UHWERSITA
| DEGLI STUDI
DI TORINO

[T1S AperTO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

NuChart-ll: The road to a fast and scalable tool for Hi-C data analysis

This is the author's manuscript
Original Citation:

NuChart-1l: The road to a fast and scalable tool for Hi-C data analysis / Tordini, F.; Drocco, M.; Misale, C.; Milanesi, L.;
Lio, P.; Merelli, I.; Torquati, M.; Aldinucci, M.. - In: INTERNATIONAL JOURNAL OF HIGH PERFORMANCE
COMPUTING APPLICATIONS. - ISSN 1094-3420. - (2017), pp. 1-16.

Availability:
This version is available http://hdl.handle.net/2318/1607126 since 2017-10-22T11:20:59Z

Published version:
DOI:10.1177/1094342016668567
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

21 May 2018

Postprint copy of F. Tordini, M. Drocco, C. Misale, L. Milanesi, P. LiO, I. Merelli, M. Torquati, and M. Aldinucci, “NuChart-1I: the road to a
fast and scalable tool for Hi-C data analysis,” International Journal of High Performance Computing Applications (IJHPCA), 2016. doi:
10.1177/1094342016668567

NuChart-1l: the road to a fast and scalable tool
for HI-C data analysis

Fabio Tordini', Maurizio Drocco!, Claudia Misale!, Luciano Milanesi*, Pietro LioT,
Ivan Merelli*, Massimo Torquati®, Marco Aldinucci'

!Computer Science Department, University of Torino, Italy.
TComputer Laboratory, University of Cambridge, UK.
*nstitute for Biomedical Technologies - Italian National Research Council, Segrate (Mi), Italy.
Computer Science Department, University of Pisa, Italy.

Abstract

Recent advances in molecular biology and bioinformatics techniques brought to an explosion of the information about the
spatial organisation of the DNA in the nucleus of a cell. High-throughput molecular biology techniques provide a genome-wide
capture of the spatial organization of chromosomes at unprecedented scales, which permit to identify physical interactions between
genetic elements located throughout a genome. This important information is however hampered by the lack of biologists-friendly
analysis and visualisation software: these disciplines are literally caught in a flood of data and are now facing many of the scale-out
issues that High-Performance Computing (HPC) has been addressing for years. Data must be managed, analysed and integrated,
with substantial requirements in speed (in terms of execution time), application scalability and data representation. In this work
we present NuChart-11, an efficient and highly optimized tool for genomic data analysis that provides a gene-centric, graph-based
representation of genomic information, and proposes an ex-post normalisation technique for Hi-C data. While designing NuChart-I1
we addressed several common issues in the parallelisation of memory bound algorithms for shared-memory systems.

Index Terms
High-Performance Computing, Bioinformatics, Hi-C data analysis, Parallel Computing, Memory-bound algorithms

I. INTRODUCTION

A huge amount of information is daily produced in molecular biology laboratories all around the world, but the interpretation
of this data in an effective way is a complex and challenging task. Also, an increasing number of experiments highlight the
importance of studying the spatial organisation of the DNA in the nucleus, in order to gather insights on the processes ongoing
within a cell: there is an undeniable need for software that permits the integration and the interpretation of genomic data on
a nuclear map, capable of representing the effective disposition of genes in the three-dimensional (3D) space.

Over the last decade, advances in molecular biology techniques have been developed to study chromatin interactions and the
three-dimensional chromosome folding on a larger scale [1]. In 2002, Dekker et al. developed a strategy called “Chromosome
Conformation Capture” (3C) [2], that put the basis for a large number of methods that continuously improved the analysis
of nuclear organization. The 3C method was the first to explore the 3D organization of the chromosome in the nucleus of
the cell, by detecting the frequencies of interaction between any two genomic loci in order to reveal their spatial disposition.
Among 3C-based methods, Hi-C uses Next-Generation Sequencing (NGS) techniques to interrogate the 3C ligation library
more comprehensively and with an increased throughput [3]. The “Hi” thus stands for “High-throughput”, and sometimes it
is also written as HT-3C.

The output of a Hi-C process is a list of pairs of locations along the chromosome, which can be represented as a square
matrix Y, where Y; ; stands for the sum of read pairs matching in position i and position j, respectively. This matrix-based
representation, called contact map, gives the contact frequencies between a group (or groups) of genomic bins. The contact
frequency between two bins relies on their spatial proximity and thus it is expected to reflect their distance. A contact map
is reliable while looking at the intensity of the interactions between two chromosomes, but becomes unsuitable to depict the
neighbourhood of a gene (or of a cluster of genes), lacking a possible emphasis on which actors could play a significant role
in the gene regulation process.

On the other hand, a graph-based representation of Hi-C data can be very useful to create a map where other omics data
can be mapped, in order to characterize different spatially-associated domains: a graph has a high level of expressiveness,
insofar as nodes represent the actors of a process while edges identify relationships among the actors. Structural properties of
a graph can reveal significant information on how the actors of the represented process interact, while parallel algorithms can
be employed to operate over a graph.

The construction of such graphs is based on the exploration of static datasets: raw data resulting from Hi-C experiments are
processed through the HiCUP pipeline!, which produces millions of paired-end reads (i.e., short DNA sequences with start/end

Corresponding author:
Fabio Tordini, Computer Science Dept., University of Torino, Italy — e-mail: tordini@di.unito.it
Lhttp://www.bioinformatics.babraham.ac.uk/projects/hicup/

Postprint copy of F. Tordini, M. Drocco, C. Misale, L. Milanesi, P. LiÒ, I. Merelli, M. Torquati, and M. Aldinucci, “NuChart-II: the road to a fast and scalable tool for Hi-C data analysis,” International Journal of High Performance Computing Applications (IJHPCA), 2016. doi:10.1177/1094342016668567

http://www.bioinformatics.babraham.ac.uk/projects/hicup/

coordinates) listed in a .SAM file. These reads are evaluated against a reference genome and an organism’s list of genes.
Static data structures are constructed from these datasets and are needed throughout the stages that characterize the genomic
data analysis. However, using full data structures dramatically increases the size of used memory and induces an artificial
memory-bound nature that can be avoided. For instance, not all information is needed at every phase of data exploration
and data analysis: by reducing or optimising the working set (that is, the collection of information referenced by a process
during each phase of the execution) and by applying memory optimisations, it is possible to substantially improve the overall
performance.

Although several solutions for Hi-C data processing exist, most of them poorly exploit computing capabilities and optimised
memory access in modern shared-memory architectures. Moreover, the majority of them propose contact maps for the analysis
of the chromosome structure (see section 11-A), but this approach flattens the possibilities for data interpretation uncovered
by Hi-C experiments to a mere frequency count, while the genomic information is blurred beneath. We propose an approach
that overcomes these limitations: based on an early R prototype [4] we designed NuChart-1l, a C++ application that uses
advanced parallel computing techniques (such as non-blocking synchronisation and algorithmic skeletons) and applies memory
optimisations to provide a gene-centric, graph-based representation of the chromosome organisation.

The first prototype entirely relied on the R environment, and presented evident limitations in performance and scalability:
its overhead in managing large data structures and its weaknesses in exploiting the full computational power of multi-core
platforms made the first NuChart prototype unfit to scale up to larger data sets, while it could not be used for highly precise
data analysis (which requires many iterations of graph building process). Moreover, the above limitations dramatically limited
its usability, causing the application to crash frequently due to memory overflows.

NuChart-11 has been designed according to a structured parallel programming approach [5], [6]; in particular, it has been
designed on top of the FastFlow parallel programming framework, that provides high-level parallel programming patterns for
the C++ language.

The whole application is characterized by four main phases: 1) data retrieval from static datasets; 2) construction of the
graph; 3) weighing of the edges as a result of the normalisation step; 4) output of results. Two main phases are suitable
for being rewritten in terms of loop parallelism, since their kernels can be run concurrently on multiple processors with no
data-dependencies involved: the construction of the graph and the weighing of the edges. These two phases constitute by far
the most onerous parts of the application, in terms of execution time: particularly when the diameter of the graph increases,
these phases take up to the 80% of the whole execution time.

This paper is organized as follows: section |1 presents the background from which this work has emerged, giving an overview
of the Bioinformatics tools for Hi-C data analysis, together with a briefing on parallel programming techniques. Section 11
describes the graph construction algorithm and the memory optimisations applied. Section 1V focuses on the normalisation
step, which is of utmost importance when dealing with raw sequenced data. We will show how this normalisation is employed
to obtain the weight of the edges in the graph. Section V describes the experiments conducted to test NuChart-Il. Section VI
presents a discussion about performance issues and results obtained by applying our approach. Results are compared against
other widely used parallel computing frameworks, such as OpenMP and Intel TBB. Section VII concludes this paper.

Il. RELATED WORKS

In this section we provide a comprehensive list of the available tools designed to explore and visualize Hi-C data, followed
by an overview of the most commonly used and studied parallel computing frameworks.

A. Omic Tools

3C-based techniques used to characterize the nuclear organization of genomes and cell types have widespread among scientific
communities, and a number of systems biology methods designed to analyse such data have been proposed. Particular attention
is given to the detection and normalisation of systematic biases: the raw outputs of many genomic technologies are affected both
by technical biases, arising from sequencing and mapping, and biological factors, resulting from intrinsic physical properties of
distinct chromatin states. This makes difficult to evaluate their outcomes, as it may result in false-positives or false-negatives.

Considering general software for the interpretation of Hi-C data, an interesting package is HOMER [7], which contains several
programs and routines to facilitate the analysis of Hi-C data. Like most of the available applications, HOMER relies on the
creation of contact maps for the interpretation of Hi-C data, exploiting Principal Component Analysis and hierarchical clustering
with this representation. Several of the HOMER programs support multiple processors to help speed up the computation,
although, while we are writing this paper, it only works at the chromosome level.

HiTC [8] has been designed to facilitate the exploration of 3C-based data. It allows users to transform, normalize and
visualize interaction maps. An interaction map is a two-dimensional heat-map representation of the matrix of Hi-C counts,
whose entries correspond to the number of times two restriction fragments in a given genomic region have been ligated in
3C and sequenced as a pair. The HiTC package proposes a list of options to define the appropriate data visualization, such as
contrast, color or counts trimming.

TABLE | - Software tools for Hi-C data analysis

Tool Aligner Normalisation Visualisation ~ Implementation Language
HiCUP Bowtie/Bowtie2 - L] Perl, R
HiCLib Bowtie2 Matrix balancing L] Python
Homer - simpleNorm/norm 1 Perl, R, Java
HiTC - normLGF/normICE 1 R
Fit-Hi-C - - L Python
Fish-Hi-Cal L] R

Fit-Hi-C [9] assigns statistical confidence estimates to mid-range, intra-chromosomal contacts by jointly modelling the
random polymer looping effect and previously observed technical biases in Hi-C data sets.

If Fluorescence in situ hybridization experiments are available, a good normalization solution is represented by FisHiCal [10].
This is an R package that performs an iterative FISH-based Hi-C calibration that exploits the information coming from both
these methods. It is the first tool that integrates FISH and Hi-C data, and operates over this information to calibrate the direct
measure for physical distance provided by FISH experiments and the genome-wide capture of chromatin contacts obtained by
Hi-C experiments.

Yaffe and Tanay [11] proposed a probabilistic model to correct biases based on the observation of the genomic features. This
approach can remove the majority of systematic biases, at the expense of very high computational costs, due to the observation
of paired-end reads spanning all possible fragment end pairs.

Hu et al. proposed HiCNorm [12], which uses a parametric model based on a Poisson regression to correct technical and
experimental biases from Hi-C readouts. This is a simplified, and less computationally intensive normalisation procedure than
the one described by Yaffe and Tanay, since it corrects the systematic biases in Hi-C contact maps at the desired resolution level,
instead of modelling Hi-C data at the fragment end level. The drawback here is that the sequence information is blurred within
the contact map. The first NuChart prototype [4] solved this issue by exploiting Hu et al. solution to estimate a score to each
read, identifying half of the Hi-C contact instead of normalizing the contact map, thus preserving the sequence information.
NuChart-11 leverage this solution proposing an ex-post normalisation, that is used to estimate a probability of physical proximity
between two genes, expressed as a score assigned to an edge connecting two nodes in the neighbourhood graph.

Table 1 lists some common Hi-C tools for Hi-C data analysis. The solution that emerges from our work can be clearly
compared to the above, but proposes a different point of view concerning chromosome structures and interactions: by leveraging
the graph-based representation, our solution permits to analyse genomic processes with a social network point of view, focussing
on the features that lead to tie formations and that likely foster interactions among elements. Furthermore, most of the tools
listed in Table I do not seem to account for performance concerns, mostly because these tools are logically composed of several
different computational stages (such as pipelines), where each stage has different computing requirements. Notably, those tools
that encompass an alignment phase are able to exploit some multi-processing capabilities during this phase.

The visualization and exploration of Hi-C data assumes a dramatic importance when analysing Hi-C data. To the best of our
knowledge, no other tool proposes a gene-centric, graph-based visualization of the neighbourhood of a gene, as NuChart-11
does, with a normalisation technique that evaluates the actual probability of physical proximity.

B. Parallel Computing Tools

Over the years, research on loop parallelism has been carried on using different approaches and techniques that vary from
automatic parallelisation to iterations scheduling.

Intel Threading Building Blocks (TBB) [13] is a library that enables support for scalable parallel programming using
standard C++. It provides high-level abstractions to exploit task-based parallelism, independently from the underlying platform
details and threading mechanisms. The TBB paral lel_for and parallel_foreach methods may be used to parallelise
independent invocation of the function body of a for loop, whose number of iterations is known in advance. C++11 lambda
functions can be used as arguments to these calls, so that the loop body function can be described as part of the call, rather than
being separately declared. The paral lel_for splits the range [0, num_iter) into sub-ranges and processes each sub-range
r as a separate task using a serial for loop in the code.

OpenMP [14] uses a directive based approach, where the source code is annotated with pragmas (#pragma omp) that
instruct the compiler about the parallelism to be used in the program. In OpenMP, two constructs are used to parallelise a
loop: the parallel and the loop construct. The parallel construct, introduced by the paral lel directive, declares a parallel
region which will be executed in parallel by a pool of threads. The loop construct, introduced by the For directive, is placed
within the parallel region to distribute the loop iterations to the threads executing the parallel region. The two constructs are
often fused together into the #pragma omp parallel for directive. OpenMP supports several strategies for distributing
loop iterations among threads. The scheduling strategy may be specified via the schedule(type[,chunk size]) clause,
which is appended to the For directive. The type of scheduling policy can be one among static, dynamic, guided, auto,
runtime, each one providing a different thread scheduling policy.

FastFlow is a parallel programming environment originally designed to support efficient streaming on cache-coherent multi-
core platforms and distributed systems [15], [16]. It is realised as a C++, pattern-based, parallel programming framework, aimed
at simplifying the development of applications for multi-core and GPGPUs platforms. It provides developers with a set of high-
level, parallel programming patterns (aka algorithmic skeletons), obtained by the composition of two basic algorithmic skeletons:
a farm skeleton, and a pipeline skeleton. Leveraging the farm skeleton, FastFlow exposes a Paral lelFor pattern [17], where
chunks of a loop iterations having the form for (idx=start; idx<stop; idx+=step) are executed by the farm workers.
Just like TBB, FastFlow’s Paral lelFor pattern uses C++11 lambda functions as a concise and elegant way to create a
function object: lambdas can capture the state of non-local variables by value or by reference and allow functions to be
syntactically defined when needed.

The FastFlow library has been our first choice among available algorithmic skeleton frameworks: despite many others provide
support for shared-memory multi-core architectures — which is the type of architecture we have been using for this work —
we were already acquainted with FastFlow, and largely enjoyed the possibility to seamlessly parallelise for loops by means
of lambda functions. We also evaluated our solution against TBB- and OpenMP-based implementations, so that we could have
a comparison with parallel programming frameworks created by major industry powerhouses, as opposed to other algorithmic
skeleton frameworks developed by academic institutions.

I1l. NEIGHBOURHOOD GRAPH CONSTRUCTION

We recall that a graph G is a formal mathematical representation of a collection of vertices (V), connected by edges (E)
that model a relationship among vertices. In this context, vertices represent Genes (e.g., an ordered set of an organism’s genes)
labelled with genes names. Here we define a paired-ends Hi-C read as a connection ¢, (¢ ! C), meaning a spatial relationship
between two genes. Follows that two genes g1,092 ! V are connected if there exists a connection c¢(g1,92) ! C encompassing
both of them. If such a connection exists, then exists an edge e = c¢(g1,092) ! E. The neighbourhood graph Ng, Ng " G,
can be defined as undirected weighted graph Ng(Vn, En, W) Where:

< VN "'V is a set of Genes;

- En "" E is a set of existing Edges;

- W:E#R* 0$5w3$1, is a function that assigns a probability of actual physical proximity for each pair of adjacent
genes c(gi, ;) connected by means of a paired-ends Hi-C read.

The neighbourhood graph is thus the induced subgraph obtainable starting from a given root vertex v, and including all
vertices adjacent to v and all edges connecting such vertices, including the root vertex. With these premises, our neighbourhood
graph represents a topological map of the specific nucleus region to which a gene belongs.

A. Graph Construction

A typical Hi-C analysis begins with the pre-processing of FASTQ files with HICUP, which produces a SAM file containing
millions of paired-end reads. These reads represent the main input of NuChart-I1, because they expose the spatial information
exploited by the process to infer a topological structure of the DNA.

By refining the algorithm proposed in the original prototype [4], NuChart-11 evaluates reads against a reference genome that
contains the coordinated of chromosome fragments generated by a digesting enzyme, and a list of genes with their positions
(again, coordinates) along the DNA. The basic mechanism in the exploration stage loops over all wanted genes: for each gene,
it looks for all those paired-ends Hi-C reads (connections ¢; ¥ C, in our case) whose first end encompasses the current gene —
basically comparing chromosome fragment and gene coordinates. Among found connections, it searches for neighbouring
genes that might be located within ¢’s second end. The reason for searching adjacent genes in a read’s second end come
from the way Hi-C (and 3C-based) experiments are conducted: Hi-C identifies spatially adjacent DNA segments — in terms
of three-dimensional space. If a gene is found on a read’s first end, a possible gene found in the second end is likely to be
spatially adjacent, unless of sequencing errors and biases.

If we define the root of our neighbourhood graph to be at level 0, a search at level 1 yields all the genes directly adjacent
to the root. Follows that a search at level i returns all genes directly adjacent to any gene discovered at level i % 1, starting
from the root. The final graph is returned in form of a list of edges.

Listing 1 reports a pseudo-code for the (sequential) graph construction. Each iteration of the outermost whi le loop pops
an item g from the queue of unvisited genes and explores the reads dataset to find those reads whose first end encompasses q
(Listing 1, row 10). For each discovered read, the algorithm searches for a gene on the second pair of the active read (Listing 1,
row 13): if a candidate gene g is found, an edge (g, g) is possibly added to the edges list E (unless it already exists), and g is
pushed into the working queue Q, as in any typical graph exploration procedure, unless it has already been visited. When the
queue Q is empty, all genes reachable through the given set of reads have been found: the procedure terminates returning the
graph G as a list of edges. Note that each edge represents a connection between two genes: for each edge of the graph, the
DNA information contained in the Hi-C read is still available, including mapping quality score, DNA sequence and fragment
coordinates. We also keep count of the level of each found gene, intended as its distance from the starting node: the variable
Iv keeps track of this information.

BuildGraph (roots, Reads, Genes) {
Q=V=E ="
G ="
v :

0

push roots in Q
while (Q not ™) {

1
2
3
4
5
6
7
8
9

pop q from Q
for_each (c in Reads, c.FirsteEnd.Chr == gq.Chr) {
10 if (q overlaps c.FirstEnd) {
1 // find neighbour genes for q
12 for_each (g in Genes, g.Chr == c.SecondPair.Chr) {
13 if (g overlaps c.SecondPair and (q,g) not in E) {
14 add (gq,9) to E
15 if(not g.Visited) {
16 add g to V
17 push g in Q
18
19 3}
20 }
2 }
22
23 Iv :=Iv +1

2% }
25 G := (v, E)
% }

Listing 1 — Sequential graph construction

At each iteration, a subset of the Hi-C reads file is accessed, namely, those reads whose first end falls in the same chromosome
as the one enclosing the gene q (Listing 1, row 9). Then, for each read c, a subset of the genes dataset is accessed, namely,
the genes enclosed in the same chromosome as the one enclosing the second end of the connection ¢ (Listing 1, row 12).

Data-parallel BFS-like graph exploration: the graph exploration proceeds according to a Breadth First Search (BFS)
strategy: starting from one or more root genes (the starting node(s) of the graph), it expands the discovered graph one level at a
time, until either all the reachable nodes have been found (i.e. fix-point) or up to a chosen distance from the root. The BFS-like
graph exploration results in a data-parallel procedure, in which any arbitrary subset of reads can be processed independently
from each other, provided that no data dependency is involved in their manipulation. Ideally, it can be parallelised in a seamless
way by just taking the kernel of the procedure and putting it into a Paral lelFor loop pattern. High-level parallelisation of
graph exploration has been treated, among others, in [18].

This high-level approach requires some adjustments. For instance, the BFS-like graph exploration should be organised in a
level-synchronised way, and concurrent write accesses to data structures shared between worker threads must be managed. For
example, each iteration of the loop should build a local graph, and some mechanism of graph merging from local graphs to
a global output graph (actually one for each level) should be provided. Globally, this approach amounts to provide a reduce
phase after each Paral lelFor instance, in which per-thread local structures are merged into per-level global ones.

B. Memory-optimised graph construction

User-defined data structures used for describing complex data often gather several (related) elements in a single data type.
This logical organisation also reflects how these elements will be mapped in physical memory and this — ideally — should
not affect the data access performance. However, current architectures are highly optimised for contiguous memory access,
thus extra care should be taken when dealing with arrays of complex user-defined data structures.

The basic BFS implementation of Listing 1 relies on full data structures containing a number of fields required in different
phases of the application, event though many of them are not accessed in the graph construction stage. For example, much
of the information concerning genes symbols, DNA sequence, chromosome name, etc. At a first glance, they might not seem
to harm the overall performance, but the actual results do not achieve expected performance: using full data structures simply
showed extremely poor scalability results, which was caused by the loading of (lots of) unused data into caches due to spatial
locality. This overhead can actually saturate the memory bus, making it nearly impossible to exploit multiple processors in a
multi-core system, even in the case of an embarrassingly parallel application.

The approach we propose here aims at creating data structures that only define the subset of variables used in each specific
part of the program: for each of these parts, the needed data is duplicated and stored in novel data structures, so that the
memory intensive computations can be performed using a substantially reduced working set. This permits to improve the
memory bandwidth usage and to reduce cache misses. Since the duplicated data has read-only semantics, the choice of data
duplication is preferred in this case, because it can be easily implemented without breaking the application logic: the original

BuildGraph (roots, Reads, Genes, L_MAX, NTH) {

Q =1 =G :=
CINTH] = VINTH] = E[NTH] := "
lv := 0

push roots in Q
while (Q not " and Iv < L_MAX) {

1
2
3
4
5
6
7
8
9

pop q from Q
// find Hi-C Reads for q
10 ParallelFor (c in Reads, NTH) {
1 if (q overlaps c.FirstPair and q.Chr == c.Chr)
12 add c to C[th]
13 }
14 // find neighbour genes for g
15 ParallelFor (c in C[th], NTH) {
16 for_each (g in Genes, g.Chr == c.SecondPair.Chr) {
17 if (g overlaps c.SecondPair) {
18 add g to V[th]
19 add (q, g) to E[th]
20 }
2 }
22
23 // level synchronisation
2% 1 := BuildpPartialGraph(V[th],E[th])
25 for_each (v in V[th], 0#th<NTH) // next level vertices
2 it (not v.Visited)
2 push v in Q
28
29 Ilv :=Iv+1
30 C[th] = V[th] = E[th] ="
31 }
32 G := BuildGraph(!)
3}

Listing 2 — Parallel BFS Graph Construction

data structures are still usable in other parts of the code (e.g., friendly print output results). In cases where the duplication is
not affordable, it is also possible to optimise data structures at the price of a more complex software design, with the need of
substantial refactoring of all the source code.

Listing 2 presents a pseudo-code with a parallelised implementation of the graph construction phase, where a Paral lelFor
pattern is used. Q represents our working queue, that contains unique genes discovered throughout the current iteration. L_MAX
determines the maximum distance from the root that has to be reached: in this way we can decide the coverage of our search.
CINTH], VINTH] and E[NTH] are used to store per-thread local data, where NTH defines the degree of parallelism to be
used (i.e., the number of threads in use) and th identifies thread’s own container, such that 0 $ thid < NTH. V[NTH] and
E[NTH] contain the found genes and the edges so far identified, respectively, by each of the working threads. CEINTH] will
contain all paired-ends reads that each worker thread identifies as encompassing a gene. ! is used at every level synchronisation
to store partial graphs (Listing 2, row 23), where the Bui ldPartalGraph function is responsible for removing duplicate
edges and returns a graph with unique vertices and edges identified so far. The definitive graph is built at the very end (Listing 2,
row 32, Bui ldGraph function).

The algorithm starts searching for those Hi-C paired-end reads whose first end fragment encompasses the gene in focus. This
yields a list of reads (connections) containing only chromosome fragments where neighbour genes may be located (Listing 2,
rows 10-13): upon this list the search for neighbours takes place, using NTH independent threads over the set of connections
(rows 15-21). Each thread looks for genes whose coordinates overlap the second end of the read. When a gene matches the
test, the new found gene is added to the thread-local vertices set, and an edge is created between the considered vertex and
the new one. At each iteration level, the algorithm first collects all potential connections for a gene, and then searches for
adjacent genes (neighbours), in parallel, over all the connections. At the end of each level iteration, the parallel execution is
synchronized: at this point thread-local sets are processed and a partial graph is constructed with unique nodes and edges
discovered at the current iteration level. The definitive graph is built at the end of the execution. The iterations proceed until
all the nodes of the graph have been visited, or preferably up to the desired level specified through L_MAX.

C. Discussion

Notoriously, when threads access global data structures or shared data structures, these are potential sources of false sharing,
particularly when using a single-heap allocator that gives to many threads parts of the same cache line. In our implementation we
tried to minimise the number of dynamic memory allocations performed by each thread, mostly using pre-allocated containers

NormaliseEdge(e, !, NTH) {

LenM = GCcM = MapM = CMap := " // genomic features matrices
X=Y=" -=m
Conv := false

1
2
3
4
5
6 // all matrices have the same size
7
8
9

CMap := ContactMap(e.-Chrl, e.Chr2)
LenM := BuildLengthMatrix(e)
GCcM := BuildGCcontentMatrix(e)
10 MapM := BuildMappabilityMatrix(e)
11
12 X = Matrix(LenM™, GCcM™)
13 Y = Cmap™
14
15 while (not Conv) {
16 ApplyLlnkFunctlon(Y)
17 = ApplyGLM(Y, X, MapM™)
18 Conv := CheckConvergence(D)

19 }
20 e.Weight = (")
2}

Listing 3 — Normalisation

(e.g., C++ vectors) for read-only accesses: memory allocation is performed padding each allocated slab to the cache line size,
so that objects are spaced far enough apart in memory that they cannot reside on the same cache line, thus limiting false
sharing. A drawback here is the risk of memory blowup, due to the padding that slightly increases each object’s size, and the
overall used memory: this risk can be minimised by adhering to the well know rule of thumb, which dictates that all dynamic
allocated memory must be freed, in order to avoid memory leaks and undesirable memory fragmentation.

NuChart-11’s graph construction performance is strongly affected by the size of data structures used throughout the compu-
tation: most of biology-related applications deal with memory-bound problems, as a consequence of the huge amount of data
that are normally involved in data analysis and simulations. Datasets used for DNA exploration are ordered sets of genomic
features — such as paired-end reads, chromosome fragments, human genes labelled with genes names — whose sizes range
between tens of Megabytes to several Gigabytes.

Datasets from Hi-C experiments easily reach several Gigabytes in size, and they are normally used in an application together
with supplementary data: at run-time, the total memory load quickly grows up, easily exceeding 8 GB of used memory for a
4 GB Hi-C dataset. The use of a dedicated memory pool for datasets allocation, as we attempted to realise, reduces memory
fragmentation and avoids memory leaks, but can easily over-load main memory, causing the OS to swap out pages and
irremediably compromising performance. The working set reduction alleviates this problem: by only keeping actually needed
fields, data structures are contiguous and consecutively accessed. In this way the underlying cache optimisation mechanism
works more efficiently, less unused data is loaded into the cache and more memory bandwidth is available.

IV. NORMALISATION

Particular attention is given to the detection and normalisation of systematic biases: several sequence-dependent features
substantially bias Hi-C readouts. These biases can be associated with sequencing platforms (such as GC-content) and read
alignment (such as mappability), while others are specific to Hi-C experiments (such as frequency of restriction sites). A
normalisation process is needed to remove these biases and avoid false-positives or false-negatives results, that could lead to
incorrect data interpretation.

Yaffe and Tanay were the first to discover such factors [11] and developed an explicit correction procedure that models the
probability of observing a contact between two regions, but requires a priori knowledge of the genomic features that affect
contact counts (i.e., GC-content, mappability, and fragment length). Hu et al. improved such method providing a significantly
faster explicit correction technique that uses regression-based models [12]. Based on these achievements, NuChart-11 applies
an ex-post normalisation to each edge of the resulting neighbourhood graph.

In our vision, an edge identifies the existence of a Hi-C read that encompasses two connected genes: normalising each
edge using genomic features — which may include the DNA sequence, genes and gene order, regulatory sequences and other
genomic structural landmarks — yields a significance estimate of fragments interactions. Such estimate is then used as the
weight of the edge, that assumes the role of likelihood of physical proximity for the involved genes.

For each edge, a contact map (Y) is constructed directly modelling the read count data at a resolution level of 1 Mb (mega
base). Hi-C data matrix is symmetric, thus we consider only its upper triangular part, where each point of Y;; denotes the
intensity of the interaction between positions i and j. Using the local genomic features that describe the chromosome (fragment
length, GC-content and mappability), we can set up a generalized linear model (GLM) with Poisson regression, with which
we estimate the maximum likelihood of the model parameters. The model is given by the formula:

Fig. 1 — Neighbourhood graph with genes ABL1 and BCR, according to LiebermanAiden’s SRA:SRR027956 (left) and SRA:SRR027962 (right) experiments

e(Y)=g{XT1}.

Here Y, the dependent variable, is the contact map that contains the measured contact frequencies: the assumption of this
GLM is that the measured interaction frequencies are generated from a particular distribution in the exponential family, the
Poisson distribution in our case, which is used to count the occurrences in a fixed amount of space. X is the independent
variable, which is built from chromosome length and GC-content, measured for each locus of the contact map. ! denotes the
parameter vector to be estimated: X T ! is thus the linear predictor, that is the quantity which incorporates the information
about the independent variables into the model. It is related to the expected value of the data through the link function, g,
which is the natural logarithm in our case because it is the canonical link function used with a Poisson distribution.

The maximum likelihood estimate for each edge is computed using the Iteratively Weighted Least Squares algorithm (IWLS),
proposed by Nelder and Wedderburn [19]. The best-fit coefficients returned by the linear regression are used to compute the
final score of an edge, so that the edge contains an estimate of the physical proximity between the two genes it links, plus the
genomic information for both genes. Listing 3 reports the pseudo-code for the normalisation of a single edge.

For each edge, a contact map (CMap) is constructed directly modelling the read count data at a resolution level of 1 Mb
(or according to the resolution of the Hi-C experiments used) for the chromosomes identified by the Hi-C read. The rows and
the columns of the contact map correspond to genomic regions (bins), and each point of CMap; j denotes the intensity of the
interaction between positions i and j. The contact frequency between two bins relies on their spatial proximity, and thus it is
expected to reflect their distance. Also, Hi-C data matrix is symmetric, thus we consider only its upper triangular part (denoted
with ‘7). Other matrices are built after parsing text files containing the required values for each locus of interest. Text files
containing these feature have been downloaded from online repositories (e.g., NCBI, EBI). Model components are built using
arrays containing such upper-triangular values (excluding the diagonal: diagonal values are all zeros, because a chromosome
locus does not interact with itself), thus halving the memory consumption for each edge analysed.

The edges weighing phase is a data parallel application, where any arbitrary subset of the edges can be processed inde-
pendently from each other by mean of a parallel loop pattern. This data parallelism can be properly exploited to boost up
performances and drastically reduce execution time, by just using the code in Listing 3 as the lambda function executed by
the Paral lelFor pattern: the skeleton will be responsible for partitioning the data structure containing all the edges, and
will assign a bunch of edges to each worker.

The regression is run until a convergence criterion is met: in our case, we check that the absolute value of the **2 (chi-squared)
difference at each iteration is less than a certain threshold #:

w2 w2
" % “Gial < #.

In Listing 3, the function ApplyGLM writes the best-fit parameters in vector !, which is the result of the regression: these
coefficients are used to calculate the score (i.e. the estimation of physical proximity) for the edge connecting the two genes.
Also, we compute dispersion and standard error, so as to provide a useful summary o