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Abstract. Recent advances in molecular biology and Bioinformatics
techniques brought to an explosion of the information about the spa-
tial organisation of the DNA in the nucleus. High-throughput chromo-
some conformation capture techniques provide a genome-wide capture
of chromatin contacts at unprecedented scales, which permit to iden-
tify physical interactions between genetic elements located throughout
the human genome. These important studies are hampered by the lack
of biologists-friendly software. In this work we present NuchaRt, an R
package that wraps NuChart-II, an efficient and highly optimized C++
tool for the exploration of Hi-C data. By rising the level of abstraction,
NuchaRt proposes a high-performance pipeline that allows users to or-
chestrate analysis and visualisation of multi-omics data, making optimal
use of the computing capabilities offered by modern multi-core architec-
tures, combined with the versatile and well known R environment for
statistical analysis and data visualisation.

Keywords: Next-Generation Sequencing, Neighbourhood Graph, High-
Performance Computing, Multi-Omic Data, Systems Biology

1 Scientific Background

Over the last decade, a number of approaches have been developed to study
the organisation of the chromosome at high resolution. These approaches are all
based on the Chromosome Conformation Capture (3C) technique, and allow the
identification of neighbouring pairs of chromosome loci that are in close enough
physical proximity (probably in the range of 10-100 nm) that they become cross-
linked [1]. This information highlights the three-dimensional organisation of the
chromosome, and reveals that widely separated functional elements actually re-
sult to be close to each other, and their interaction can be the key for detecting
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critical epigenetics patterns and chromosome translocations involved in the pro-
cess of genes regulation and expression.

Among 3C-based techniques, the Hi -C method exploits Next-Generation Se-
quencing (NGS) techniques to provide a genome-wide library of coupled DNA
fragments that are found to be close to each other in a spatial context. The con-
tact frequency between the two fragments relies on their spatial proximity, and
thus it is expected to reflect their distance. The output of a Hi-C process is a list
of pairs of locations along all chromosomes reads, which can be represented as a
square matrix M , where each element Mi,j of the matrix indicates the intensity
of the interactions between positions i and j.

In a previous work we proposed NuChart-II as a highly optimised, C++
application designed to integrate information about genes positions with paired-
ends reads resulting from Hi-C experiments, aimed at describing the chromosome
spatial organisation using a gene-centric, graph-based approach [6]. A graph-
based representation of the DNA offers a more comprehensive characterization of
the chromatin conformation, which can be very useful to create a representation
on which other omics data can be mapped and characterize different spatially-
associated domains.

NuChart-II has been designed using high-level parallel programming pat-
terns, that facilitate the implementation of the algorithms employed over the
graph: this choice permits to boost performances while conducting genome-wide
analysis of the DNA. Furthermore, the coupled usage of C++ with advanced
techniques of parallel computing (such as lock-free algorithms and memory-
affinity) strengthens genomic research, because it makes possible to process much
faster, much more data: informative results can be achieved to an unprecedented
degree [3].

However, C++ is not widely used in Bioinformatics, because it requires highly
specialised skills and does not fully support the rapid development of new inter-
active pipelines. Conversely, the modularity of R and the huge amount of already
existing statistical packages facilitates the integration of exploratory data anal-
ysis and permits to easily move through the steps of model development, from
data analysis to implementation and visualisation. In this article we discuss the
integration of our C++ application into the R environment, an important step
toward our objective of augmenting the usability of bioinformatics tools: we aim
at obtaining a high-performance pipeline that allows users to orchestrate analy-
sis and visualisation of multi-omics data, making optimal use of the computing
capabilities offered by modern multi-core architectures, combined with the versa-
tile and well known R environment for statistical analysis and data visualisation.
The novel package has been renamed NuchaRt.

1.1 Parallelism facilities in R

By default, it is not possible to take advantage of multiple processing elements
from within the R environment. Instead, a sort of “back-end” must be regis-
tered, that effectively permits to run a portion of code in parallel. For what it
concerns high-performance computing, some libraries exist that foster parallel
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programming in R, most of which focus on distributed architectures and clusters
of computers. Worth to mention are Rmpi and Snow.

Rmpi is a wrapper to MPI and exposes an R interface to low-level MPI func-
tions. The package provides several R-specific functions, beside wrapping the
MPI API: parallel versions of the apply()-like functions, scripts to launch R in-
stances at the slaves from the master and some error-handling functions to report
errors form the workers to the manager. Snow (Simple Network Of Workstations)
provides support for simple parallel computing on a network of workstations
and supports several different low-level communication mechanisms, including
private virtual machine (PVM), MPI (via Rmpi) and raw sockets. The package
also provides high-level parallel functions like apply() and simple error-handling
mechanism.

The multicore package builds a back-end for parallel execution of R code on
machines with multiple CPUs: all jobs share the full state of R when parallel
instances are spawned, so no data or code needs to be copied or initialized.
Spawning uses the fork system call (or OS-specific equivalent) and establishes a
pipe between master and child process, to enable inter-process communication.
However, the variety of operations that can be parallelized with multicore is
limited to simple independent math computations on a collection of indexed
data items (e.g, an array).

The doMC package acts as an interface between multicore functionalities and
the foreach package, which permits to execute looping operations on multiple
processors.

R/parallel enables automatic parallelization of loops without data dependen-
cies by exposing a single function: runParallel(). The implementation is based
on C++, and combines low-level system calls to manage processes, threads and
inter-process communications. The user defines which variable within the en-
closed loop will store the calculation results after each iteration, and how these
variables have to be operated and reduced.

It is worth to mention that an interface to Intel TBB for R also exists, that
pretty much resembles our approach and permits to use TBB’s parallel_for

pattern to convert the work of a standard serial for loop into a parallel one,
and the parallel_reduce construct can be used for accumulating aggregates
or other values. This solution enforces a master/slave behaviour between R and
C++, so that data-parallel computations can be offloaded to C++. We will
shortly see that our approach pretty much resembles this latter one.

Memory management

The notoriously “poor” memory management mechanism in R is actually a com-
bination of multiple factors, that also include the way operating systems allocate
memory. Since our development relies on Linux OS, a discussion about these fac-
tors will shed some light over this problem.

R uses a lazy memory reclaim policy, in a sense that it will not reclaim
memory until it is actually needed. Hence, R might be holding on to memory
because the OS hasn’t yet asked for it back, or it does not need more space yet.
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In order to decide when to release memory, R uses a garbage collector (GC) that
automatically releases memory to the OS when an object is no longer used. It
does so by tracking how many references point to each object, and when there
are no references pointing to an object it deletes that object and returns memory
to the OS. This means that when we have one or more copies of a big object,
explicitly removing the original object does not correspond to free memory space:
until references to that object exists, the memory wont be released. Even a direct
call to the GC does not force R to release memory, rather it acts as a “request”,
but R is free to ignore [7].

Furthermore, R has limited control over memory management mechanism:
it simply uses malloc/free functions plus a garbage collector. One attempt to
force memory to be released to the OS is the use of the malloc_trim function,
that explicitly forces memory release, provided that a sufficiently large chunk
is ready to be released. We managed to limit the drawbacks related to these
weaknesses by avoiding unnecessary copies of objects and promptly freeing their
memory, as soon as they are no longer needed. In this way we controlled memory
leaks that cause memory fragmentation to explode.

1.2 Hi-C data analysis step-by-step

The Hi-C data analysis conducted with NuChart-II walks through five main
steps:

1) data retrieval and parsing;
2) neighbourhood graph construction;
3) weighing of the edges as a result of data normalisation;
4) statistical analysis;
5) output and visualisation.

NuChart-II parses a number of options from Command Line Interface (CLI)
to set up and characterise each execution. Once started, the application walks
through all the steps outlined above in a “monolithic” fashion, and yields its
results as a summary of the whole process: the final output is available in terms
of a neighbourhood graph drawn using some plotting engine, together with for-
matted text files (such as csv files) that contain whole information necessary
to examine the represented data. This include the actual sequences “contained”
in edges, edges probability resulting from data normalisation, network analysis
metrics and various statistical annotations.

Genomic data analysis, just like many other scientific fields, does not work as
one monolithic process: different stages of data analysis are just fundamentally
different, and have different parallelism patterns, memory access and data access
requirements. Also, it often makes sense to run the same stage of an analysis in
a number of different ways to demo nstrate the robustness of novel results or
to tackle different sorts of data, for example one in which a reference genome is
available, compared to one where it is not.

If we consider the possibility to map additional features on a graph — such as
genes expression, CTCF binding sites or methylation profiles — we would choose
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a dataset from which to gather the required information and re-execute the
application from the beginning, until we get our output with mapped omics data.
This means that no intermediate inspection is allowed, nor we could choose some
quick statistics to satisfy whatever curiosity or to banish some doubts. Despite
its undeniable efficiency, this lack of modularity highlights a clear limitation in
usability of the C++ implementation.

These factors led us to re-consider R as a “hosting” environment for a scalable
and usable tool for Hi-C data analysis. From the early R prototype — developed
within the R environment — we learned that high-performance and good mem-
ory hierarchy exploitation is hard to achieve within the R environment, due to
specificities of the environment itself, and requires a substantial programming
effort. Nonetheless, research during the last decade has widely explored the use
of parallel computing techniques with R.

2 NuchaRt

We aim at building a tool for Hi-C data analysis that is both efficient — in terms
of speed and memory resources exploitation — and usable. We decided not to
use off-the-shelf libraries for parallel computing, because of the well known R’s
limits in memory management: our search for long-range chromatin contacts
over genome-wide paired-ends reads results in a memory-bound algorithm, thus
parallel memory-intensive tasks should be kept on C++ side where we can ob-
tain a finer memory control, while we rely on R for setting up a usable working
environment. Also, we already had a fully tested C++ solution to our problem,
that led us to consider Rcpp [4]: it facilitates data interchange from C++ to
R and vice-versa. C++ objects holding the output of a computation are made
available within the R environment, ready to be used as source for advanced
statistical analysis, by mean of a wrapping mechanism based on the templated
functions Rcpp::as<>() and Rcpp::wrap(). These functions convert C++ ob-
ject classes into a S expression pointers (called SEXP), that can be handled on
the R side to construct Lists or DataFrames4, which are essential object types
in R and are used by almost all modelling functions.

In this respect, our application clearly exhibits a master/slave behaviour: on
the R side we set up the “background” for the computation, and then we offload
computationally intensive tasks to C++ (see Figure 1). Once it terminates, the
needed information is moved back to the R side and is ready to be processed,
drawing from the huge R’s library basket.

2.1 NuchaRt and Rcpp

In our context, we have dealt with four C++ objects that abstract the leading
actors of our software: SamData, Gene, Fragment and Edge. These objects contain

4 We actually use data.tables as basic data structures for our datasets: data.table
is an enhanced version of data.frame that allows to easily optimise operations for
speed and memory usage
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Fig. 1: Master/Slave behaviour between R and C++, on the graph construction
phase

much of the information that is needed to build a topographical map of the DNA
from Hi-C data. In order to exchange a SamData object between C++ and R we
have specialised the templated functions above: a std::vector<SamData> is thus
treated by R as a list of Lists, while a list of Lists in R (or a DataFrame) is man-
aged in C++ by casting the SEXP object to a Rcpp::List (or a Rcpp::DataFrame)
object, and by subsequently filling each field of the SamData class with the value
contained in the respective field of the List.

Recalling section 1.2, NuChart-II can be described as a 5 stages pipeline:
from data retrieval to output and visualisation, these phases can now be broke
up and used as loose modules. Phase 1) is responsible for data collection and
early data processing: datasets are provided as static csv-like files, but can also
be downloaded from on-line repositories. The information contained therein is
parsed and processed, in order to build the data collections needed to perform
the computations: unneeded fields are dropped and elements are ordered in a
consistent way, while a unique identifier for each element of a collection is gener-
ated, when needed. Problems may arise if these operations are performed on the
R side, as it may lead to memory overflows with big size files (> 2GB, as it is
the case with SAM files) due to the way R objects are constructed and stored in
memory. For this reason dataset whose size exceeds 2GB is parsed on C++ side
(as it is the case for SAM files). No matter where these operations are executed,
objects can be moved from C++ side to R side and vice-versa, as explained
above.

Phases 2) and 3) constitute by far the most onerous parts of the application,
in terms of execution time and resource consume. Both of them are suitable for
being revisited in the context of loop parallelism, since their kernels can be run
concurrently on multiple processors with no data dependencies involved. These
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Algorithm 1.1 Example of as and wrap usage
1 template<> SEXP wrap(const SamData &s) {
2 List ret = List::create( Named("Id") = s.getId(),
3 Named("Chr1") = s.getChr1(),
4 Named("Start1") = s.getStart1(),
5 Named("Chr2") = s.getChr2(),
6 Named("Start2") = s.getStart2(),
7 Named("Seq") = s.getSeq()
8 );
9 return wrap(ret);

10 }
11

12 template<> SamData as( SEXP s ) {
13 List samL = as<List>(s);
14 SamData sam;
15

16 sam.setId ( as<long>( samL["Id"]) );
17 sam.setChr1 ( as<string>(samL["Chr1"]) );
18 sam.setStart1 ( as<long>( samL["Start1"]) );
19 sam.setChr2 ( as<string>(samL["Chr2"]) );
20 sam.setStart2 ( as<long>( samL["Start2"]) );
21 sam.setSeq ( as<string>(samL["Seq"]) );
22

23 return sam;
24 }

phases have been thoroughly explained in our previous works [3,5,6], and we
refer to those writings for a thorough explanation. Not much changes when we
offload the a computation from R to C++: the very same logic is used and the
ParallelFor skeleton permits to speed up both phases in a seamless way. Data
transfer overhead is negligible, compared to the computationally intensive task
that takes place.

Phase 4) encompasses essential features that the package ought to provide,
in order to fulfil the requirements of a useful tool for genomic data interpre-
tation. With a graph-based representation we can apply network analysis over
the resulting graph: topological measures capture graph’s structure for nodes
and edges and highlight the “importance” of the actors. For instance, centrality
metrics describe the interactions that (may) occur among local entities. Rank-
ing of nodes by topological features (such as degree distribution) can help to
prioritize targets of further studies or lead to a more local, in-deep analysis of
specific chromosome locations. Here studies of functional similarity can suggest
new testable hypotheses [8].

Finally, visualisation is crucial for a tool that aims at facilitating a better
interpretation of genomic data. NuChart-II supplies both tabular output and
graphical visualization. Concerning the latter, common plotting engines perform
nicely with small-to-medium sized graphs, but cannot provide useful represen-
tations of huge graphs.

A possible approach could be to decouple visualisation from NuchaRt, and
make use of external applications purposely designed for interactive visualisation
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of networks. One such application is Gephi5, that permits to interact with the
graph by manipulating structures, shapes and colors to reveal hidden properties.
NuchaRt can output a resulting graph in GraphML format, which permit to get
the most out of Gephi. In this way the user can easily browse the results of Hi-C
data analysis through Gephi interface.

3 Discussion

The novel package benefits of the combined use of parallel programming tech-
niques provided by the C++ engine, and the flexibility of the R environment,
maintaining the same performance and scalability achieved in NuChart-II. More-
over, within the R environment the five steps listed in section 1.2 become loose
but totally compatible modules, and could be either executed in order or as
services that permit to accomplish a specific task.

Results of each module are made globally available in form of DataFrames,
and can be easily queried and inspected, exported, or saved and re-used with
other, different data analysis tools. The graph can be plotted and the results can
be visualised and browsed. Eventually, one can draw from the huge R’s libraries
basket the one that suits her need, and conduct advanced analysis over the
resulting data. For instance, we also tested the ERGM package that permit to
understand the processes of network structure emergence and tie formation: the
Exponential-family Random Graph Models package provides an integrated set
of tools for creating an estimator of the network through a stochastic modelling
approach.

3.1 Experiments

The study of the interactions of the actor genes with the environment is of crit-
ical importance for understanding the entire system. By using the modelling
functions of the package we can statistically characterize the distribution of the
edges in relation to the characteristics of the nodes that represent mapped multi-
omics features. We performed the analysis of the clusters of genes Human Leuko-
cyte Antigen (HLA, Figure 3) and Kruppel-Associated Box (KRAB, Figure 2)
in the context of four Dixon experiments (SRA:SRR400260, SRA:SRR400261,
SRA:SRR400266, SRA:SRR400267) [2], to verify the correlation of the edges
distribution in relation to some genomic features (hypersensitive sites, CTCF
binding sites, isochores, RSSs).

The first analysed locus is located in cytoband chr19.q13.12 and concerns
the clusters of Kruppel-type zinc finger genes, related to the KRAB, which are
peculiar for their tandem organization. Zinc finger proteins are a family of tran-
scription factors that regulate the gene expression, and most of these proteins
are members of the KZNF family. There are 7 human-specific novel KZNFs and
10 KZNFs that have undergone pseudo-gene transformation specifically in the

5 https://gephi.org/
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Fig. 2: Neighbourhood graphs of the KRAB cluster of genes in four different runs
from the Hi-C experiments of Dixon et al.

human lineage. 30 additional KZNFs have experienced human-specific sequence
changes that are presumed to be of functional significance. Members of the KZNF
family are often in regions of segmental duplications, and multiple KZNFs have
undergone human-specific duplications and inversions. In Figure 2, top panel
drawings concern sequencing runs from hESC (SRR400260, SRR400261); bot-
tom panel drawings in the same Figure concern sequencing runs from IMR90
(SRR400266, SRR400267). Seed genes are the genes given as input to the algo-
rithm, while output genes are differentially represented according to their im-
portance (in terms of node degree).

The second analysed gene cluster concerns the human leukocyte antigen
(HLA) system, which is the name of the locus containing the genes that en-
code for major histocompatibility complex (MHC) in humans. It belongs to a
super-locus that contains a large number of genes related to the immune system
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Fig. 3: Neighbourhood graphs of the HLA cluster of genes in four different runs
from the Hi-C experiments of Dixon et al.

function in humans. The HLA group of genes resides on cytoband chr6.p31.21
and encodes for cell-surface antigen-presenting proteins, which have many differ-
ent functions. The HLA genes are the human version of the MHC genes that are
found in most vertebrates (and thus are the most studied of the MHC genes).
The major HLA antigens are essential elements for the immune function. In
Figure 3, top panel drawings concern sequencing runs from hESC (SRR400260,
SRR400261); bottom panel drawings in the same Figure concern sequencing runs
from IMR90 (SRR400266, SRR400267). Seed genes are the genes given as input
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to the algorithm, while output genes are differentially represented according to
their importance (in terms of node degree).

The correlation between cryptic RSS sites and edges is more pronounced in
the HLA cluster, in comparison to the KRAB cluster, probably due to a more
consistent presence of this kind of sequences in genes related to the immune sys-
tem. The correlation between hypersensitive sites (super sensitivity to cleavage
by DNase) and edges, although positive, is poor, probably because the accessi-
bility of these regions are impaired by a large number of long-range interactions.
The correlation between the presence of CTCF binding sites and edges was
clearly predictable, because linking Gene-Regulatory elements maintain differ-
ent regions of the genome close to each other. On the other hand, regions with
isochores seem less involved in long-range interactions, which can be quite sur-
prising considering that these portions of the genome are considered gene-rich.

Statistical results are reported in table 1. The network estimators are all com-
puted using 100 iterations of stochastic modelling. A high correlation between
the presence of specific genomic features and the probability of existence of an
edge persists. DNase sensitivity sites are weakly correlated with the presence
of an edge, while isochores are strongly anti-correlated with the presence of an
edge.

Performance comparisons between the original R prototype and the actual im-
plementation have not been conducted, because there would be no room for such
debate, since the original tool often halted its execution, due to its strong limita-
tions in memory management. For what it concerns the comparison between the
C++ application and the combined R with C++ package, they report substan-
tially similar behaviours: the graph construction execution is strongly affected
by datasets size and resolution, that determine the “search space” for the BFS-
like graph construction and the overall memory load. Reducing the working set
ameliorates execution times and overall scalability with NuChart-II, and clearly
helps in obtaining good performance when offloading the graph construction
from R to C++ [3].

Figure 4 compares execution time (left) and speedup (right) in the two ap-
proaches: Figures 4a and 4b show the performance for constructing a graph
at level 1 starting from the KRAB cluster of genes using Dixon’s SRR400266
experiment as Hi-C dataset. Despite similar timings and scalability, NuchaRt
has slightly worse performance and shows a higher execution time. Figures 4c
and 4d show a comparison of the performance during normalisation phase with
NuChart-II and NuchaRt: again both implementations yield similar results, both
approaching a quasi-linear scalability, even though NuchaRt’s execution time is
slightly higher with respect to NuChart-II’s. This is likely due to the worsening
of memory access time when offloading computation to C++: while the multi-
threaded C++ application is running, the R environment is kept alive. R stores
additional information, beside the data itself, for each object created: when this
small overhead is combined to the lazy memory reclaim policy adopted by R’s
garbage collector, and to the massive size of the dataset used for neighbourhood
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Table 1: Mapping CTCF binding sites, isochores, cryptic RSSs, and DNase sites
on the graphs affects the edge distribution of the KRAB cluster of genes and of
the HLA cluster of genes, using the ERGM package

KRAB HLA

Estimate Std. Error Estimate Std. Error

SRA:SRR400260
edges + nodecov(“dnase”) 0.2867 0.08451 0.1711 0.07961
edges + nodecov(“ctcf”) 0.6531 0.01157 0.5545 0.01253
edges + nodecov(“rss”) 0.5804 0.06176 0.6304 0.08196
edges + nodecov(“iso”) -1.047 0.09269 -0.9406 0.09156
SRA:SRR400261
edges + nodecov(“dnase”) 0.2042 0.07932 0.1706 0.07822
edges + nodecov(“ctcf”) 0.6629 0.04158 0.5687 0.02005
edges + nodecov(“rss”) 0.5378 0.03566 0.6319 0.03776
edges + nodecov(“iso”) -1.015 0.09566 -0.93035 0.08969
SRA:SRR400266
edges + nodecov(“dnase”) 0.2042 0.07932 0.1706 0.07822
edges + nodecov(“ctcf”) 0.6629 0.04158 0.5687 0.02005
edges + nodecov(“rss”) 0.5378 0.03566 0.6319 0.03776
edges + nodecov(“iso”) -1.015 0.09566 -0.93035 0.08969
SRA:SRR400267
edges + nodecov(“dnase”) 0.2042 0.07932 0.1706 0.07822
edges + nodecov(“ctcf”) 0.6629 0.04158 0.5687 0.02005
edges + nodecov(“rss”) 0.5378 0.03566 0.6319 0.03776
edges + nodecov(“iso”) -1.015 0.09566 -0.93035 0.08969

graph construction, resident memory consumption remains high at run-time,
thus affecting memory access times and overall performance.

Our experiments where conducted on a NUMA system, equipped with 4
eight-cores E7-4820 Nehalem running at 2.0GHz, with 18MB L3 cache and 64 GB
of main memory. The Nehalem processor has Hyper-Threading capability with 2
contexts per core, but we decided not to use it and stick to the number of physical
cores: the heavy memory usage would dramatically damage performance, and
likely increase chances of false-sharing among threads in the same context that
share L2 cache. With this configuration the cache-coherence mechanism plays
an important role in this performance degradation, where cache misses are likely
frequent and cache lines updates occur frequently.

Performance differences seem to flatten when the same applications are exe-
cuted on a different machine: we also conducted experiments on a workstation
equipped with a single eight-cores Intel Xeon CPU E5-2650 running at 2.60GHz.
This machine features 20MB of L3 cache with 64 GB of main memory. The
SandyBridge processor also has Hyper-Threading capability allowing 2 contexts
per core. Here as well we decided to not run more than 8 threads, so that the
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Fig. 4: Comparison between NuChart-II and NuchaRt during the graph con-
struction and normalisation

second context is not used an only physical cores are employed during compu-
tation. In this case the gap between the two solutions is reduced, though the
total execution time is higher due to the limited degree of parallelism that can
be achieved because of the reduced number of available cores.

4 Concluding remarks

Embedding NuChart-II in R creates an application that can be used either to
conduct a step-by-step analysis of genomic data, or as a high-performance work-
flow that takes heterogeneous datasets in input, processes data and produces a
graph-based representation of the chromosomal information provided, supported
by a rich set of default descriptive statistics derived from the topology of the
graph. The graph-based approach fosters a tight coupling of topological obser-
vations to biological knowledge, which is likely to bring remarkable biological
insights to the whole research community.

From a computational point of view, the ever-increasing amount of infor-
mation generated by novel Bioinformatics techniques require proper solutions
that permit the full exploitation of the computing power offered by modern
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computing systems, together with advanced tools for an efficient analysis and
interpretation of genomic data. These tasks require high skills, but we believe
that NuchaRt can be a valuable mean to support researchers in pursuing these
objectives.

Despite the results achieved in terms of performance and usability, some prob-
lems remain partially unsolved, and are open to further investigations. Among
them, our main concern is the visualisation of multi-omic graphs, which we be-
lieve is an essential feature for a usable tool aimed at facilitating genomic data
analysis and interpretation, and that remains an open problem.

We are currently working on making the package compliant to Bioconductor
and CRAN requirements, so that it can be easily downloaded and used by the
research community. At the time of writing it is available through our research
group’s repository, at http://alpha.di.unito.it:8080/tordini/nuchaRt.

Acknowledgement This work has been partially supported by the EC-FP7
STREP project “REPARA” (no. 609666), the Italian Ministry of Education and
Research Flagship (PB05) “InterOmics”, and the EC-FP7 innovation project
“MIMOMICS”.

References

1. Dekker, J., Rippe, K., Dekker, M., Kleckner, N.: Capturing Chromosome Confor-
mation. Science 295(5558), 1306–1311 (Feb 2002)

2. Dixon, J., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J., Ren,
B.: Topological domains in mammalian genomes identified by analysis of chromatin
interactions. Nature 485(5), 376–80 (2012)

3. Drocco, M., Misale, C., Peretti Pezzi, G., Tordini, F., Aldinucci, M.: Memory-
optimised parallel processing of Hi-C data. In: Proc. of Intl. Euromicro PDP 2015:
Parallel Distributed and network-based Processing. pp. 1–8. IEEE (Mar 2015),
http://calvados.di.unipi.it/storage/paper_files/2015_pdp_memopt.pdf

4. Eddelbuettel, D.: Seamless R and C++ Integration with Rcpp. Springer, New York
(2013), iSBN 978-1-4614-6867-7
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