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Abstract

Kubo’s generating function approach has been employed for simulating from first

principles the spectral band shapes of singlet-triplet transitions of some aromatic com-

pounds, representative for their rigid structures and aromatic characters of those used

in solid state opto-electronic devices. That approach yields Franck-Condon weighted

densities of states in excellent agreement with experimental results, opening the way

to reliable calculations of the rates of non-radiative singlet-triplet transitions, an im-

portant step for the in silico optimization of the molecular structure of dyes for solar

energy conversion cells and for light emitting diodes.

Introduction

Triplet states play an important role in solid state opto-electronic devices. In organic light

emitting diodes (OLED), spin statistics makes triplet excitons to be preferentially formed

than singlet ones, determining to a larger extent the efficiency and the spectral features of

emitted radiation.1 In bulk heterojunctions (BHJ) photovoltaic cells, low lying triplet states

could provide a potentially fast pathway for ungeminate electron-hole charge recombination,

limiting the efficiency of energy conversion. Triplet excitons have been detected in BHJs

under operative conditions,2–5 but there is both experimental and theoretical evidence that

charge dissociation from triplet states, even though thermally activated, is fast enough to

effectively compete with relaxation of T1 to the ground state.4–6

For better assessing the role triplet states play in single molecule organic devices, the

rates of charge recombination and charge dissociation processes have to be evaluated.

Nonradiative transition rates can be efficiently estimated by the Fermi Golden rule

(FGR):7–11 practical experience has shown that FGR provides reliable rate constants both for

very fast processes, occurring on subpicosecond timescales,10,11 and for comparatively much

slower processes. For instance, the observed temperature dependence of electron transfer

(ET) from pheophytin to ubichinone in bacterial photosynthetic reaction center, a quite
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slow process occurring on nanosecond timescale and involving electronic states which dif-

fer in energy by ≈ 0.9 eV, was reproduced nearly quantitatively by FGR.12 FGR has also

been successfully employed for photoinduced electron transfer processes and photoinduced

electronic transitions through conical intersections.13–16

The FGR rate expression

ka→b =
2π

~
|Vab|2F (∆E, T ) (1)

depends on two quantities: the electronic coupling element, Vab, and the Franck-Condon

weighted density of states F (∆E, T ).

Herein, we will focus attention on the accuracy with which F (∆E, T ) can be computed

from first principles for singlet triplet transitions, in the harmonic approximation. We will

consider here radiative transitions for species with fused aromatic rings, as those largely em-

ployed in BHJ cells and for electron transport in organic electronics, for which experimental

data are available in the literature. The calculation of F (∆E, T ) is carried out by employing

Kubo’s generating function (GF) approach,12,17–23 which allows for a meaningful comparison

between computed F (∆E, T ) and observed spectral band shapes, inasmuch as the GF ap-

proach makes it possible to include in computations the whole set of the molecular normal

modes, taking into account both the effects due to changes of the equilibrium positions and

of vibrational frequencies, as well as the effects of normal mode mixing, without posing limits

to the number of modes which can be simultaneously excited and on their highest quantum

number. It is shown that for radiative transitions first principle computations yield very

accurate F (∆E, T ) at least in the energy region ∆E ≈ 1 − 1.2 eV, corresponding to the

spectral bandwidth of the compounds analyzed here.
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Singlet-Triplet Radiative Transitions

According to first order perturbation theory, the electric dipole transition moment for a

radiative singlet triplet transition (T1 ← S0) is:24

〈S0| γ |Tα1 〉 =
∑
s

〈S0| γ |Ss〉 〈Ss|Hα
SO |Tα1 〉

E(T1)− E(Ss)
+
∑
t

〈S0|Hα
SO |Tαt 〉 〈Tαt | γ |Tα1 〉
E(S0)− E(Tt)

, (2)

where γ is the light polarization axis and Hα
SO is the α-th component of the spin orbit

operator. Introducing the Born Oppenheimer approximation, neglecting non-Condon effects

and the possible dependence of Hα
SO on the nuclear coordinates, and integrating over the

electronic coordinates, the electric dipole transition element between the vibronic states

|S0,v〉 and |Tα1 , z〉 is:

〈S0,v| γ |Tα1 , z〉 =
∑
s,w

µγS0,Ss
βαSs,T1

〈v|ws〉〈ws|z〉
E(T1) + εT1(z)− E(Ss)− εSs(ws)

+

∑
t,w

µγTt,T1β
α
Tt,S0
〈v|wt〉〈wt|z〉

E(S0) + εS0(v)− E(Tt)− εTt(wt)
, (3)

where v, z, ws, and wt are multi-index vectors of the vibrational quanta of the electronic

states S0, T1, Ss, and Tt, respectively, and ε their corresponding vibrational energies; µγn,m is

the γ component of the transition dipole between electronic states n,m and βαn,m is the α-th

component of the spin-orbit coupling.

Neglecting the vibrational contributions to the energy differences appearing at both de-

nominators in eqn 3, and using the closure relation of the intermediate states, leads to:25

〈S0,v| γ |Tα1 , z〉 = ΓS0,T1〈v|z〉 (4)

where:

ΓS0,T1 =
∑
s

µγS0,Ss
βαSs,T1

E(T1)− E(Ss)
+
∑
t

µγTt,T1β
α
Tt,S0

E(S0)− E(Tt)
(5)

is a pure electronic factor, and 〈v|z〉 is the Franck-Condon integral between the vibrational
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states of the singlet S0 and the triplet T1 states.

The assumption that vibronic energy differences can be well approximated by elec-

tronic ones is a physically well sound approximation for aromatic hydrocarbons, because

the strongest spin-orbit couplings of a ππ∗ state involve σπ∗ or πσ∗ which should be consid-

erably higher in energy.26,27

For heteroaromatics the approximation could fail, because the nπ∗ states are coupled to

ππ∗ states which can be close in energy. We have thus included benzophenone and carbazole

in the set of investigated molecules for testing purposes.

With the assumptions discussed above, the spectral band shape for a radiative singlet-

triplet transition is:17,18

ITS(ν) =
∑
v

∑
z

|ΓS,T 〈v|z〉|2 e−βES0,vδ(ET,z − ES0,v − hν)/Z ; (6)

where Z is the partition function of the initial state. The infinite summations appearing in

(6) pose computational problems which, following the seminal works of Lax and Kubo,17,18

can be conveniently avoided by introducing the integral representation of Dirac’s δ function

δ(E − hν) = h−1
∫ ∞
−∞

exp [i (E − hν) τ/~] dτ (7)

and writing:

ITS(ν) = h−1
∫

dτ e−i2πντfTS(τ), (8)

with:

fTS(τ) = |ΓTS|2Tr
[
eτHT e−(β+τ)HS

]
, (9)

where τ = it/~, β = 1/kBT . If the Hamiltonian operators HS and HT are modeled in

harmonic approximation, the trace in (9) can be evaluated into a closed form.17,19,28

The frequency distribution function ITS(ν), i.e. the spectral band shape, is then obtained

by the inverse Fourier transform of the function fTS(τ), c.f. Eqn 8. The approach out-
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lined above provides several advantages with respect to the standard recursive calculation

of Franck-Condon factors,29–32 inasmuch as it allows to include in computations the whole

manifold of vibrational states of the initial and final electronic states, and because, apart

from the use of an apodization function in the fast Fourier transform,12,19,33 no external

adjustable parameters are used, thus ensuring an effective test of the performances of the

electronic calculations in predicting reliable ground state and excited states geometries and

vibrational frequencies.

Computational details

The computations of the ground and the first triplet states have been performed at differ-

ent levels of theory, including Møller-Plesset perturbation methods for ground states and

the second order algebraic diagrammatic construction for excited states [MP2/ADC(2)] and

B3LYP as well as BLYP density functional theory (DFT) approaches. For naphthalene, the

meta M05-2X and the range separated CAM-B3LYP hybrid functionals, both possessing a

high fraction of Hartree-Fock exchange were also employed.34–43 For carbazole, solvent ef-

fects were included in DFT computation by means of the polarizable continuum model.44

The equilibrium geometry of the triplet T1 state of benzophenone was also computed by us-

ing coupled cluster including single and approximate double excitations (CC2).45 The triple

zeta def2-TZVPP basis set in conjunction with the frozen core and the resolution of iden-

tity approximations has been adopted in MP2, ADC(2) and CC2 computations,46 whereas

DFT calculations have been performed using 6-31+G(d,p) basis set in conjunction with the

unrestricted formalism for triplet states.47,48 Very tight threshold values have been used in

geometry optimizations together with the use of ‘ultrafine’ grids in all DFT computations.

Gaussian 09 and Turbomole packages were used for DFT and correlated post-Hartree

Fock calculations, respectively.49,50

Absorption spectra were computed in harmonic approximation using Kubo’s generat-
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ing function (GF) approach, implemented in a local development version of MolFC pack-

age.31,33,51 Both the curvilinear and the Cartesian coordinate representation of the normal

modes have been used. The former representation is useful to prevent that displacements

of angular coordinates could result into unrealistic shifts of stretching coordinates upon

excitation,52–54 which should require the use of high order anharmonic potentials for its

correction.55–57

The comparison between computed and experimental spectral band shapes has been

carried out by: i) extracting ITS(ν) from experimental spectra,58 ii) normalizing both the

theoretical and the experimental ITS(ν)’s, and iii) making coincident the predicted and the

experimental longer or shortest wavelength peaks for absorption or emission, respectively.

Results and Discussion

We have selected a series of molecules constituted by fused aromatic rings as those used in

organic electronics – specifically naphthalene, phenanthrene, 4,5-dihydropyrene, benzophe-

none, and carbazole (Scheme 1) – for which the T1 ← S0 (absorption) and the T1 → S0

(emission) spectra are available in the literature, in some cases even at high resolution.59–68

Scheme 1
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Naphthalene

The experimental T1 ← S0 photoexcitation spectrum of naphthalene is characterized by

an intense vibronic activity, resulting in several intense and well resolved peaks, see Fig-

ure 1, with a total bandwidth of ≈ 7000 cm−1. The first peak has been assigned to the

0-0 transition;59,68 our FC calculations confirm that assignment and, accordingly, the com-

puted 0-0 transition energies, reported in Table 1, better agree than vertical ones with that

corresponding to the observed lowest energy peak. For naphthalene MP2/ADC(2) method

slightly overestimate the 0-0 transition energy, by ca 0.15 eV, whereas both B3LYP and

BLYP underestimate it by 0.05 and 0.07 eV, respectively.

Table 1: Computed adiabatic (ν̃ 0−0) and vertical ( ν̃v) transition wavenumbers (cm−1)
for T1 ← S0 transitions.

ν̃ 0−0 ν̃ v

ADC(2) B3LYP BLYP ADC(2) B3LYP BLYP Exp.a

naphthalene 22 285 20 560 19 914 26 391 25 048 23 554 21 186
phenanthrene 22 867 21 040 20 179 26 726 25 691 23 927 21 598
4,5-dihydropyrene − 20 777 19 892 − 25 383 23 592 21 322
benzophenone 19 751 21 625 20 308 25 774 25 202 23 234 23 800b

carbazole − 23 975 22 711 − 27 712 25 272 24 650b

aLowest wavenumber absorption peak; bhighest wavenumber phosphorescence peak.

Theoretical and experimental T1 ← S0 absorption spectra of naphthalene are shown in

Figure 1. The theoretical spectra have been computed at T = 77 K with resolution of ≈ 80

cm−1, slightly higher than experimental one (≈ 150 cm−1),59 causing the appearance of a

few additional peaks around the most intense ones. Notwithstanding, all the theoretical

approaches yield spectral band shapes in very good agreement with the observed spectrum:

the five most intense peaks of the spectrum are all reproduced, with relative peak intensities

comparable with the experimental ones. The large vibronic activity which characterizes

the T1 ← S0 spectrum of naphthalene is due to the fact that although the point group

symmetry is retained upon transition – all the theoretical methods employed here predict
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Figure 1: Theoretical and experimental (ref.s 59 and 68) T1 ← S0 (left, panels a-c) and T1 → S0
(right, panels d-f) spectra of naphthalene at T = 77 K.

that naphthalene in the T1 electronic state possesses D2h symmetry – the structure of the

lowest triplet state is significantly compressed with respect to the ground state one. The C2-

C3 bond length is shortened (1.36 vs 1.42 Å) whereas the C1-C2 one is lengthened (1.44 vs

1.37 Å). The reported values refer to B3LYP computations, but the bond lengths predicted

by the other two methods differ from B3LYP ones only on the third digit (see Table S4 in

the Supporting Information).

Because the most significant geometrical changes concerns the molecular backbone, al-

most all totally symmetric modes, but C-H stretching ones, are displaced upon T1 ← S0

transition. The most displaced ag modes are reported in Table 2. Computed peak wavenum-

bers and their vibronic assignments are reported in Table S1 of the Supporting Information,
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Table 2: Wavenumbers (ν̃, cm−1) and equilibrium position displacements (K, adimen-
sional units) of the most displaced normal modes of naphthalene for T1 ← S0 transition.

ADC(2) BLYP B3LYP

ν̃T1 ν̃S0 K ν̃T1 ν̃ S0 K ν̃T1 ν̃S0 K

500 558 1.19 492 505 1.15 505 518 1.15
1052 1143 0.61 1027 1117 0.54 1058 1172 0.61
1176 1180 0.44 1152 1154 0.37 1184 1186 0.41
1429 1485 1.26 1345 1367 1.16 1402 1410 1.37
1627 1628 1.10 1580 1607 1.07 1647 1676 1.17

together with experimental results obtained by high resolution photoexcitation spectroscopy

of crystalline naphthalene.60 The whole vibronic structure is generated by four fundamen-

tal vibrational modes falling in the T1 state at 505, 1058, 1402, and 1647 cm−1 and their

combination, in good agreement with experimental results.60–62

The experimental phosphorescence spectrum of naphthalene (Figure 1, d, e, and f panels)

has been recorded in low polar medium, a mixture of methylcyc1ohexane and isopentane in

3:1 volume ratio, at T = 77 K.68 As for absorption, geometries and normal modes used in

the computation of the spectral band shapes were taken from gas-phase computations, which

are known to yield optimal results for low polar solvents.69

The emission spectrum is in good approximation the mirror image of the absorption one,

being characterized by five more intense peaks and a less intense one. Peak assignments are

reported in Table S2 in the Supporting Information and compared with those obtained by

high resolution phosphorescence spectrum.66

The agreement between the computed and experimental band shapes for the phosphores-

cence spectrum of naphthalene is very good, especially for BLYP and ADC(2), thus further

testifying the reliability of the GF approach.

Phenanthrene and dihydropyrene

The singlet-triplet absorption and emission spectra of phenanthrene and diydropyrene are

somewhat similar to each other and will be conveniently discussed together. For dihy-
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dropyrene only DFT computations have been carried out. Predicted adiabatic and vertical

transition energies are reported in Table 1. For both molecules the computed 0-0 transition

energies better match with the lowest energy peaks of the T1 ← S0 excitation spectrum and

indeed the first spectral peaks have been assigned to 0-0 transitions for both molecules.70

MP2/ADC(2) slightly overestimates the 0-0 transition energy of phenanthrene by ≈ 0.16 eV,

whereas both B3LYP and BLYP slightly underestimate it.
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Figure 2: Theoretical and experimental (ref.s 59 and 71) T1 ← S0 (left, panels a-c, T = 77 K) and
T1 → S0 (right, panels d-f, T = 90 K) spectra of phenanthrene.

Theoretical and experimental T1 ← S0 and T1 → S0 spectra of phenanthrene are shown

in Figure 2.59,70 Interestingly, the large vibronic activity characterizing both the absorption

and emission spectra arises from only one significant geometrical change which involves the

central CC bond of the central ring (the C9-C10 bond according to the standard numbering,
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see Scheme 1 and Table S5 in the Supporting Information), whose length changes from 1.36

Å in S0 to 1.46 Å in T1, according to all the computational approaches employed here.

The C2v symmetry is retained in the triplet state. The most displaced normal modes of

phenanthrene upon T1 ← S0 transition are reported in Table 3. Although several modes

are predicted to change their equilibrium positions, spectral peaks of both absorption and

emission spectra can all be assigned to the two most displaced modes, the first one falling

at low frequency (≈ 400 cm−1), see table 3, corresponding to a breathing mode of the whole

molecule, the other at high frequency (1550-1600 cm−1), corresponding to a collective CC

symmetric stretching. Peaks assignments of the phosphorescence spectrum are reported

in Table S3 of the Supporting Information and compared with the available experimental

data.72

Table 3: Wavenumbers (ν̃, cm−1) and equilibrium position displacements (K, adi-
mensional units) of the most displaced normal modes of phenanthrene for T1 ← S0
transition.

ADC(2) BLYP B3LYP

ν̃T1 ν̃S0 K ν̃T1 ν̃ S0 K ν̃T1 ν̃S0 K

397 437 1.25 391 399 1.25 401 411 1.32
1009 1057 0.57 996 1030 0.44 1012 1063 0.60
1067 1110 0.50 1038 1082 0.54 1069 1116 0.42
1434 1472 0.82 1383 1410 0.15 1425 1458 0.13
1512 1537 0.55 1443 1488 0.32 1500 1540 0.33
1575 1653 0.93 1506 1585 0.29 1570 1649 0.38
1616 1662 0.66 1562 1597 1.26 1615 1667 1.34

Predicted spectral band shapes of the T1 ← S0 and T1 → S0 spectra of 4,5-dihydropyrene

(Figure 3) are very similar to those of phenanthrene (Figure 2), inasmuch as the molecule

undergoes the same large elongation of the C11-C12 double bond of the central ring as

predicted for phenanthrene, see Scheme 1 and Table S6 of the Supporting Information. Both

B3LYP and BLYP functionals predict that S0 and T1 states possess C2 point symmetry.

The experimental excitation spectrum has been truncated at 25 800 cm−1, because at

higher wavenumbers the T2 ← S0 transition overlaps with the T1 ← S0 one.59 The signif-
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Figure 3: Theoretical and experimental ( 59) spectra of T1 ← S0 (left panels) and T1 → S0 (right
panels) transitions of 4-5,dihydropyrene at 77 K.

icant discrepancies between theoretical and the experimental band shapes in the region of

higher wavenumbers, much larger than those pertaining to naphthalene and phenanthrene,

are possibly attributable to the presence of that additional absorption; indeed the agreement

between computed and observed spectra is much more satisfying for the phosphorescence

spectrum than for the absorption one, testifying about the reliability of the predicted geo-

metrical distortions between S0 and T1.

Benzophenone

The phosphorescence spectrum of benzophenone recorded in low-polarity environment, i.e.

glassy EPA (diethyl ether, isopentane, and ethanol, 5:5:2 volume ratio) at 77 K exhibits an

intense vibronic progression, characterized by five peaks spaced by ≈ 1800 cm−1,73,74 which

indicates that the T1 → S0 transition is accompanied by a significant change of the CO bond

distance.

The experimental and predicted spectra are shown in Figure 4. Both BLYP and in
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particular B3LYP methods yield phosphorescence band shapes in excellent agreement with

the experimental results, whereas the MP2/ADC(2) approach gives a very broad spectrum

extending over 30 000 cm−1, part of which (the shortest wavelength region) has been reported

in Figure 4, for the whole spectrum see Figure S1 in the Supporting Information. The

analysis of the computed geometrical parameters of S0 and T1, see Table S7 in the Supporting

Information, clearly shows that the failure of MP2/ADC(2) approach is due to its high

overestimation of the CO bond length in the T1 states, which is predicted to be 1.413 Å, a

value corresponding to the length of a single CO bond, whereas BLYP and B3LYP yield 1.32

and 1.33 Å, respectively. The other important geometrical changes concern the two CC bond

lengths at the carbonyl group, which are shortened in the T1 state, and the ∠CCC valence

bond angle at the carbonyl carbon, which increases in the T1 state. MP2/ADC(2) highly

overestimates all those geometrical changes, in line with the predicted reorganization energy,

amounting to ca 6000 cm−1, significantly higher than that obtained by DFT computations

(≈ 4000 cm−1, see Table 1). Finding out the reasons of that failure is out of the scopes of

this paper; occasional overestimations of double-bond lengths, in particular those involving

oxygen atoms, have been previously found for the CC2 approach, to which ADC(2) is closely

related. Indeed in our case also CC2 overestimates the C–O bond length of the triplet state,

giving 1.408 Å. The interested reader can consult references 75 and 76 which, although

not dealing with the specific case of triplets, discuss how the main approximation of the

theoretical approach could affect equilibrium geometries.

The most displaced normal modes of benzophenone are reported in Table 4. Both S0

and T1 are predicted to possess C2 symmetry. Apart a few low frequency modes, the most

displaced mode is the CO symmetric stretching. In the T1 state that mode is predicted

to also undergo a significant shift in frequency, which changes from ca 1700 cm−1 in S0

to ca 1250 cm−1, according to DFT methods, and 950 cm−1, according to ADC(2). The

symmetric stretching involving the carbonyl carbon atom are also displaced, but to a lower

extent, without causing observable progressions in the phosphorescence spectrum, which is
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Figure 4: Theoretical and experimental (ref 73) spectra of T1 → S0 transition of benzophenone at
77 K.
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completely dominated by the CO stretching progression.

Table 4: Wavenumbers (ν̃, cm−1) and equilibrium position displacements (K, adi-
mensional units) of the most displaced normal modes of benzophenone for T1 → S0
transition.

B3LYP BLYP ADC(2)

ν̃ S0 ν̃T1 K ν̃S0 ν̃T1 K ν̃ S0 ν̃T1 K

63 68 2.30 61 65 2.18 65 67 3.92
92 90 0.75 88 84 1.01 1620 1597 0.60

1645 1612 0.56 1575 1537 0.73 1638 1623 0.55
1718 1275 1.82 1623 1255 1.21 1698 950 3.36

Carbazole

Carbazole is an important dye; poly(N-vinylcarbazole) has been among the first reported

electroluminescent polymers and, although the interest in that system has decreased upon

the development of much more efficient phosphorescent molecules, it is still attracting interest

as hosts for triplet emitters in OLED.77

The phosphorescence spectrum of carbazole in butyronitrile glass is reported in Figure

5,78 together with the spectral band shapes obtained by B3LYP and BLYP computations.

MP2/ADC(2) has not been used in that case because molecular geometry optimizations with

ADC(2) including solvation are not yet available in Turbomole. For both functionals, ge-

ometry optimizations of the T1 state yield a C2v structure with one imaginary frequency. The

optimization was then refined by slightly distorting the C2v geometries along the imaginary

frequency mode and led to a more stable planar structure (ca 5 kcal/mol) loosely belonging

to C2v point group, which has been used in spectral shape computations reported in Figure

5.

Both functionals yield very satisfying results: the band shapes are reliably reproduced

over the whole spectral range, which extends from 25 000 to ≈ 16 000 cm−1, indicating that

the molecule undergoes significant geometry reorganization in going from the ground state to

the first excited state. The most relevant geometrical parameters of S0 and T1 are reported
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in Table S8 of the Supporting Information. The relevant geometrical variations in the triplet

state mostly concern the CC bonds of the pyrrole ring: the formally single CC bond is

significantly shortened, from 1.46 Å to 1.39 and 1.41 Å, according to B3LYP and BLYP,

respectively. The other two CC bonds of the pyrrole ring are elongated by ca 0.05 Å. Those

CC bond variations reflect in a large number of normal modes whose equilibrium positions

are displaced upon T1 → S0 transition; the largest displacements are reported in Table 5.

Table 5: Wavenumbers (ν̃, cm−1) and equilibrium position displacements (K, adimen-
sional units) of the most displaced normal modes of carbazole for T1 → S0 transition.

BLYP B3LYP

ν̃T1 ν̃S0 K ν̃T1 ν̃S0 K

546 496 0.54 560 508 0.47
730 667 0.46 754 692 0.72
998 948 0.42 886 778 0.50
1264 1257 0.62 1309 1264 0.71
1389 1365 0.46 1336 1292 0.55
1554 1494 0.59 1620 1580 0.53
1596 1536 0.80 1664 1622 1.21

The most displaced modes are two collective total symmetric stretching and bending

modes falling at ≈ 1600 and 1200 cm−1; the former is responsible of the two most intense

peaks of the phosphorescence spectrum falling at ca 23 000 and 21 300 cm−1, whereas the

latter causes the less intense peak at ≈ 24 000 cm−1. All other peaks are combination bands

of these two modes with the other less displaced modes reported in Table 5.

Conclusion

The optimization of technological devices for a sustainable development, solar energy conver-

sion and low cost light emitting diodes, requires the tailoring of several molecular properties

to achieve their optimal efficiencies. That is a difficult task which has to be carried out on

different lines, concerning not only the energy positions of molecular levels but also the rates

of radiationless processes which could take place in devices, and the fine matching of spec-
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Figure 5: Theoretical and experimental (ref 78) T1 → S0 spectra of carbazole at 77 K.

tral bands, which control energy transfer processes.6,69,77 Herein we have shown that modern

computational procedures allow for simulating spectral band shapes of singlet-triplet tran-

sitions, yielding very reliable Franck-Condon weighted densities of states in a wide spectral

region, up to 1-1.2 eV. The employment of Kubo’s generating function approach is crucial

in that task, inasmuch as it allows to include in calculations all the molecular normal modes

of vibration and all the effects which affect the Franck-Condon density of states, i.e. equilib-

rium position displacements, normal mode mixing, and vibrational frequency changes. The

approach is therefore also very useful for testing the ability of first principle calculations in

predicting those quantities for triplet states, for which spectral band shapes are often the

only experimental data available in the literature.

For the systems analyzed in this work, all the tested electronic methodologies provide

reliable band shapes for singlet-triplet transitions. With the exception of benzophenone (see

Figure 4), MP2/ADC(2) outperforms DFT, but only to a small extent, not fully commen-

surate with its higher computational cost. The pure BLYP functional, the less demanding
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among the used methods, gives band-shapes in very good agreement with observed spec-

tra, but slightly underestimates transition energies. Limited to naphthalene, we have also

tested the M05-2X and CAM-B3LYP high-exchange functionals, which furnished very good

ground and excited state equilibrium geometries for aromatic dipolar dyes.69,79,80 Figure S2

in the Supporting Information shows that both M05-2X and CAM-B3LYP behave worse

than BLYP and B3LYP functionals, predicting spectral bandwidths larger than their exper-

imental counterparts both for T1 ← S0 and T1 → S0 transitions, possibly due to anharmonic

effects.69 Based on the present data, B3LYP appears to be a good compromise between

accuracy and computational cost, as it gives good band shapes and also well reproduces the

observed 0-0 transition energies.
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