Sonographic study of painful shoulder

A. Iagnocco, G. Coari, A. Leone, G. Valesini

Rheumatology Unit, Medical Therapy Department, University of Rome “La Sapienza”, Rome, Italy
Annamaria Iagnocco, MD; Giulio Coari, MD; Antonella Leone, MD; Guido Valesini, MD, Professor of Rheumatology.

Please address correspondence and reprint requests to: Annamaria Iagnocco, MD, Cattedra di Reumatologia, Dipartimento di Clinica e Terapia Medica Applicata, Università di Roma “La Sapienza”, Viale del Policlinico no. 155, Rome 00161, Italy. E-mail: aiagnocco@tiscali.it

Received on July 31, 2002; accepted in revised form on January 29, 2003.

Key words: Painful shoulder, sonography.

ABSTRACT

Objective. To identify sonographically the site and entity of alterations in a high number of patients with shoulder pain.

Methods. Two different experienced operators (both rheumatologists), who were blinded to the clinical data, performed sonographic examinations on 528 shoulders of 425 consecutive patients with painful shoulder and in both shoulders of 198 control subjects. They carried out ultrasound examinations separately using a 7.5 MHz linear transducer. Investigation included the long head of the biceps tendon, the supraspinatus tendon, infraspinatus tendon, subscapularis tendon, acromio-clavicular joint, glenohumeral joint, subacromial-subdeltoid bursa, sub-scapularis bursa, and finally identification of calcifications. Before the ultrasound examination, a third experienced rheumatologist performed a physical examination in all patients using specific tests of movement for evaluation of the long head of biceps tendon, the supraspinatus tendon, infraspinatus tendon, subscapularis tendon, and acromioclavicular joint.

Results. Sonographic alterations were found in a total of 94.1% of patients. The structure most frequently involved was the supraspinatus tendon (64.6%). The long head of the biceps tendon (48.1%) and the acromioclavicular joint (51.5%) were also frequently involved. Different types of alterations in the various structures were detected. Significant differences were found with respect to controls. A high sensitivity and specificity of sonography was demonstrated compared to physical examination.

Conclusions. Sonography evaluates accurately the single anatomic structures of the shoulder and identifies both the site and type of changes in patients with painful shoulder. The high sensitivity/specificity, non-invasiveness and low costs of this technique justify its routine utilisation in clinical rheumatological practice.

Introduction

Shoulder pain may be related to different diseases (1,2). Due to the complex anatomy of the shoulder, however, it is often difficult to identify and assess the alterations from a physical examination (3). Many clinical tests may be used, but they have low accuracy compared to ultrasound (4). Recent improvements in ultrasound technology have led to a higher sensitivity and accuracy of musculoskeletal sonography. Consequently, it is presently considered an increasingly reliable method for the evaluation of shoulder changes (5-10).

The aim of this study was to identify sonographically the alterations in a large number of patients with painful shoulder. The sensitivity and specificity of the sonographic examination was calculated in comparison to physical examination. Previous studies have assessed the involvement of the shoulder in different diseases, but as far as we know they were limited to smaller groups of patients and controls (5-11). A larger cohort of patients was evaluated by Hedtmann et al., but their study was limited to patients with pathology of the subacromial space (12).

Materials and methods

Patients and controls

Sonography of the shoulder was performed in 425 patients (282 women and 143 men; mean age 57.9 years; range 18-90; mean symptom duration 5.3 months, range 1-19) who were consecutively referred to our rheumatology unit. Shoulder pain was related to different rheumatic disorders: 228 patients had clinically diagnosed periarticular disorders of the soft tissues of the shoulder, 13 had RA, 10 seronegative spondyloarthritis, 14 osteoarthritis, 15 previous trauma, 5 chondrocalcinosis, 6 SLE, and 3 systemic sclerosis. In 131 patients no clinical diagnosis had yet been made. In 103 cases bilateral involvement was present. For this reason a total of 528 shoulders were studied. No treatment was being taken by 121 patients; 182 were taking analgesics and 122 NSAIDs. In addition, both shoulders of 198 control subjects (109 women and 89 men; mean age 56.3 years; range 47-78) were examined. They had been referred to our unit either for knee or foot osteoarthritis and none of them had at the
time of the study or previously any episodes of painful shoulder.

Physical examination
Few days before the sonographic assessment an experienced rheumatologist performed the following tests (2): Speed’s test (resisted flexion of the shoulder with the elbow extended and the palm upwards) for the long head of the biceps tendon; resisted abduction (with the arm abducted to 90°, flexed to 30° and internally rotated) for the supraspinatus tendon; resisted external rotation for the infraspinatus tendon; resisted internal rotation for the subscapularis tendon; and the adduction stress test (with the elbow and shoulder extended and then passively adducted across behind the back) for the acromioclavicular joint.

Sonography
Using a combination of reported techniques (4, 7, 11-13) sonography was performed by 2 operators (both rheumatologists and experienced in sonography) who were blinded to the clinical data and carried out the exams separately. A 7.5 MHz linear transducer was used. Ultrasound examinations were repeated twice by each operator and no significant intra-observer (intra-class correlation coefficient 0.81-0.93, p < 0.0001) or inter-observer variability was found (intra-class correlation coefficient 0.82, p < 0.0001). Investigations included: the long head of the biceps tendon; the supraspinatus, infraspinatus, and subscapularis tendons; the subacromial-subdeltoid and subscapularis bursae; the glenohumeral and acromioclavicular joints; and identification of calcifications.

Tendon thickness, homogeneity of the fibrillar pattern and regularity of the margins were studied. Thinning and the appearance of a hypoechoic area within the tendon were considered to be a sign of partial rupture of the fibres (1, 6, 8-10). Thickening, usually associated with tendon hypoechogenicity, was interpreted as a sign of tendinitis (1,4). Variations in tendon thickness were evaluated with respect to either the contralateral tendon or to the tendons of healthy subjects, when bilateral involvement was present. Normal thickness of the supraspinatus tendon was considered to be 6 mm with an SD of 1.1 mm (10). Variations were considered significant when they were at least 1/3 of the normal tendon thickness (10). The appearance of a hypoechoic discontinuity within the tendons’ fibrillar pattern (1,6, 9) was interpreted as a tear (full-thickness tear: a defect extending through the entire tendon; partial thickness tear: defect limited to a part of its thickness). Non-visualisation of the tendon was also considered a sign of full-thickness tear (10). Diffuse hypoechogenicity with the absence of a fibrillar pattern and/or irregularity of the margins were interpreted as a sign of tendinitis/tendinosis (1, 8). With regard to the long head of the biceps tendon, an empty bicipital groove with identification of the displaced tendon in the surrounding area was interpreted as tendon subluxation (4, 8); the appearance of a hypo-anechoic area around the tendon and within its sheath >2 mm was considered as a sign of tendinitis/tendinosis (1, 4, 8, 10).

Involvement of the bursae was identified when accumulation of hypo-anechoic fluid appeared within them with thickness > 2 mm (4, 10).

Effusion within the acromioclavicular joint was considered to be present when hypo-anechoic fluid accumulation distending the joint capsule was demonstrated within the joint cavity (1). Irregularities of the bone surfaces were detected on the basis of discontinuities (13).

Effusion within the glenohumeral joint was considered to be present when on transaxillar scan hypo-anechoic fluid was found in the joint cavity and the bone surface-joint capsule distance was > 3.5 mm (11). Calcifications were identified when a hyperechoic area, with a possible posterior shadow, was found (4).

Statistical analysis
Data were analysed with the Statistical Package for the Social Sciences (SPSS, SPSS Inc software, Chicago, IL, USA). Statistical analysis was performed using the χ² test. A p value < 0.05 was considered to be statistically significant. A 2 x 2 table was used to assess the sensitivity and specificity of sonography with respect to the physical examination.

Results
The results are reported in Tables I, II and III.

The Speed’s test was positive in 223 shoulders (42.2%), resisted abduction in 196 (37.1%), resisted external rotation in 69 (13.1%), resisted internal rotation in 18 (3.4%), and the adduction stress test in 61 (11.5%). Sonography showed the presence of alterations in 400 patient (94.1%).

Alterations of the long head of the biceps tendon were found in 254 shoulders (48.1%; p<0.0001). Peritendinous effusion was found in 41.5% (p < 0.0001; Fig. 1), echotexture changes in 8.5% (p < 0.0001), tears in 0.9% (p < 0.049); thickening in 0.2% (n.s.); and thinning in 0.6% (n.s.).

The supraspinatus tendon was involved in 314 cases (64.6%; p < 0.0001). Tendon thickening was found in 4.0% (p < 0.0001), thinning in 8.3% (p < 0.0001), tears (Fig. 2) in 2.3% (p < 0.0001), and echotexture changes in 49.4% (p < 0.0001). The infraspinatus tendon was

<table>
<thead>
<tr>
<th>Cases (n=528)</th>
<th>Controls (n=396)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long head of the biceps tendon</td>
<td>254 (48.1%)</td>
<td>8 (2.0%)</td>
</tr>
<tr>
<td>Supraspinatus tendon</td>
<td>314 (64.6%)</td>
<td>15 (3.8%)</td>
</tr>
<tr>
<td>Infraspinatus tendon</td>
<td>89 (16.8%)</td>
<td>1 (0.25%)</td>
</tr>
<tr>
<td>Subscapularis tendon</td>
<td>23 (4.3%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Acromioclavicular joint</td>
<td>270 (51.5%)</td>
<td>11 (2.8%)</td>
</tr>
<tr>
<td>Glenohumeral joint</td>
<td>59 (11.2%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Bursae</td>
<td>85 (16.1%)</td>
<td>0 (0.0%)</td>
</tr>
</tbody>
</table>
Sonography in painful shoulder / A. Iagnocco et al.

Table II. Sonographic findings with the spectrum of the specific alterations among the various anatomic structures of the shoulder.

<table>
<thead>
<tr>
<th>Alterations</th>
<th>Cases (n=528)</th>
<th>Controls (n=396)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long head of the biceps tendon</td>
<td>Effusion</td>
<td>219 (41.5%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Thickenning</td>
<td>1 (0.2%)</td>
<td>0 (0.0%)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Thinning</td>
<td>3 (0.6%)</td>
<td>0 (0.0%)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Tears</td>
<td>5 (0.9%)</td>
<td>0 (0.0%)</td>
<td>< 0.049</td>
</tr>
<tr>
<td>Subluxation</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Echotexture changes*</td>
<td>45 (8.5%)</td>
<td>8 (2.1%)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Supraspinatus tendon</td>
<td>Thickenning</td>
<td>21 (4.0%)</td>
<td>1 (0.2%)</td>
</tr>
<tr>
<td>Thinning</td>
<td>44 (8.3%)</td>
<td>3 (0.7%)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Tears</td>
<td>12 (2.3%)</td>
<td>0 (0.0%)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Echotexture changes*</td>
<td>261 (49.4%)</td>
<td>12 (3.0%)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Infra spinatus tendon</td>
<td>Thickenning</td>
<td>3 (0.6%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Thinning</td>
<td>10 (1.9%)</td>
<td>0 (0.0%)</td>
<td>< 0.005</td>
</tr>
<tr>
<td>Tears</td>
<td>3 (0.6%)</td>
<td>0 (0.0%)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Echotexture changes*</td>
<td>77 (13.2%)</td>
<td>3 (0.7%)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Subscapularis tendon</td>
<td>Thickenning</td>
<td>5 (0.9%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Thinning</td>
<td>2 (0.4%)</td>
<td>0 (0.0%)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Tears</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>n.s.</td>
</tr>
<tr>
<td>Echotexture changes*</td>
<td>21 (4.0%)</td>
<td>1 (0.25%)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Acromioclavicular joint</td>
<td>Irregularity</td>
<td>161 (30.5%)</td>
<td>9 (1.7%)</td>
</tr>
<tr>
<td>Effusion</td>
<td>142 (26.9%)</td>
<td>2 (0.5%)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Glenohumeral joint</td>
<td>Effusion</td>
<td>59 (11.2%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Subacromial-subdeltoid bursa</td>
<td>Effusion</td>
<td>43 (8.1%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Subscapularis bursa</td>
<td>Effusion</td>
<td>42 (7.9%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>All tendons</td>
<td>Calcifications</td>
<td>38 (7.2%)</td>
<td>2 (0.5%)</td>
</tr>
</tbody>
</table>

* The term includes changes in both the homogeneity of the tendon fibrillar pattern and the regularity of their margins.

Table III. Involvement of the various anatomic structures of the shoulder girdle. Comparison between sonographic findings and physical examination.

<table>
<thead>
<tr>
<th>Physical examination</th>
<th>Sonography</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long head of the biceps tendon</td>
<td>(Speed's test)</td>
<td>223 (42.2%)</td>
<td>254 (48.1%)</td>
</tr>
<tr>
<td>Supraspinatus tendon</td>
<td>(resisted abduction test)</td>
<td>196 (37.1%)</td>
<td>314 (59.5%)</td>
</tr>
<tr>
<td>Infra spinatus tendon</td>
<td>(resisted external rotation)</td>
<td>69 (13.1%)</td>
<td>89 (16.8%)</td>
</tr>
<tr>
<td>Subscapularis tendon</td>
<td>(resisted internal rotation)</td>
<td>18 (3.4%)</td>
<td>23 (4.3%)</td>
</tr>
<tr>
<td>Acromioclavicular joint</td>
<td>(adduction stress test)</td>
<td>61 (11.5%)</td>
<td>270 (51.1%)</td>
</tr>
</tbody>
</table>

involved in 89 shoulders (16.8%; p < 0.0001). Echotexture changes were present in 13.2% (p < 0.0001), thinning in 1.9% (p < 0.005), thickening in 0.6% (n.s.), and tears in 0.6% (n.s.). The subscapularis tendon was involved in 23 cases (4.3%; p < 0.0001). Echotexture changes were found in 4.0% (p < 0.0001), thickening in 0.9% (p < 0.049), and thinning in 0.4% (n.s.). The acromioclavicular joint was involved in 270 joints (51.5%; p < 0.0001). Effusion was found in 26.9% (p < 0.0001) and irregularities of the bone surfaces in 30.5% (p < 0.0001). Effusion within glenohumeral joint was revealed in 59 cases (11.2%; p < 0.0001). Fluid collection within the subacromial-subdeltoid bursa (Fig. 3) was present in 43 shoulders (8.1%; p < 0.0001) and effusion in the subscapularis bursa in 42 cases (7.9%; p < 0.0001). Finally, calcifications were revealed in a total of 38 shoulders (7.2%; p < 0.0001).

Comparison between the findings of physical examination and sonography showed that the sensitivity of ultrasound was good for alterations of the acromioclavicular joint, and supraspinatus, infraspinatus, and subscapularis tendons, and fairly good for changes of the long head of the biceps tendon. Specificity was very high for alterations of the subscapularis tendon, high for changes of the infraspinatus tendon, and low for alterations of the acromioclavicular joint, supraspinatus and long head of biceps tendons.

Discussion

Different anatomic structures may be involved in painful shoulder and many
and provide a demonstration that sono-
graphy is a valuable method for the
assessment shoulder pathology. Many
studies have been published regarding
the ultrasonographic detection of
shoulder alterations, but they have been
limited either to small groups of patients
(5, 7, 11, 12), to the assessment of sin-
gle structures (7-9, 11-13), or to the eval-
uation of specific disorders (14, 15).
As far as we know, this is the first study
evaluating a large cohort of patients
with painful shoulder versus controls,
examining most of the anatomic struc-
tures of the girdle, and comparing
ultrasound with physical examination.
The rotator cuff tendons were found to
be frequently involved and the entire
spectrum of alterations detectable by
sonography were found. Changes in the
fibrillar pattern and the tendons mar-
gins were present more often than the
other alterations, demonstrating the
possible presence of either inflammatory
or degenerative processes and con-
fiming multifactorial aetiology of the
disease in the rotator cuff (1,3). Among
the rotator cuff tendons, the anatomic
structure most commonly involved was
the supraspinatus tendon and this find-
ing confirms the important role of that
structure in the functional integrity of
the girdle, which makes it particularly
susceptible to damage and injury (3).
Alterations in the long head of the bi-
ceps tendons were found in a high per-
centage of cases and tenosynovitis was
the most frequent manifestation. That
finding may be due either to a local
inflammatory process or to the sec-
ondary production of fluid caused by
other soft tissues abnormalities (1, 13).
Changes in the acromioclavicular joint
were often found, with the presence of
both inflammatory and degenerative
changes. Those findings demonstrate
the presence of various possible mecha-
nisms in the pathology of that joint.
The rarer involvement of glenohumeral
joint could be due to the limited num-
ber of subjects with synovitis. Calcifi-
cations were found in a low percentage
of cases and this was probably a result
of the short duration of the symptoms in
our cohort of patients.
In conclusion, the high sensitivity and
specificity, non-invasiveness and low
costs of sonography justify its routine
utilisation for the assessment of painful
shoulder in clinical rheumatological
practice.

References
1. COARI G, PAOLETTI F, IAGNOCCO A: Shoul-
der involvement in rheumatic diseases. Sono-
graphic findings. J Rheumatol 1999; 26:668-
73.
2. DALTON SE: Axial and peripherals joints.
The shoulder. In KLIPPEL HJ and DIEPPE PA
(Eds.): Rheumatology. London, Mosby 1998:
3. TYTHERLEY-STRONG G, HIRAHARA A,
MINIACI A: Rotator cuff disease. Curr Opin
4. NAREDO E, AGUADO P, DE MIGUEL E et al.: Painful shoulder: comparison of physical
examination and ultrasonographic findings.
5. ALASARELA E, TAKALO R, TERYOONEN O,
HAKALA M, SURAMO E: Sonography and
US evaluation of painful rheumatic
6. VAN HOLSBEECK MT, KOLOWICH PA, EYLER
WR et al.: US depiction of partial-thickness
tear of the rotator cuff. Radiology 1995; 197:
443-6.
7. MACK LA, NYBERG DAMATSEN PA: Sono-
graphic evaluation of the rotator cuff. Radiot
8. PTASZNIK R, HENNESSY O: Abnormalities of
the biceps tendon of the shoulder: sono-
graphic finding. Am J Rheumatol 1995; 164:
409-14.
9. FARIN P, JAROMA H: Sonographic detection
of tears of the anterior portion of the rotator
cuff (subscapularis tendon tears). J Ultras-
10. ALASARELA EM, ALASARELA ELI: Ultra-
sound evaluation of painful rheumatoid
11. MINIACI A: Ultrasonographic evidence of
shoulder pathologies in patients with poly-
lalgia rheumatica. Br J Rheumatol 1992;
31: 201-3.
12. MINIACI A: Ultrasonographic evaluation of
shoulder pathologies in patients with poly-
lalgia rheumatica. Br J Rheumatol 1992;
31: 201-3.
13. BURMESTER G, GEBBER T et al.: Guidelines for
14. KOSSKY JM: Ultrasonographic evidence of
synovitis in axial joints in patients with poly-
lalgia rheumatica. Br J Rheumatol 1992;
31: 201-3.
15. LANG L, PIESGA N, TEICHMANN J, NEECK G:
Ultrasonography of the glenohumeral
joints – A helpful instrument in differentia-
16. LANG L, PIESGA N, TEICHMANN J, NEECK G:
Ultrasonography of the glenohumeral
joints – A helpful instrument in differen-
17. LANG L, PIESGA N, TEICHMANN J, NEECK G:
Ultrasonography of the glenohumeral
joints – A helpful instrument in differen-
18. LANG L, PIESGA N, TEICHMANN J, NEECK G:
Ultrasonography of the glenohumeral
joints – A helpful instrument in differen-