CONTAMINATION OF MOTH MULLEIN (VERBASCUM BLATTARIA L.)

SEEDS BY PHOMA NOVAE-VERBASCICOLA

D. Bertetti, G. Ortu, M.L. Gullino, A. Garibaldi

Centre of Competence for the Innovation in the Agro-Environmental Sector (AGROINNOVA), University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy.

Running title: Phoma novae-verbascicola on Verbascum blattaria seeds

Corresponding author: M. L. Gullino
Fax number: +39.011.6709307
E-mail address: marialodovica.gullino@unito.it
SUMMARY

Verbascum blattaria (Scrophulariaceae family) is a hardy perennial species that is used for the edges and flower beds of low-maintenance gardens. Phoma novae-verbascicola causes light brown necrotic spots on the leaves of V. blattaria seedlings. In order to demonstrate the seed transmission of this pathogen, several V. blattaria seeds belonging to three samples collected in 2013, were tested in vitro to detect the presence of P. novae-verbascicola. Two samples were found to be contaminated and colonies of the pathogen were isolated from the tested seeds. P. novae-verbascicola was identified from the morphological features observed in vitro and through an ITS (Internal Transcribed Spacer) analysis. The virulence of one isolate was confirmed by means of a pathogenicity test. This work demonstrates that P. novae-verbascicola can be transmitted by affected V. blattaria seeds.

Key words: ornamental plants, seed-borne pathogens, Phoma poolensis var. verbascicola, Phyllosticta novae-verbascicola.
The genus *Verbascum* (Scrophulariaceae family) includes several spontaneous hardy perennial Italian flora species (Pignatti, 1982). These plants and their cultivars are suitable for the edges and flower beds of low-maintenance gardens in which they produce yellow, white or purple flowers, densely grouped together in long-lasting eye-catching inflorescences.

Several fungal pathogens belonging to the genus *Phoma* have been reported on *Verbascum* spp. (USDA, Fungal Databases). A phylogenetic analysis on this genus has led to the identification of some new species, such as *P. novae-verbascicola* (Syn.: *Phyllosticta novae-verbascicola*; *P. poolensis* var. *verbascicola*) (Aveskamp et al., 2010). This pathogen has recently been detected on black mullein (*Verbascum nigrum* L.) plants (Garibaldi et al., 2013) and on moth mullein (*Verbascum blattaria* L.) seedlings (Garibaldi et al., 2014), both grown in Italy.

The transmission of plant diseases through the diffusion of affected seeds is already well known for several fungal pathogens and can favour the long-distance transport of parasites, as in the case of *Fusarium* species (Elmer, 2012), and can cause the outbreak of diseases, starting from a small source of infection (Elmer, 2002). Several seed-pathogens have also been found on ornamental plants, for example, *Cryptocline cyclaminis* and *Ramularia cyclaminicola* on cyclamen, *Colletotrichum* sp. on anemone (Daughtrey et al., 1995), *Fusarium oxysporum* f. sp. *cyclaminis* on cyclamen (Tompkins and Snyder, 1972), *F. oxysporum* f. sp. *callistephi* on China aster (Orlicz-Luthard, 1998) and *F. oxysporum* f. sp. *papaveris* on *Papaver nudicaule* (Bertetti et al., 2015). The spread of *P. novae-verbascicola* to several *V. blattaria* seedlings has suggested the need to evaluate the contamination of seeds by this pathogen. Therefore, the aim of this work was to test the transmission of *P. novae-verbascicola* by affected *V. blattaria* seeds.
Three seed samples of *V. blattaria*, collected in 2013, were checked in this work. In order to test the presence of the pathogen, 400 unwashed seeds/sample were distributed on a PDA (Potato Dextrose Agar) medium contained in Petri plates (20 seeds/plate). The plates were covered with parafilm and incubated at room temperatures. The development of fungal colonies around the seeds was checked daily. Two out of three seed samples of *V. blattaria* were contaminated and developed two or three colonies of *P. novae-verbascicola*, respectively. These colonies were subcultured on PDA to obtain pure isolates, which were coded and stored at 7°C. These isolates were then cultured on PDA and MEA (Malt Extract Agar) for about 15 days, at temperatures ranging from 21 to 24°C, to observe the morphological characteristics produced *in vitro*. The isolates on the PDA produced a rather soft mycelium, with alternating green-olivaceous and whitish circles at maturity, and dark olivaceous pigments in the agar medium. The isolates on the MEA produced a felty mycelium. Pycnidia were produced both on the agar and in the agar. They were globose to subglobose, solitaries or confluent, glabrous, with one ostiolum (sometime two), and measured 44-244 × 44-235 (mean: 101 × 94) μm. The conidia were non-septate, hyaline, ellipsoid, and measured 2.5-5.0 × 0.9-2.2 (mean: 3.2 × 1.3) μm. These features are similar to those described for the colony morphology of *P. novae-verbascicola* in Q-bank.eu (http://www.q-bank.eu/).

In order to confirm the morphological identification, genomic DNA of the DB15GIU13 isolate obtained from seeds was extracted from a pure culture grown on PDA, using the Nucleospin Plant II Kit (Macherey Nagel), according to the manufacturer's instructions. The internal transcribed spacer (ITS) region was then amplified and sequenced using the ITS1/ITS4 primer (White *et al.*, 1990). BLAST analysis (Altschul *et al.*, 1997) of the 504-bp amplicon
(GenBank Accession No. KU559629) showed 99% homology with the KJ192364 sequence of *P. novae-verbascicola*, thus confirming the morphological identification of the pathogen.

In order to test the pathogenicity, the DB15GIU13 isolate of *P. novae-verbascicola* obtained from seeds was grown in Petri dishes for 26 days on PDA, at temperatures ranging from 21 to 24°C. A conidial suspension was then prepared from pure cultures and adjusted to the final concentration of 5×10^7 CFU/ml. The inoculum was sprayed onto healthy 60-day-old *V. blattaria* plants grown in pots containing a steamed soil mixture (peat moss:perlite:clay, of 70:20:10, respectively). Ten plants (1 plant/pot) were inoculated (1ml of inoculum/plant), and 10 control plants were sprayed with only sterilised water. All the plants were covered with a plastic bag to maintain an elevated relative humidity and were kept in a greenhouse, where the daily average temperatures ranged from 18 to 20°C. The plants were checked daily and the humid chamber was removed 4 days after the inoculation.

The first light brown necrotic spots appeared 5 days after the artificial inoculation, but only on the inoculated leaves, from which *P. novae-verbascicola* was constantly reisolated. During the following days, necrosis extended to the leaves of all the seedlings, all of which died within 20 days. The control plants remained symptomless.

This study demonstrates that the contamination of *V. blattaria* seeds by *P. novae-verbascicola* may be a potential source of inoculum and could favour the diffusion of this pathogen. This result is in agreement with the results of other seed-borne *Phoma* spp., such as *P. pinodella*, which has been reported on several hosts, including species belonging to Leguminosae (Kinsey, 2002) and on *Phoma digitalis* found on Scrophulariaceae species, especially on *Digitalis purpurea* (Boerema et al., 2004).
Seed dressing with registered and effective fungicides should be adopted as a solution to avoid the presence of *P. novae-verbascicola* on *V. blattaria* seedlings, in particular on the more aesthetically appreciated cultivars. This procedure could control the spread of the disease in low-maintenance gardens, in which *V. blattaria* is suitable for planting.

AKNOWLEDGEMENTS

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 634179 "Effective Management of Pests and Harmful Alien Species - Integrated Solutions" (EMPHASIS).

REFERENCES

Fungal Nomenclature Databases. Systematic Mycology and Microbiology Laboratory. Online publication. ARS, USDA.

Q-bank.eu. Colony morphology of *Phoma novae-verbascicola*. Available at: http://www.q-bank.eu/Fungi/BioloMICS.aspx?TableKey=6115924000000011&Rec=58&Fields=All

USDA, Fungal Databases. Available at: http://nt.ars-grin.gov/