CHALLENGES IN TRANSFERING METHODS FROM THERMAL TO DIFFERENTIAL FLOW MODULATED GC\times GC-MS/FID: FOOD “OMICS” INVESTIGATIONS

This is the author’s manuscript

Original Citation:

<table>
<thead>
<tr>
<th>Availability:</th>
<th>This version is available</th>
<th>http://hdl.handle.net/2318/1589439</th>
<th>since</th>
<th>2016-08-25T12:13:35Z</th>
</tr>
</thead>
</table>

Publisher:

Chromaleont

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Comprehensive two-dimensional gas chromatography (GC×GC) coupled with Mass Spectrometry (MS) is one of the most powerful analytical platforms now available for detailed profiling (identification and quantitation) and fingerprinting of medium-to-high complexity food samples [1]. Compared to one-dimensional systems, it offers remarkable separation power and unmatched peak capacity, rationalized 2D separation patterns that are distinctive sample fingerprints for classification and authentication. Thermal modulated GC×GC platforms enable comprehensive investigations required in food “omics” and nutritional studies thanks also to their hyphenation with mass spectrometric detection, automated sample-preparation, olfactory detection and suitable data elaboration approaches.

The introduction of GC×GC platforms implementing differential flow-modulation, based on the design proposed by Seeley et al. [2], has opened a new perspective for the analysis of complex samples [3]. Lower operational costs, relative ease of use and simple maintenance make these platforms attractive also for routine operations.

This study investigates and critically discusses the feasibility of methods transfer from thermal modulated GC×GC to the differential flow modulated platforms adopting a reverse fill/flush injection dynamic for profiling and fingerprinting of medium-to-highly complex samples within food “omics” investigations. Experimental results obtained with a parallel dual-detection configuration, will be discussed with a focus on data elaboration. Thanks to the template matching algorithm the effective method transfer is truly “comprehensive” and the information potential of the technique fully exploited also for routine quality controls and high throughput screenings.