
0

)
− J0 · B0

B2
0

kB

]
.

Equations (A18), (A19) and (A20) form a system of three linear equations

kBu1⊥ − ω̃B0zB1ϕ + ω̃B0ϕB1z = FB0zξ1r ,

�rB0zu1⊥ + (B0ϕ + �rB0zv0z)B1ϕ + B0z(1 − �rv0ϕ)B1z = 
1

ω̃Yu1⊥ + σ (k − ωv0z)B1ϕ + σ
(
ωv0ϕ − m

r

)
B1z = Gξ1r , (A21)
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from which one can solve for u⊥, B1ϕ and B1z in terms of ξ 1r and 
1. The solubility of this system depends on the determinant of the left-hand
side

D =

∣∣∣∣∣∣∣∣
kB −ω̃B0z ω̃B0ϕ

�rB0z (B0ϕ + �rB0zv0z) B0z(1 − �rv0ϕ)

ω̃Y σ (k − ωv0z) σ
(
ωv0ϕ − m

r

)
∣∣∣∣∣∣∣∣ , (A22)

which after simplification reduces to

D = (σ + 1)B2
0 ω̃2 + σkB

[
2ω̃(v0 · B0) − kB

γ 2
0

]
. (A23)

The possible singularities deriving from this determinant are discussed in the main text in Section 3. At this point we are able to express all
the variables in terms of ξ 1r, 
1 [in particular for expressing ρ1 we make use of equation (A1)], and substituting them into equations (A2)
and (A7) after a long but straightforward algebra, we arrive at the system of two first order differential equations in the radial coordinate for
the two basic variables – the radial displacement and the perturbed electromagnetic pressure:

D
dξ1r

dr
=

(
C1 + C2 − Dk′

B

kB

− D

r

)
ξ1r − C3
1 (A24)

D
d
1

dr
=

[
A1D − ρ0γ

2
0 v2

0ϕ

r

(
C1 + C2 − Dk′

B

kB

)]
ξ1r + 1

r

(
ρ0γ

2
0 v2

0ϕC3 − 2D
)

1 + 2B0z

r
DB1z + A2Du1⊥ (A25)

where k′
B ≡ dkB/dr and the long expressions for A1, A2, C1, C2, C3 and for Du1⊥, DB1z through ξ 1r, 
1 are given in Appendix B.

A P P E N D I X B: C O E F F I C I E N T S O F T H E LI N E A R SY S T E M

A1 ≡ ω̄2B2
0 + �2r2k2

B + 2ω̄B0ϕ�rkB − k2
B + ρ0γ

2
0 ω̃2 − γ0v

2
0ϕ

rω̃

d

dr
(γ0ρ0ω̃) − ρ0v0ϕH

r(B2
0 − E2

0 )

(
2B0ϕ + γ 2

0 v0ϕ(v0 · B0) + v0ϕkB

ω̃

)
, (B1)

A2 ≡ ρ0γ
2
0 v0ϕ

rB2
0

[
v0ϕ

ω̃

(
kB0ϕ − m

r
B0z

)
− 2B0z + E0v0ϕB2

0

B2
0 − E2

0

− E0(v0 · B0)

B2
0 − E2

0

(
2B0ϕ + v0ϕkB

ω̃

)]
, (B2)

C1 ≡ G
(m

r
B0z − kB0ϕ − �rB0zω

)
− Fω̃B2

0 �rv0zB0z

B2
0 − E2

0

, (B3)

C2 ≡ FB0z

[(m

r
B0z − kB0ϕ

) (
ωσ + ω̃B2

0

B2
0 − E2

0

)
− σ�rB0z

(
k2 + m2

r2

)
− mrω̃B0zB

2
0 �2

B2
0 − E2

0

]
, (B4)

C3 ≡ σ

(
ω2 − m2

r2
− k2

)
+ ω̃2B2

0

B2
0 − E2

0

(B5)

and u1⊥ and B1z expressed through ξ 1r and 
1 are

Du1⊥ =
[
σB0zF

(
ω̃(v0 · B0) − kB

γ 2
0

)
− Gω̃(B2

0 − E2
0 )

]
ξ1r + σ ω̃

(
kB0ϕ − m

r
B0z + ω�rB0z

)

1, (B6)

DB1z =
[
G(kBB0ϕ − ω̄E0B0z) + FB0z

(
ωσB0ϕ + σ�rB0zk + ω̃B2

0 (B0ϕ + �rB0zv0z)

B2
0 − E2

0

)]
ξ1r +

[
σ (ωω̄B0z − kkB ) + ω̃2B2

0 B0z

B2
0 − E2

0

]

1, (B7)

where D is the determinant (A23).
The second equation (A25), after expressing DB1z and Du1⊥ through ξ 1r and 
1, takes the form

D
d
1

dr
=

[
A1D − ρ0γ

2
0 v2

0ϕ

r

(
C1 + C2 − Dk′

B

kB

)
+ C4

r
+ C5

]
ξ1r +

[
1

r

(
ρ0γ

2
0 v2

0ϕC3 − 2D + C6

) + C7

]

1, (B8)

where the coefficients C4, C5, C6, C7 are given by

C4 = 2B0zG(kBB0ϕ − ω̄E0B0z) + 2FB2
0z

(
ωσB0ϕ + σ�rB0zk + ω̃B2

0 (B0ϕ + �rB0zv0z)

B2
0 − E2

0

)
,
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C5 = A2

[
σB0zF

(
ω̃(v0 · B0) − kB

γ 2
0

)
− Gω̃(B2

0 − E2
0 )

]
C6 = 2B0zσ (ωω̄B0z − kkB ) + 2ω̃2B2

0B2
0z

B2
0 − E2

0

C7 = A2σ ω̃
(
kB0ϕ − m

r
B0z + ω�rB0z

)
.

APPEN D IX C : A SYMPTOTIC SOLUTION AT SMALL RADI I

To find the solution of equations (28) and (29) at small radii, we calculate the coefficients entering these equations at r → 0 taking into
account that in this limit the equilibrium quantities v0ϕ , B0ϕ ∝ r, while v0z and B0z tend to constant values. Thus we have (primes everywhere
denote radial derivative)

lim
r→0

kB = kB0z + mB ′
0ϕ, lim

r→0
k′

B = kB ′
0z,

lim
r→0

D = B2
0zω̃

2 + σ (ω2B2
0z − k2

B )

lim
r→0

A1 = ω̄2B2
0z − k2

B + ρ0γ
2
0 ω̃2, lim

r→0
A2 = −ρ0γ

2
0 v′

0ϕ

B0z

(
mv′

0ϕ

ω̃
+ 2

)

lim
r→0

C1 = −2mB2
0z

r

(
ω̃v′

0ϕ + σω� + σB ′
0ϕkB

B2
0z

)

lim
r→0

C2 = mB2
0z

[
kB

d�

dr
+ ω

(
B ′′

0ϕ

2
− B ′

0ϕ

B0z

dB0z

dr

)]
(σω + ω̃)

lim
r→0

C3 = −σ
m2

r2

lim
r→0

Du1⊥ = 2ω̃B3
0z

(
ω̃v′

0ϕ + σω� + σB ′
0ϕkB

B2
0z

)
ξ1r − ω̃mσB0z


1

r

lim
r→0

DB1z = −2B0z(kBB ′
0ϕ + ω�B2

0z)

(
ω̃v′

0ϕ + σ�ω + σB ′
0ϕkB

B2
0

)
ξ1r + [σ (ωωB0z − kkB ) + ω̃2B0z]
1.

Substituting these coefficients into equations (28) and (29), to leading order, we obtain

dξ1r

dr
= −1

r

[
1 + 2mB2

0z

D

(
ω̃v′

0ϕ + σω� + σB ′
0ϕkB

B2
0z

)]
ξ1r + m2σ

r2D

1, (C1)

d
1

dr
= 2mB2

0z

rD

(
ω̃v′

0ϕ + σω� + σB ′
0ϕkB

B2
0z

)

1 + D

σ

[
1 − 4B4

0z

D2

(
ω̃v′

0ϕ + σω� + σB ′
0ϕkB

B2
0z

)2
]

ξ1r . (C2)

We look for solutions in the form ξ 1r ∝ rα , 
1 ∝ rα+1. After substitution of this form into equations (C1) and (C2) we get

α = ±|m| − 1,

but because a solution must be regular at r = 0 we take only α = |m| − 1, (|m| ≥ 1), and after that the ratio


1

ξ1r

= r

mσ

[
sign(m)D + 2B2

0z

(
ω̃v′

0ϕ + σω� + σB ′
0ϕkB

B2
0z

)]
|r=0

. (C3)

This equation together with the choice α = |m| − 1 serves as our boundary condition at small radii.

A P P E N D I X D : A S Y M P TOT I C SO L U T I O N AT L A R G E R A D I I

To find the asymptotic limit of equations (28) and (29) and their corresponding solutions at large radii, we notice that the equilibrium
azimuthal velocity, v0ϕ , the vertical velocity v0z and � decay very quickly (exponentially) with radius according to equations (8), (13), (15)



3046 G. Bodo et al.

and (17)), so we can put them effectively zero, v0ϕ � 0, v0z � 0, � � 0 at large radii and hence γ 0 = 1. At large r, the equilibrium density
and vertical magnetic field are constant, while the azimuthal magnetic field falls off as B0ϕ ∝ 1/r, as follows from equations (12), (15), (16)
and (18). Taking this into account, the asymptotic form of each coefficient entering equations (28) and (29) was calculated at large r → ∞.
Then, neglecting everywhere terms of the order of O(r−3) and higher, after a rather lengthy algebra, we arrive at the following second order
differential equation for the total electromagnetic pressure perturbation 
1

d2
1

dr2
+ 1

r

d
1

dr
+

[
ρ0 + B2

0z

B2
0z

ω2 − k2 −
(

m2 + ρ0B
2
ϕcω

2

B4
0z

)
1

r2

]

1 = 0, (D1)

which is of Bessel’s equation type. Its solution corresponding to radially propagating waves that vanish at infinity is the Hankel function of
the first kind 
1 = H (1)

ν (χr), where

χ2 = ρ0 + B2
0z

B2
0z

ω2 − k2, ν2 = m2 + ρ0B
2
ϕcω

2

B4
0z

,

with the leading term of the asymptotic expansion at r → ∞


1 = H (1)
ν (χr) �

√
2

πχr
exp

[
i
(
χr − νπ

2
− π

4

)]
. (D2)

The complex parameter χ can have either positive or negative sign,

χ = ±
√

ρ0 + B2
0z

B2
0z

ω2 − k2.

Requiring that the perturbations decay at large radii, we choose the root of χ2 in equation (D2) that has a positive imaginary part, Im(χ ) > 0.
These perturbations are produced within the jet and hence at large radii should have the character of radially outgoing waves. This implies
that the real parts of χ and ω should have opposite signs, Re(ω) Re(χ ) < 0 (Sommerfeld condition), in order to give the phase velocity
directed outwards from the jet.

The asymptotic behaviour of the displacement ξ 1r can be readily obtained from 
1 again correct to O(r−3)

ξ1r = 
1

ω2(ρ0 + B2
0 ) − k2

B

(
iχ − 1

2r

)
. (D3)

The asymptotic solutions (D2) and (D3), together with the above requirements of outgoing waves with decaying amplitudes at r → ∞, are
used as an initial condition at outer jet boundary in our numerical scheme for finding eigenvalues of ω, when doing integration backwards,
from large to small radii.
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