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Abstract 30 

Over the last decades, an increase of pollutants of diverse origin (industrial, military, mining, etc.) 31 

was recorded in several areas of Sardinia Island. We report the results of a multidisciplinary and 32 

complementary study based on cytogenetic and physiological analyses. The data obtained show the 33 

effects of the environmental impact on six sheep flocks (Sardinian breed) grazing on natural 34 

pasturelands next to possible polluted areas and compared to three herds grazing in different areas far 35 

from those potentially contaminated and used as control. Sister chromatid exchange (SCE) test was 36 

used as cytogenetic test to analyze chromosomal damages and it was performed on peripheral blood 37 

samples collected from 129 adult sheep (age >4 years) randomly selected from polluted (92 animals) 38 

and control (37 animals) areas. Two types of cell cultures were performed: without (normal cultures) 39 

and with addition of 5-Bromodiuxyuridine (5-BrdU). SCE-mean values estimated over 35 cells 40 

counted for each animal were 8.65±3.40, 8.10±3.50, 8.05±3.08, 7.42±3.34, 9.28±3.56 and 8.38±3.29 41 

in the exposed areas, whereas the average values were 7.86±3.31 in the control group. Significant 42 

increasing (P<0.01) of SCEs were found in three investigated areas of Southern Sardinia. 43 

Furthermore, sheep of the same flocks were characterized for blood redox homeostasis in order to 44 

define the potential targets of oxidative damage and to identify biomarkers of the extent of animal 45 

exposure to environmental contaminants. The plasma level of Asc, Toc and Ret were found 46 

significantly lower (P<0.001) in exposed sheep (I, II, IV and V) than in control group. TAC, as well 47 

as GPx and SOD activities were higher in control than in the exposed groups (P<0.001). Finally, 48 

plasma levels of N-Tyr, PC, and LPO were significantly lower (P<0.001) in the control group than in 49 

the exposed groups. 50 

 51 

Keywords: Sister Chromatid Exchanges, Sardinian sheep, Environmental pollution, Chromosome 52 

fragility, Redox homeostasis, Bio-monitoring 53 
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1. Introduction 55 

Sardinia is the second largest island in the Mediterranean Sea, well known for its natural landscapes 56 

and for its endemic species. The island is considered as major center of plant diversity. Despite that, 57 

various areas of this region are at environmental risk due to the contamination and/or pollution 58 

generated by civil and industrial activities. 59 

The most polluted areas are localized in the southwest of the Island (Boni et al. 1999; Sanna et al. 60 

2003; Beccaloni et al. 2013) where high concentration of volatile organic compounds (benzene, 61 

formaldehyde, xylene), polycyclic aromatic hydrocarbons and heavy metals have been found as result 62 

of metallurgic industrial activities (Peluso et al. 2013) and mining actions (Madeddu et al. 2013; 63 

Varrica et al. 2014; Cidu et al. 2014). In the same areas, residues of chemical emission due to military 64 

tests have been also found (Cristaldi et al. 2013). 65 

A total of 18 areas assessed as industrial, mining, military and urban zones have been considered at 66 

environmental risk in Sardinia Island (Biggeri et al. 2006).  67 

In this context it is worth mentioning that noxious pollutants, such as sulfur oxides, nitrogen oxides, 68 

hydrocarbons, carbon monoxide, transition metals, may induce DNA damage and genome mutation, 69 

thus exerting carcinogenic effects (Goulart et al. 2005; Mateuca et al. 2005; Cavallo et al. 2008). 70 

These pollutants also promotes highly reactive oxygen species (ROS) production (Matès et al. 2010), 71 

and depression of several ROS quenching systems (Ishida et al. 2009), with subsequent accumulation 72 

of toxic compounds in blood and tissues (Knerr et al. 2006). In physiological conditions, the 73 

antioxidant defence system, provided by enzymes and antioxidants, scavenges ROS thus limiting or 74 

preventing oxidative damage (Halliwell, 2012). The imbalance between ROS production and 75 

neutralizing capacity of antioxidant mechanisms may lead to oxidative stress (Cadenas and Davies, 76 

2000; Halliwell and Gutteridge, 2000), which is associated with modifications of physiological and 77 

metabolic functions (Halliwell and Gutteridge, 2000). 78 
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In the last decades, the epidemiological data on the incidence of human pathologies analyzed in 79 

Sardinia, showed a general increasing trend as well as rising mortality rates have been reported for 80 

the most prevalent types of cancer in both sexes (Budroni et al. 2013).  81 

A recent investigation of the National Association of Italian Veterinarians (FNOVI) on sheep farms 82 

located in potential polluted areas reported a correlation between the incidence of cancers in sheep 83 

farmers and the emergence of genetic malformations in newborn lambs (Mellis and Lorrai, 2013). In 84 

this respect, the farm animals represent good environmental sentinels (especially those naturally 85 

pastured) to facilitate the assessment of human exposure to environmental contaminants. For instance, 86 

they can be used as a monitoring system to reveal early environmental contamination, to monitor 87 

contamination of the food web, to investigate the presence of contaminants in environmental media 88 

(van der Schalie et al. 1999).  89 

Among the farm animals, sheep are particularly suitable to be used as environmental sentinels. The 90 

reason for that lies in their feeding characteristics. In fact, differently from the other ruminants, about 91 

12% of the daily feed for sheep raised on pasture is represented by soil, where usually pollutants 92 

accumulate and their permitted values are several times higher than those admitted in plants (i.e. 93 

dioxin’s values are 0.75ng/Kg and 10ng/Kg in plants and soil, respectively). 94 

Cytogenetic tests represent direct and sensitive methods that have been used for detecting DNA 95 

damages at the chromosomal level in the biomonitoring of different species (Penders et al. 2012; 96 

Wójcik et al. 2013; Yang et al. 2014). In particular, Sister Chromatid Exchange (SCE) is a short-term 97 

test for the detection of reciprocal exchanges of DNA between two sister chromatids, involving DNA 98 

breakage and subsequent re-junction. The increased frequencies of SCE as consequence of negative 99 

conditions, like pollutants exposition, leads to DNA single strands breaks as it has been reported in 100 

several studies on livestock populations (Rubes et al. 1997; Di Meo et al. 2000; Iannuzzi et al. 2004; 101 

Perucatti et al. 2006; Di Meo et al. 2011; Genualdo et al., 2012; Wójcik et al. 2013). The goal of this 102 

study is to evaluate the impact of environmental pollutants in some areas of Sardina Island on the 103 

genome damage of sheep flocks living in this region by using the SCE test. Furthermore, as the 104 

http://www.ncbi.nlm.nih.gov/pubmed/?term=W%C3%B3jcik%20E%5BAuthor%5D&cauthor=true&cauthor_uid=24279169
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analysis of blood redox homeostasis has become an important complementary tool for the evaluation 105 

of health and metabolic status of dairy cows (Bernabucci et al. 2005; Castillo et al. 2003, 2005, 2006), 106 

and feedlot calves (Castillo et al. 2012), we also characterized blood redox homeostasis of sheep in 107 

order to define the potential targets of oxidative damage in blood, and to describe physiological 108 

changes associated with exposure to pollutants. 109 

 110 

2. Materials and Methods 111 

2.1. Farm selection 112 

The different areas were selected according to the chemical emissions of the different activities as 113 

reported in former investigations (table 1).  114 

The cytogenetic study was performed in Sardinia on 129 adult sheep (age >4 years) of Sardinian 115 

breed, 92 grazing on natural pasturelands near to possible polluted areas selected as follows: two 116 

herds (~12 sheep for each herd) located in the Northern area (industrial and military zones) and four 117 

flocks (~15 sheep for each flock) located in the Southern area (military, industrial and mine zones) 118 

of the island. For comparison, 37 sheep, reared in three different herds, were randomly selected in 119 

areas far from possible polluted zones and used as control (Fig. 1).  120 

Furthermore, physiological investigations were performed on 80 exposed sheep (20 per each group) 121 

and 20 sheep used as control group belonging to the same farms.  122 

 123 

2.2. Cell cultures 124 

Whole blood samples were collected from the jugular vein using sterile vacutainer tubes 125 

containing sodium heparin as anticoagulant. About 1 ml of whole blood sample was added to the 126 

culture mix composed of 7 ml of RPMI medium, enriched with fetal calf serum (20%), L-glutamine 127 

(0.25%), antibiotic-antimycotic mixture (0.5%) and concanavalin A (20 µg/ml) as mitogen. Culture 128 

flasks were incubated at 37.8°C for 72 h. Cell cultures from the investigated animals were treated for 129 

conventional (normal cultures) and 5-bromodeoxyuridine (BrdU) incorporation, the latter added 28 130 
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h before harvesting at final concentration of 10µg/ml to obtain preparations to be treated for SCE-131 

test. Both cell cultures were gently shaken once a day and subjected to 1.5 h of colcemid (0.5 µg/ml) 132 

treatment, followed by centrifugation steps, hypotonic (KCl 75mM) and fixative treatments according 133 

to Iannuzzi and Di Berardino (2008). Slides obtained from both normal and BrdU-treated cultures 134 

were stained for 10 min with acridine orange (0.01 % in buffer phosphate), washed with distilled 135 

water, and mounted in P-buffer. Slides obtained from normal cultures were used to detect structural 136 

chromosomal abnormalities (in particular Robertsonian translocation or sex chromosome 137 

aneuploidy), slides obtained from BrdU-treated cells were used for SCE-test. In particular, slides used 138 

for normal cultures were used to get CBA-banding following the protocol reported by Iannuzzi and 139 

Di Berardino (2008). At least 20 and 35 complete metaphases (2n=54) were studied to get CBA-140 

banding and SCE-test, respectively, for each animal. Slides were observed with a NIKON E-1000 141 

fluorescence microscope (Nikon Instruments Europe B.V) equipped with FITC specific filter (ex 450-142 

490) and provided with image-analysis software system (RS Image image-acquisition software, 143 

Photometrics Company). Digital images were captured at 100x magnification in gray-scale. All 144 

metaphases were carefully examined by at least two expert cytogeneticists.  145 

 146 

2.3.  Blood redox homeostasis characterization 147 

Plasma concentrations of non-enzymatic antioxidants (Ascorbic Acid, Retinol, and alpha-148 

Tocopherol), and the activities of enzymatic antioxidants (superoxide dismutase and glutathione 149 

peroxidase) were measured, and used as markers of the antioxidant defense system. The total 150 

antioxidant capacity was also assessed, as well as the oxidative damage to protein and lipid 151 

peroxidation induced by the interaction of free radicals with polyunsaturated fatty acids. Therefore, 152 

blood samples were collected into heparinised tubes, early in the morning, in the same day and under 153 

the same environmental conditions. Plasma was obtained by centrifugation (500 g for 15 min at 4°C) 154 

and processed, by the same operator, for titration of antioxidants, SOD and GPx activity, total 155 
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antioxidant capacity (TAC), nitro-tyrosine (N-Tyr), protein-bound carbonyls (PC), and 156 

hydroperoxides (LPO). 157 

 158 

2.3.1. Determination of antioxidants and lipid hydroperoxides (LPO) 159 

Plasma samples were processed for determination of Asc concentration as previously described 160 

(Spagnuolo et al. 2011), and analysed by high performance liquid chromatography (HPLC) using an 161 

anion exchange column (Nucleosil 100-NH2, 5 µm, 250 x 4.6 mm i.d). Ret and Toc levels were 162 

measured according to a published procedure (Spagnuolo et al. 2003), and analysed by HPLC, using 163 

a reverse phase C18 column (Nova-PAK C18, 4µm, 125 x 2 mm i.d.). The Total Antioxidant Capacity 164 

(TAC) was measured by the Trolox Equivalent Antioxidant Capacity Assay, according to Miller et 165 

al. (1993a), and expressed as µM concentration of Trolox equivalents (Miller et al. 1993a; Spagnuolo 166 

et al. 2001). 167 

LPO concentration was measured by a colorimetric quantitative assay, using the Lipid Hydroperoxide 168 

Assay Kit of Cayman Chemical, according to the manufacturer’s instructions.  169 

 170 

2.3.2. Determination of nitro-tyrosine (N-Tyr) 171 

Nitrated protein levels in plasma samples were measured by ELISA, as previously reported 172 

(Spagnuolo et al. 2001). Plasma samples were diluted (1:500, 1:2000, 1:5000, and 1:10000) with 173 

coating buffer (7 mM Na2CO3, 17 mM NaHCO3, 1.5 mM NaN3, pH 9.6), and incubated in the wells 174 

of a microtitre plate overnight at 4°C. Standard curves were obtained with serial dilutions of nitrated 175 

bovine serum albumin (BSA). N-Tyr was detected by incubation with Rabbit anti-N-Tyr antibody 176 

(Covalab; 1: 800 dilution in 130 mM NaCl, 20 mM Tris-HCl, 0.05 % Tween 20, pH 7.3, 177 

supplemented with 0.25 % BSA; 1 h, 37°C), followed by Goat anti Rabbit IgG-horseradish peroxidase 178 

linked (GAR-HRP) diluted 1:2000 as the primary antibody. Colour development was monitored at 179 

492 nm, as previously described (Spagnuolo et al., 2003). Data were reported as nmol of N-Tyr per 180 

mg of protein. 181 
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 182 

2.3.3. Determination of protein-bound carbonyls (PC) 183 

PC concentration in plasma samples was titrated by ELISA according to Buss et al. (1997). 184 

Protein derivatization was carried out with a dinitrophenylhydrazine (DNP) solution (10 mM in 6 M 185 

guanidine hydrochloride, 0.5 M potassium phosphate buffer, pH 2.5), to a final protein concentration 186 

of 3 mg/mL. Samples were incubated at room temperature for 45 min vortexing every 10-15 min. 187 

Each sample was then diluted (1: 800-1: 15000) with10 mM sodium phosphate buffer, pH 7.0, 188 

containing 140 mM NaCl, and incubated (overnight at 4°C) in the wells of a microtitre plate. PC were 189 

detected by incubation (1 h at 37°C) with Rabbit anti-DNP antibody diluted 1:1000 with PBS 190 

supplemented with 0.2 % gelatine and 0.05% Tween 20, followed by GAR-HRP antibody (diluted 191 

1:2500 as the primary antibody). Colour development was monitored at 492 nm, as previously 192 

described (Spagnuolo et al. 2003). A six-point standard curve of oxidized BSA was included in each 193 

plate. A blank for DNP reagent in PBS without protein was subtracted from each absorbance. Data 194 

were reported as nmol of carbonyls per mg of proteins. 195 

 196 

2.3.4.  Evaluation of plasma activity of glutathione peroxidase (GPx) and superoxide 197 

dismutase (SOD) 198 

GPx activity was measured indirectly by a coupled reaction with glutathione reductase (GR), 199 

using the glutathione peroxidase assay kit of Cayman Chemical, according to the manufacturer’s 200 

instructions. GPx activity was expressed as nmol of NADPH oxidized per minute per mL of sample. 201 

SOD activity was measured with the superoxide dismutase assay kit of Cayman Chemical, according 202 

to the manufacturer’s instructions. SOD activity was expressed Unit/mL. One unit of SOD is defined 203 

as the amount of the enzyme needed to exhibit 50% dismutation of the superoxide radical. 204 

 205 

2.4. Statistical analysis 206 
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Summary statistics were calculated for both single animals and animal groups. The distribution 207 

of data within each group was tested for normality according to Shapiro-Wilk (1965). Significant 208 

departures from symmetry (P<0.05) was observed in all groups with the exception of the exposed VI, 209 

whose kurtosis was 0.19. The Log transformation of the data showed that groups with higher SCE 210 

means tend also to have more-variable data, indicating that ANOVA on the raw data may be 211 

problematic. As consequence, alternative procedures like non parametric tests are more appropriate. 212 

In order to ensure the strictness of the result, both parametric (ANOVA on raw data) and 213 

nonparametric tests (Kruskal-Wallis) were performed to point up the differences between and within 214 

the analysed groups. Tukey’s and Dwass-Steel-Critchlow-Fligner’s pairwise were used to make all 215 

possible comparisons between the groups. Bonferroni correction was applied as default restriction 216 

and differences were considered significant if P≤0.01. 217 

The samples for measurement of SOD and GPx activities, PC, N-Tyr, or LPO concentration were 218 

processed in triplicate. The titration of Toc, Ret, and Asc was carried out on duplicates. Values were 219 

expressed as mean ± SD. Significance of statistical differences was evaluated by one-way ANOVA, 220 

followed by Bonferroni’s test for multiple comparisons, using the Graph Pad Prism 5.01 program 221 

(Graph Pad Software, San Diego, CA, USA). 222 

 223 

3. Results and discussion 224 

The CBA-banding, very useful to detect sex chromosome abnormalities, did not reveal any numerical 225 

and structural abnormality in all studied animals. 226 

The SCE-test was applied to six groups of sheep reared on natural pasturelands near to possible 227 

polluted areas, as well as on three groups located far from polluted areas and used as control. Analysis 228 

of variance using both parametric (ANOVA) and non-parametric (Kruskal-Wallis) approaches 229 

revealed significant differences among the groups (table 3). SCE-mean values per cell were higher in 230 

three exposed sheep groups (Esp. I, V and VI) compared to the control. The remaining exposed groups 231 

(II, III and IV) did not show significant differences compared to the control (table 2 and 4). The mean 232 
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values of II, III, IV exposed groups and control were comparable to previously published data on SCE 233 

test for sheep reared in Campania region (Perucatti et al. 2006). No inter-individual differences were 234 

detected among the samples belonging to the same group, whereas inter-group differences were 235 

clearly evidenced from multiple comparison tests. In fact, both Tukey’s and Dwass-Steel-Critchlow-236 

Fligner’s pairwise highlighted the same significant differences (table 4). In particular, the groups I 237 

and V showed SCE mean values higher than the number of exchanges counted in the other exposed 238 

groups. Interesting seems to be the data of the exposed group III, whose mean SCE value is not 239 

different from the control, but also closer to the exposed group VI (table 2).  240 

Blood redox status of sheep living in different geographic areas of Sardinia, exposed to different 241 

environmental contamination, was characterized, and the results were compared with those obtained 242 

from animals bred in the unpolluted area. Plasma level of Ret, Toc, and Asc, the total antioxidant 243 

capacity (TAC), and GPx and SOD activities, here used as markers of the antioxidant defence system, 244 

are shown in table 5. The concentrations of Asc, Toc and Ret were found significantly lower 245 

(P<0.001) in plasma collected from sheep reared in polluted areas (I, II, IV and V) than in control 246 

group (K). TAC, as well as GPx and SOD activities were higher in control than in the exposed groups 247 

(P<0.001). These findings demonstrate that the exposure to environmental pollutants severely impairs 248 

the blood antioxidant defence system. By comparing the groups from the polluted areas, we found 249 

that plasma concentration of Ret and Toc was significantly lower in sheep of group V than in the 250 

other exposed groups (I, II and IV; P<0.001), but did not differ among groups from polluted areas (I, 251 

II, IV and V). Conversely, the other markers of the antioxidant defence system did not differ among 252 

the two exposed groups. These findings suggest that liposoluble antioxidants play a key role in the 253 

protection from environmental pollutants, and that the lipophilic compartment represents a specific 254 

target of damage in exposed animals, in agreement with data previously obtained from bovine 255 

exposed to steel plant-derived contaminants (Spagnuolo et al. 2012). 256 

The extent of oxidative damage to proteins and lipids was evaluated by measuring plasma 257 

concentrations of PC, N-Tyr, and LPO, and a significantly higher extent of oxidative modifications 258 
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of protein and lipid was also observed in exposed sheep. As shown in Table 6, plasma levels of N-259 

Tyr, PC, and LPO were significantly lower (P<0.001) in the control group than in the exposed groups. 260 

In addition, by comparing the four groups from polluted areas, significant differences in the extent of 261 

oxidative modifications to plasma proteins and lipids were also found. Indeed, the concentration of 262 

N-Tyr, PC and LPO was higher in the plasma from animals of group V (P<0.01 and P<0.05 263 

respectively) than from the other exposed groups. It is worth mentioning that N-Tyr level represents 264 

the footprint of protein oxidative damage induced by peroxynitrite (Halliwell, 1997), PC may be 265 

introduced into proteins by direct oxidative attack to proteins themselves (Kristal and Yu, 1992), or 266 

by reactions with aldehydes originated during lipid peroxidation processes (Uchida and Stadtman, 267 

1993), and LPO is an index of the extent of lipid peroxidation induced by the interaction of free 268 

radicals with polyunsaturated fatty acids. Therefore our results strongly suggest that lipid 269 

peroxidation and its intermediates, as well as peroxynitrite production, are crucial in determining 270 

oxidative modifications to protein and lipid in sheep reared in polluted areas.  271 

On the basis of the location of the samples collection and the results of data analysis, it is clearly 272 

shown that differences exist between the groups collected in the northern and southern areas of the 273 

island. 274 

Such a result might be connected to the territorial distribution of industrial, military and mining areas. 275 

In fact, for its strategic position in the middle-west of Mediterranean Sea, Sardinia Island has 276 

important oil-refineries (for instance Porto Torres) and one of the biggest petrochemical park in 277 

Europe (Sarroch industrial estate). Moreover, there is a military training area (Quirra zone) and 278 

location of active and disused mines as listed by the Italian Agency for the territory (MATT, 2006). 279 

With the exception of the mining areas spread on the territory, most of the other centres of activity 280 

are located in the southern part of the island in a triangle of about 250 km where the groups with 281 

higher SCE-means (I, V and VI), lower concentration of Ret and Toc and higher level of N-Tyr, PC 282 

and LPO in the plasma (especially V) were sampled. The location of samples collection also explains 283 

the trend of the exposed group III which shows intermediate values of SCE. In fact, it is located near 284 



13 
 

a large industrial area for steel production. However, differently from other polluted areas, here the 285 

values of the contaminants increase when the distance from the industrial pole decrease. Such a 286 

condition might be the result of the wind direction, always reported as E-NE by the Environmental 287 

Protection Agency of Sardinia (ARPAS, 2012). 288 

The higher DNA breakages of these samples agrees with a former study carried out in Sarroch 289 

industrial estate on DNA damages caused by malondialdehyde–deoxyguanosine adducts (Peluso et 290 

al. 2013). The data, drawn from this research, show the problematic situation of this region. Indeed, 291 

a higher incidence of teratogenesis in animals and a higher cancer incidence for both sheep and sheep 292 

farmers of the area V have been reported (Mellis and Lorrai, 2013).  293 

The level of pollution present in these areas was already reported by several studies (Forte et al. 2011; 294 

Peluso et al. 2013; Cidu et al. 2013). In particular, among the most represented pollutants there are 295 

sulphates, As, Cd, Cr, Hg, Ni, Pb, Zn, Sb, Mn, Tl, in different distribution in the soil–water–plant 296 

system in the south-western part and Rb, Tl, W, Al, Ti in the PISQ area as reported by ARPAS (2012, 297 

2013). Furthermore, the disused mine sites in the proximity of the samples collection sites still release 298 

various metals and metalloids into environment, contributing negatively to such condition as reported 299 

by Varrica et al. (2014).  300 

This mixture of air pollutants has a large impact on health of people living in this region. In fact, for 301 

some combined or mixed exposures the health effects may increase more than the expected effects of 302 

the individual components (Silins and Högberf, 2011). It is well established that several 303 

environmental mutagens may induce chromatin damages (Bryant et al., 2004) and overwhelm 304 

antioxidant defences. Since the chromatin is the main component of chromosomes, damage at the 305 

chromosomal level (especially when double DNA breakages occur) may denote chromosome 306 

fragility. The higher is this chromosome fragility, the higher is the risk of mutations in animals, and, 307 

indirectly humans (Iannuzzi et al. 2004). This enhanced chromosome fragility can result in gene 308 

mutations which are often the first step for the onset of cancer, immune-enzymatic defects and 309 

reproductive problems. In previous studies, adverse effects of environment air pollution on human 310 
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and animals reproduction have been demonstrated, including increased risk of foetal growth, 311 

restriction for pregnant woman (Dejmek et al. 1999, 2000), decreased sperm quality in young men 312 

(Selevan et al. 2000), that included sperm DNA damage, and reduced fertility for the animals 313 

(Gustavsson, 1980; Ducos et al. 2008).  314 

Furthermore, since the oxidative stress impairs health, fertility and zootechnical performance of dairy 315 

cows (Miller et al. 1993b), and is involved in the etiology of several diseases and metabolic disorders 316 

(Smith et al. 1984 Bernabucci et al. 2002, 2005), the exposure to environmental pollutants, as 317 

affecting blood redox homeostasis of sheep, might be associated with modifications of physiological 318 

and metabolic functions.  319 

Therefore, our study is a further indication of a potential risk of adverse effect on the health of the 320 

exposed population, which suggests to implement the surveillance activity in this region, especially 321 

in the southern part. 322 

 323 

4. Conclusion 324 

To our knowledge, this is the first report of chromosome fragility by cytogenetic test in livestock 325 

reared in Sardinia. The data obtained in this study confirm that animal biomonitoring is a powerful 326 

tool for risk assessment from natural and anthropogenic exposure to environmental pollutants. In 327 

particular, monitoring the livestock population by cytogenetic tests might be a good tool to control 328 

indirectly the food chain, to preserve health problems, and to avoid management problems and 329 

income losses at farm level. In this respect the herbivores, consuming large volumes of fodder, are 330 

the most suitable mammals to be used as environmental sentinel. This is particular important in 331 

Sardinia region where the larger Italian sheep population is reared. The SCE data obtained in the 332 

present study represent a baseline level for the Sardinian sheep and it represents an essential step for 333 

future assessment of health risks in relation to environmental hazards. We also propose that the 334 

characterization of blood redox status might represent an useful tool for identifying animals exposed 335 

to environmental pollutants. In addition, as plasma concentrations of Ret, Toc, PC, N-Tyr and LPO 336 
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significantly differ among groups from different geographic areas, with different types and degree of 337 

environmental contamination, they could represent selective and specific markers for bio-monitoring 338 

the extent of exposure to specific pollutants.  339 
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Table 1. Chemical emissions due to the various activities of selected areas of Sardinia Island 524 

  525 

Areas Activity Emissions References 

Control Agriculture n.a. 
 

Exposed I Mining Ag,Ba,Cd,Cr,Ni,Pb,Rb,Sb,U,V,Zn Pirastu et al. 2011 

Safronova et al. 2012 

Madeddu et al. 2013 

Varrica et al. 2014 

Exposed II Military former nuclear submarine base Aumento et al. 2004 

Hernandez et al. 2011 

Exposed III Industrial Hg, Cd, Pb, Zn Schintu and Degetto 1999 

Sanna et al. 2003 

Exposed IV Industrial IPA, De Luca et al. 2003 

Pirastu et al. 2011  

Exposed V Military Rb, Tl, W, Ti and Al, Cd, Pb Cristaldi et al. 2013 

Gatti et al. 2013 

Exposed VI Military/Industrial PCDD, PCDF, PCB Storelli et al. 2012 
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Table 2. Number of animals, examined cells, SCE mean values and standard deviations in sheep 526 

reared in polluted and control areas of Sardinia Island (Italy). 527 

 528 

  529 

Animals  Examined cells   SCEs 

Group N  N  N Mean SD 

Exposed I 19  630  5754 8.65c 3.40 

Exposed II 19  630  5388 8.10a 3.50 

Exposed III 12  420  3383 8.05a,b 3.08 

Exposed IV 13  420  3377 7.42a 3.34 

Exposed V 11  315  3575 9.28c 3.56 

Exposed VI 18  560  5280 8.38b,c 3.29 

Control 37  1225  10185 7.86a 3.31 

a,b,c Means within columns without a common superscript differ (P<0.01) 
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Table 3. Parametric (One-way ANOVA) and nonparametric (Kruskal-Wallis H-test) analysis and of damaged cells showing differences among 530 

treatment groups. 531 

 532 

ANOVA  Kruskal-Wallis  

Sources of variation D. of freedom Sum of squares Mean sum of square F ratio   Observed D. of freedom 

Between groups 6 1027,36 171,226 15,45*  H 90,73* 6 

Within groups 4193 46477,4 11,0845 

 

    

Total: 4199 47504,8 

  

    

*p< 0.0001     
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Table 4. P-value obtained from multiple comparisons among the groups performed by Tukey 

pairwises test (above the diagonal) and Dwass-Steel-Critchlow-Fligner pairwises test (below 

the diagonal). Significant values after Bonferroni correction are indicated by asterisks. 

 

 

 

 

 

 

 

 

 

  

  

 I II III IV V VI Control 

I  0.002* 0.011 <0.0001* 0.146 0.991 <0.0001* 

II 0.000*  0.999 0.521 <0.0001* 0.032 0.997 

III 0.015 0.986  0.274 <0.0001* 0.099 0.956 

IV <0.0001* 0.564 0.195  <0.0001* <0.0001* 0.875 

V 0.204 <0.0001* <0.0001* <0.0001*  0.019 <0.0001* 

VI 0.999 0.004* 0.074 <0.0001* 0.096  0.004* 

Control <0.0001* 1 0.934 0.579 <0.0001* 0.000*  
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Table 5. Markers of the antioxidant defence system in plasma of sheep 

 

 

Ret: Retinol; Toc: α-Tocopherol; Asc: Ascorbate; TAC: Total Antioxidant Capacity (µM 

concentration of Trolox equivalents); GPx: Glutathione Peroxidase Activity; SOD: superoxide 

dismutase. 

Sheep reared in not polluted area were regarded as control group. 

***Control vs I, II, IV and V (P < 0.001) 

aaaI vs V (P < 0.001) 

bbbI vs II (P < 0.001)  

cccII vs V (P < 0.001) 

dddII vs IV (P < 0.001) 

eeeIV vs V (P < 0.001)  

eIV vs V (P < 0.05) 

 

 

 

 

 

 

 

 

 Control I II IV V 

Ret (µg/ml) 0.65±0.05*** 0.48±0.04aaa 0.47±0.04ccc 0.46±0.04 0.41±0.03e 

Toc (µg/ml) 2.18±0.08*** 1.28±0.08aaa 1.26±0.08ccc 1.24±0.05 1.09±0.07eee 

Asc (µM) 6.93±0.67*** 5.97±0.41bbb 5.37±0.37cc 6.24±0.28ddd 5.85±0.40 

GPx (nmol/min/ml) 149.8±46.9*** 90.9±30.3 85.5±28.4 101.0±33.6 83.6±27.8 

SOD (U/ml) 1.64±0.37*** 0.91±0.23 0.86±0.21 1.02±0.25 0.84±0.21 

TAC (µM) 106.5±12.3*** 86.6±10.0 81.4±9.4 84.8±9.7 78.8±9.1 

N 20 20 20 20 20 
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Table 6. Markers of oxidative stress in plasma of sheep 

 

 

 

 

 

 

PC: 

protein-bound carbonyls (nmol per mg of protein); N-Tyr: nitro-tyrosine (nmol per mg of protein); LPO: lipid hydroperoxides (µM). 

Sheep reared in not polluted area were regarded as control group. 

***Control vs I, II, IV and V (P < 0.001) 

aaaI vs V (P < 0.001) 

aaI vs V (P < 0.01) 

aI vs V (P < 0.05) 

bbI vs II (P < 0.01)  

cccII vs V (P < 0.001) 

dddII vs IV (P < 0.001) 

eeeIV vs V (P < 0.001) 

  

  Control I II IV V 

PC (nmol/mgP) 18.81±2.87*** 47.47±6.68aa 42.72±6.01ccc 38.95±7.38 55.54±7.81eee 

N-Tyr (nmol/mgP) 12.58±0.94*** 21.93±2.29aaa 19.73±2.06bb, ccc 15.92±0.92ddd 24.12±2.52eee 

LPO (µM) 13.37±2.46*** 20.46±4.58a 18.55±1.94ccc 17.00±1.89 23.94±5.36eee 

N 30 20 20 20 20 
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Fig. 1. Localization of the farms investigated: A-Control; B-Exposed I; C-Exposed II; D-Exposed III; 

E-Exposed IV; F-Exposed V; G-Exposed VI. 

 


