
15 October 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A novel model-based testing approach for software product lines

Published version:

DOI:10.1007/s10270-016-0516-2

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1614384 since 2017-10-01T15:09:52Z

This is an author version of the contribution:

Ferruccio Damiani, David Faitelson, Christoph Gladisch, Shmuel Tyszberowicz.

A novel model‐based testing approach for software product lines.

Software & Systems Modeling.

DOI: 10.1007/s10270‐016‐0516‐2

published on‐line on Software & Systems Modeling (First Online: 13 February 2016)

The on‐line published version is available at:

http://link.springer.com/article/10.1007%2Fs10270‐016‐0516‐2

Noname manuscript No.
(will be inserted by the editor)

A novel model-based testing approach
for software product lines

Ferruccio Damiani · David Faitelson ·
Christoph Gladisch · Shmuel Tyszberowicz

Received: date / Accepted: date

Abstract Model-based testing relies on a model of the system under test. FineFit
is a framework for model-based testing of Java programs. In the FineFit approach,
the model is expressed by a set of tables based on Parnas tables. A software prod-
uct line is a family of programs (the products) with well-defined commonalities and
variabilities that are developed by (re)using common artifacts. In this paper we ad-
dress the issue of using the FineFit approach to support the development of correct
software product lines. We specify a software product line as a specification prod-
uct line where each product is a FineFit specification of the corresponding software
product. The main challenge is to concisely specify the software product line while
retaining the readability of the specification of a single system. To address this we
used delta-oriented programming, a recently proposed flexible approach for imple-
menting software product lines, and developed: (i) delta-tables as a means to apply
the delta-oriented programming idea to the specification of software product lines;
and (ii) DeltaFineFit as a novel model-based testing approach for software product
lines.

The authors of this paper are listed in alphabetical order. This work has been partially supported by project
HyVar (www.hyvar-project.eu), which has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 644298; by ICT COST Action IC1402
ARVI (www.cost-arvi.eu); by ICT COST Action IC1201 BETTY (www.behavioural-types.eu);
by Italian MIUR PRIN 2010LHT4KM project CINA (sysma.imtlucca.it/cina); by Ateneo/CSP
D16D15000360005 project RunVar; and by GIF (grant No. 1131-9.6/2011).

F. Damiani
University of Torino, Dipartimento di informatica, C.so Svizzera 185, 10149 Torino, Italy
(E-mail: ferruccio.damiani@unito.it)

D. Faitelson
Afeka Tel Aviv Academic College of Engineering, Israel (E-mail: davidf@afeka.ac.il)

C. Gladisch
Karlsruhe Institute of Technology, Germany (E-mail: gladisch@ira.uka.de)

S. Tyszberowicz
The Academic College of Tel Aviv Yaffo, Israel (E-mail: tyshbe@tau.ac.il)

www.hyvar-project.eu
www.cost-arvi.eu
www.behavioural-types.eu
sysma.imtlucca.it/cina

2 Ferruccio Damiani et al.

Keywords Java · Alloy · Software product line · Delta-oriented programming ·
Model-based testing · Refinement

1 Introduction

In this paper we propose a novel model-based testing approach for software product
lines (SPLs). An SPL is a set of programs (the products) that share significant com-
mon functionality and have well-understood and organized variabilities [9,33]. Our
idea is to integrate data refinement based testing into SPL development.

FineFit [17] is an approach for model-based testing of Java programs which relies
on the notion of data refinement [34] to compare the state of the model with the state
of the system under test (SUT). Data refinement captures the relationship between
an abstract model and its concrete representation. During the testing process, Fine-
Fit must both retrieve abstractions of the SUT current state and instruct the SUT to
perform operations with specific input. These tasks are supported by two Java code
fragments—the retrieve function and the driver, respectively. The retrieve function
and the driver are written by FineFit’s users. A prototypical implementation of the
FineFit tool is available [45].

In the FineFit approach the structure of the model and the specification of the
system’s operations are given by a set of tables, based on Parnas tables [32]. Par-
nas tables organize expressions, where rows and columns separate an expression into
cases, and each table entry specifies either the result value for some case or a condi-
tion that partially identifies some case. The strength of the tabular notation is its clear
readability which helps in reducing errors in specifications.

In this paper we address the problem of using the FineFit approach to support
the development of correct SPLs. Writing for each product to be tested a FineFit
specification, a retrieve function, and a driver would be error prone and not cost-
effective. Our idea is to express the specification of an SPL as a product line, where
each product is a FineFit model (i.e., a set of tables) for the corresponding product
(i.e., a Java program) of the specified SPL.

The main challenge addressed in this paper is to devise a means to concisely spec-
ify the SPL being tested while retaining the readability of a FineFit specification of
a single system. To this aim, we consider delta-oriented programming (DOP) [36,7]
(see also [1], Section 6.6.1), a recently proposed flexible approach for implementing
SPLs. DOP is an extension of feature-oriented programming (FOP) [5], a prominent
approach for developing SPLs (cf. [1], Section 6.1).1 DeltaJ [7,22,44] is the archety-
pal language for delta-oriented programming of SPLs of Java programs.

As pointed out in [1], “much of the tremendous power of features is yet to be un-
locked by making features explicit throughout the entire systems and software lifecy-
cle”. In this paper we present DeltaFineFit, a novel model-based testing approach for
delta-oriented SPLs. DeltaFineFit integrates data refinement based testing into delta-
oriented SPL development by ensuring that each product is generated together with
its FineFit model and the suitable driver and retrieve functions.

1 A straightforward embedding of FOP into DOP is illustrated, e.g., in [38].

A novel model-based testing approach for software product lines 3

DeltaFineFit enables the fully automated testing of all the products of an SPL.
When the number of products is too large, testing all the products is unfeasible. This
could be addressed by using, e.g., sample-based SPL testing techniques [21,20,27,
23], where a subset of products—covering relevant combinations of features—is gen-
erated and tested by applying single system testing techniques.

The main contribution of this paper is to introduce the delta table concept: an
approach for deriving a new table from an existing one, based on the difference (the
delta) between the tables. Delta tables are used to define a notion of “delta module
for FineFit specifications” (i.e., a construct that describes how to modify the FineFit
specification of a product to obtain the FineFit specification of another product), that
we call delta-table module. Delta tables are illustrated and evaluated (in terms of their
support to conciseness and readability of SPL specifications) by considering a small
SPL as a case study that is used as a running example throughout the paper.

A prototypical implementation of DeltaTables, a tool that generates a FineFit
specification by applying a delta-table module to a FineFit specification, is avail-
able at the DeltaFineFit home page [43]. All the tables presented in the paper that are
the result of delta-table application have been automatically generated. The DeltaFin-
eFit tool chain (which will provide fully automated support to the integrated use of
DeltaTables, DeltaJ, and FineFit) is currently under development.

The remainder of the paper is organized as follows. Section 2 recalls the FineFit
approach for specifying and testing single Java programs. Section 3 recalls DOP and
illustrates, by using DeltaJ, the SPL example that is used through the paper. Section 4
introduces delta tables. Section 5 illustrates DeltaFineFit by means of the SPL intro-
duced in Section 3. Section 6 evaluates the DeltaFineFit approach. Section 7 reviews
some related work. We conclude in Section 8 that also describes some future direc-
tions. Appendix A elaborates on the structure and the semantics of the FineFit tables.
Appendix B illustrates the algorithm that describes the semantics of delta tables.

A preliminary version of the material presented in this paper is briefly outlined
in [10]. Here we present a new and a more flexible notion of delta-tables, describe
implementation details, and provide detailed explanations and examples.

2 A recollection of data-refinement testing of Java programs with FineFit

The data refinement theory [34] captures the relationship between an abstract model
and its concrete implementation. The state spaces of the two levels of abstraction
are related by a retrieve function which maps the concrete representation into the
abstract one. When we use data refinement for testing, the abstract model becomes a
test oracle and a source of test cases for the concrete program.

The FineFit [17,45] model-based (or model-driven) testing framework uses data
refinement to directly compare the state of the model (the specification) with the state
of the SUT. FineFit helps to understand the testing results and to trace the reason for
any difference between the specification and the SUT (see [17]). To test a system,
the user writes its specification as a collection of HTML2 tables (where cells contain

2 In practice the tables can be written using any tool that can export its output to HTML, for example
MS Word. FineFit ignores anything that is not part of an HTML table.

4 Ferruccio Damiani et al.

Alloy expressions [19]). The specification of the SUT consists of tables for its basic
types (called atoms), for the states of the SUT, for its invariants, and one table for
each operation provided by the SUT. Each operation table defines an operation as a
predicate on the system states immediately before and after the operation (similar to
how operations are specified in languages like Z [40]). FineFit uses these predicates
in two ways. First it uses the predicates to test the behavior of the SUT’s operations.
For each operation X it applies the corresponding predicate to the SUT’s state, right
after the SUT completes operation X . A false result indicates a discrepancy between
the expected and the actual behaviors. Second it uses the predicates to generate test
cases by “solving” each predicate (a solution is an assignment of values that satisfy
the predicate to the state variables and the inputs), and uses the solutions as test
cases. These two capabilities are implemented with the help of Alloy’s3 Kodkod [41]
relational model finder. We present an example in the rest of this section; for more
details see [17].

The SUT’s retrieve function is a Java method that translates the concrete state (of
the SUT) into an instance of the abstract state. The task of implementing the retrieve
function is delegated to the developer—who must know how the data structures im-
plement the system’s specification. This makes the testing framework flexible and
scalable, since the programmers can control the parts (i.e., select a subset) of the sys-
tem to expose for the purpose of testing, even if the system is too large or complicated
for automatic analysis.

Figure 1 illustrates the testing process of a SUT when FineFit is used. Before
the actual testing process is executed, FineFit checks the consistency of the model.
Then FineFit begins the testing process by arbitrarily choosing an operation and input
available in the current state, applying the corresponding concrete operation to the
SUT, and checking whether the new state corresponds to the operation’s specification.
This process continues until either a discrepancy is found or until the user decides to
stop the process. During testing, FineFit prints a trace that consists of the abstract
snapshots (states) and the operation calls of the SUT. When a problem is detected,
the user can review the entire history that led to it.

In the following subsections we demonstrate data-refinement testing with FineFit
by an example of a simple Java program implementing a photo album, that we call
the Base Album. We begin by describing in Section 2.1 the program we would like
to test. Then we describe in Section 2.2 the FineFit model that is used to test the
program. Finally, in Section 2.3, we present the interfaces between FineFit and the
program. These interfaces are used to retrieve the current program state for analysis
in FineFit and to allow FineFit to apply operations on the program.

2.1 The Java program to be tested

Listing 1 shows the Java code implementing the Base Album. Informally, the Base
Album manages a sequence of photos and provides operations for adding and view-

3 Alloy is a general purpose modeling language (in the style of Z) for reasoning about relational struc-
tures with first order logic. It has no direct concept of system states or operations, and it does not offer any
tool for testing software.

A novel model-based testing approach for software product lines 5

Test case
generator

Abstract
→

Concrete

pre abstract states abstract activations
SUT

Java method calls

Concrete
→

Abstract

Jav
a m

eth
od outputs

Retrieve

Concrete states

post abstract statesTest
oracle

post abstract states
(and outputs)

Driver

Decisions

Fig. 1 FineFit testing procedure. Each abstract state is a Kodkod Instance object that maps the names of the
state variables to relations; each relation is a set of tuples of atoms. Each abstract activations consists of an
operation name and atoms for the input parameters of the operation. The driver is explained in Section 2.3.

ing photos. It consists of the class Photo, the interface PhotoAlbum (with the nested
classes PhotoExists and AlbumIsFull), and the class ArrayPhotoAlbum which im-
plements the interface, providing functionality for adding a photo to the album and
viewing its photos (the methods addPhoto and viewPhotos of PhotoAlbum, respec-
tively).

2.2 The FineFit model

In order to test a system with FineFit, the developer has to write a model that specifies
the desired behavior of the system. A FineFit model consists of relational variables
and invariant predicates that represent the system states and of predicates that de-
scribe the effects of the operations on the system states. Both the structure (i.e., the
state variables and the invariant predicates) of the model and its operations predicates
are written in a tabular form. Formally a FineFit model (or specification) consists of:

1. a constants table that defines the values of constants used in the model;
2. an atoms table, listing the name and the scope (i.e, the maximum number of

instances) of each of the atoms (i.e., the basic types) used in the model;
3. a number of enumeration tables listing the values of each enumerated type, where

each value has a unique symbolic name;
4. a state table, listing the name and the type of the variables representing the state

of the model;
5. an invariants table, listing the invariants that the state of the model must satisfy

when the model is created and that must be preserved by any operation that may
be executed on the model;

6. a number of operation tables representing the operations of the model.

6 Ferruccio Damiani et al.

1 public class Photo {
2 private String image; // represents the bitmap image
3 public Photo(String theImage) {
4 if(theImage == null) throw new IllegalArgumentException("NullImage");
5 image = theImage;
6 }
7 public String getImage() { return image; }
8 public String toString() { return image; }
9 }

1 import java.util.Set;
2 public interface PhotoAlbum {
3 Photo addPhoto(String image);
4 Set<Photo> viewPhotos();
5 public class PhotoExists extends RuntimeException { }
6 public class AlbumIsFull extends RuntimeException { }
7 }

1 import java.util.Set;
2 import java.util.HashSet;
3 public class ArrayPhotoAlbum implements PhotoAlbum {
4 private int size = 0;
5 private Photo [] photoAt;
6 public ArrayPhotoAlbum(int maxSize) {
7 if(maxSize<1) throw new IllegalArgumentException("IllegalSize");
8 photoAt = new Photo[maxSize];
9 }

10 public boolean imageIsInAlbum(String image) {
11 for (int i= 0; i < size; i++) {
12 Photo p = photoAt[i];
13 if (p.getImage().equals(image)) return true;
14 }
15 return false;
16 }
17 public Photo addPhoto(String image) {
18 if(image == null) throw new IllegalArgumentException("NullImage");
19 if(size == photoAt.length) throw new AlbumIsFull();
20 if(imageIsInAlbum(image)) throw new PhotoExists();
21 Photo new photo = new Photo(image);
22 photoAt[size] = new photo;
23 size = size + 1;
24 return new photo;
25 }
26 public Set<Photo> viewPhotos() {
27 Set<Photo> result = new HashSet<Photo>();
28 for (int i= 0; i < size; i++) { result.add(photoAt[i]); }
29 return result;
30 }
31 }

Listing 1: Java 1.5 code implementing the Base Album

We name the first five kinds of tables structural tables (since they represent the
structure of the model). The syntax of the tables of the model is illustrated in Fig. 2.
The model of the Base Album is given in Fig. 3. The expressions used in the tables
are written in Alloy [19], except that we use variables decorated with “?” and “!”
to denote inputs and outputs, respectively. In most cases the expressions are self-
explanatory; when needed we provide a short explanation.

A novel model-based testing approach for software product lines 7

Constants table syntax Atoms table syntax Enumeration table syntax

Constant name Value
Name1 Value1

...
...

NamenC ValuenC

Atom Scope
Atom1 Number1

...
...

AtomnA NumbernA

Atom
Value1

...
ValuenE

State table syntax Invariants table syntax

State variable Type
var1 Type1

...
...

varnV TypenV

Invariant name Invariant
Name1 AlloyFormula1

...
...

NamenI AlloyFormulanI

Operation table syntax

id(x?:Type,y!:Type)
C{1..}1 · · · C{..h..}1 · · · C{..m}1
· · · · · · · · · · · · · · ·

C{1}p · · · · · · · · · C{h}p · · · · · · · · · C{m}p

varOrOut1 t1
1 · · · · · · · · · th

1 · · · · · · · · · tm
1

...
... · · · · · · · · ·

... · · · · · · · · ·
...

varOrOutn t1
n · · · · · · · · · th

n · · · · · · · · · tm
n

Fig. 2 Model tables syntax

2.2.1 Structural tables

We now describe the structural tables of the Base Album example.

Constants table. The constant table contains one constant, MAX, that specifies the
maximal number of photos in the album.

Atoms (basic types) table. The atoms used in the model of Base Album are Photo, Int,
and Report. Report is an enumeration type that we use in conjunction with an output
variable to indicate the success or the failure of an operation (its values are specified
by an enumeration table).

The atoms table associates a scope with each atom to determine its maximal num-
ber of instances used during testing. In the example we test the system with at most
five photos. Note that the scope is not part of the specification; it is only used to limit
the amount of entities in the test cases. The scope of the Report type can be safely
set to three, because Report has exactly three instances—one for each constant in the
enumeration table.

Enumeration table. The Base Album has an enumeration table for Report. It defines
Report to be a set of exactly three instances whose names are given in the table.

8 Ferruccio Damiani et al.

Constants table Atoms table Enumeration table

Constant name Value
MAX 5

Atom Scope
Photo 5
Int 5
Report 3

Report
ALBUM FULL
PHOTO EXISTS
OK

State table Invariants table

State variable Type
photoAt seq Photo

Invariant name Invariant
Disjoint #photoAt.elems = #photoAt
BoundedSize #photoAt ≤MAX

Operation tables

init() true
photoAt none -> none

addPhoto(p?:Photo, #photoAt < MAX #photoAt ≥MAX
report!:Report) p? !in ran[photoAt] p? in ran[photoAt] true

photoAt photoAt.add[p?] = =
report! OK PHOTO EXISTS ALBUM FULL

viewPhotos(result!: seq Photo) true
result! photoAt.elems

Fig. 3 Specification of the Base Album. Note that the expression photoAt.add[p?] is equivalent to the
expression photoAt+(#photoAt→ p?), that is, it describes the union of two relations. The content of the
cells in the tables is always free of side-effects; there are no imperative statements in the FineFit language.

State table. The state table describes the state of the Base Album by capturing, via
the variable photoAt, the sequence of photos in the album.

Invariants table. Two invariants are needed for the Base Album: (i) all the album
photos are distinct (i.e., each photo has been added to the album only once), and (ii)
there are no more than MAX photos in the album. The first invariant is specified using
the number of photos in the album (recall that the album is a sequence of photos).
This number has to be equal to the size of the set of all photos in the album.4

2.2.2 Operation tables

A FineFit operation table is a predicate that specifies the behavior of an operation as a
relation between the model’s state variables before the operation starts (the pre-state)
and after the operation completes (the post-state). It consists of two major areas: a
precondition tree which consists of condition cells (first p rows in the operation table
syntax at the bottom of Fig. 2) and an expression table which consists of variable and
value cells (last n rows in the operation table syntax). The precondition tree consists

4 Note that by definition a set does not contain duplicate elements.

A novel model-based testing approach for software product lines 9

of predicates that determine which columns to use in the definition of the post-state.
The expression table is a set of columns, where each column defines the values of
the state variables in the post state (given their values in the pre-state) and the values
of the output parameters. For example, the addPhoto operation of the Base Album (cf.
Fig. 3) updates the state of the photoAt state variable and the report! output parameter
(first column). This operation has three expression columns—columns two to four in
the table. The first expression column (the second column in the table) is for the case
where the input photo p? (of type Photo) does not appear in the album and the album
is not full, then the photo is added to photoAt. The next expression column is for
the case where the input photo already appears in the non-full album (photoAt does not
change), and the last expression column is for the case where the album is full (photoAt
does not change). The value of report! (of type Report) is OK only in the case that the
addPhoto operation indeed added a new photo to the album. Note that predicates that
appear on top of each other are conjoined, while predicates that appear side by side
represent disjunction. If we consider the precondition part of an operation table (see
the operation table syntax, Fig. 2) as a matrix of p rows and m columns, then

– each of the predicates C{1}p ..C{m}p in row p occupies exactly one cell, and
– each of the predicates C{1..}q ..C{..h..}q ..C{..m}q in row q (with 1≤ q≤ p) spans over

one or more consecutive cells (a predicate that spans over columns j..k is super-
scripted by the set { j..k} of the indexes of those columns).

We provide further explanations about the structure and semantics of operation tables
in Appendix A.

In addition to addPhoto, the model of the Base Album provides the operations view-
Photos and init. The operation viewPhotos uses elems to return (using result!) the set of
elements in a given sequence (in our case the photoAt sequence). Finally, the operation
init—which corresponds a class constructor in Java—defines the initial state of the
album, demanding that there are no photos in the album.

The meaning of ‘=’ in a cell of the expression table part of an operation table
(e.g., addPhoto in Fig. 3) is that the content of the state variable associated to the table
row is left unchanged.

2.3 The retrieve function and the driver

During the testing process, the SUT must provide FineFit with abstractions of its
current state, and FineFit must instruct the SUT to perform operations with specific
inputs. The first task is supported by a retrieve function and the second by a driver.5

The retrieve function relates the concrete state of the SUT (Java code) to the
abstract state of the specification. To provide a retrieve function the SUT must imple-
ment a method that returns an abstract snapshot (a collection of named sets of tuples,
one for each state variable) of its current state. For example, in our Base Album
application we have added the retrieve method illustrated in Listing 2 to the class

5 In the original paper about FineFit [17] we used the term fixture, which was borrowed from Fit [31],
instead of driver. We think that driver is a more appropriate term.

10 Ferruccio Damiani et al.

1 import com.finefit.sut.IdMap;
2 import com.finefit.sut.State;

1 public State retrieve() {
2 State state = new State();
3 state.add state("photoAt", 2);
4 for (int i = 0; i < size; i++) {
5 state.get state("photoAt").add("" + i, IdMap.instance().obj2atom(photoAt[i]));
6 }
7 return state;
8 }

Listing 2: Required import statements and method implementing the retrieve func-
tion for the Base Album specification (to be inserted in the class ArrayPhotoAlbum
in Listing 1)

ArrayPhotoAlbum (given in Listing 1). The abstract state is constructed using the
State class that is part of the FineFit library. The class IdMap manages the mapping
between the concrete Java objects and their corresponding abstract atoms.

A driver is needed to connect the SUT with FineFit. It is responsible for translat-
ing the abstract operation calls and data used by FineFit to the concrete representation
of the SUT, and for translating concrete return values and exceptions back to their cor-
responding abstract atoms. To facilitate the implementation of the driver, we provide
(as a part of the FineFit library) the base class FineFitDriver. It contains two maps,
one (represented by the field ops) for translating abstract operation names to con-
crete operations and one (represented by the field exceptions) for translating concrete
exceptions to abstract error codes. Any concrete driver class, like the PhotoAlbum-
Driver class for the Base Album application in Listing 3, has to populate these two
maps with the exceptions and the operations of the SUT. This is done by defining the
methods set up operation table and set up exception table, respectively. The con-
crete driver class has also to define the methods set up sut (for creating the SUT
instance), set init sut (for performing further initialization operations that might be
needed), and retrieve (for calling the retrieve method on the SUT). The driver un-
packs the operation names and arguments coming from FineFit, calls the operation,
captures the exceptions thrown by the operation, converts them into error codes and
returns (by calling the SUT’s retrieve method) to FineFit the state of the SUT after
the operation has completed.

3 A recollection of delta-oriented programming of SPLs of Java programs with
DeltaJ

DeltaJ is the archetypal language for delta-oriented programming of SPLs of Java
programs [7]. A prototypical implementation of DeltaJ that supports Java 1.5, called
DeltaJ 1.5, is available [22,44]. In this section we briefly illustrate the use of DeltaJ 1.5
in the implementation of a simple product line—the Album PL. Each product in the
Album PL is a Java 1.5 program implementing a photo album. This running exam-

A novel model-based testing approach for software product lines 11

1 import java.util.Set;
2 import com.finefit.sut.∗;
3 import com.finefit.sut.FineFitDriver;
4
5 public class PhotoAlbumDriver extends FineFitDriver {
6 private ArrayPhotoAlbum sut;
7 protected void setup sut() { sut = new ArrayPhotoAlbum(5); }
8 public void init sut(com.finefit.model.State args) { }
9 public State retrieve() { return sut.retrieve(); }

10 protected void setup operation table() {
11 ops.put("addPhoto", new Operation() {
12 public void apply(com.finefit.model.State args, State outputs) throws Exception {
13 String id = args.getArg("p");
14 Photo p = sut.addPhoto(id);
15 IdMap.instance().associate(p, id);
16 } });
17 ops.put("viewPhotos", new Operation() {
18 public void apply(com.finefit.model.State args, State outputs) throws Exception {
19 outputs.add output("result!", 1);
20 Set<Photo> photos = sut.viewPhotos();
21 for(Photo p : photos) {
22 outputs.get output("result!").add(IdMap.instance().obj2atom(p));
23 }
24 } });
25 }
26 protected void setup exception table() {
27 exceptions.put("PhotoAlbum$PhotoExists", "PHOTO_EXISTS");
28 exceptions.put("PhotoAlbum$AlbumIsFull", "ALBUM_FULL");
29 }
30 }

Listing 3: Java code implementing the driver for the Base Album

Fig. 4 Feature model of the Album PL

ple aims at presenting the proposed approach for integrating refinement-based testing
into delta-oriented SPLs development rather than at providing a realistic case study.

In delta-oriented programming each product is described by a set of features,
where a feature is an abstract description of functionality [4]. Figure 4 depicts the
feature model6 of the Album PL as a feature diagram. The feature Base is mandatory,
while all other features are optional. A product that has the feature Groups requires
also the feature Owner. The Album PL has therefore six products. The product that
has only the Base feature is the Base Album introduced in Section 2.

A DeltaJ product line consists of a code base and a product-line declaration.
The code base (described in Section 3.1) consists of a set of delta modules describ-
ing modification to Java programs. The product-line declaration (described in Sec-
tion 3.2) provides the connection of the delta modules with the product features; i.e.,
it specifies which delta modules must be used to generate each product.

6 A feature model defines the valid feature configurations of an SPL, i.e., the feature configurations that
describe the products (see, e.g., [4]).

12 Ferruccio Damiani et al.

3.1 DeltaJ delta modules

A DeltaJ delta module describes the changes in a given product (i.e., a Java pro-
gram) that are needed to implement other products (i.e., other Java programs). The
alterations inside a delta module act both at the class/interface level by

– adding or removing a Java compilation unit, that is, an interface or a class together
with a package declaration and a list of import-statements, or

– modifying the package declarations, or
– modifying the import-statements;

and at the class/interface structure level by

– modifying existing interfaces (i.e., changing the super interfaces and adding, re-
moving or modifying method signatures or nested types), or

– modifying the internal structure of existing classes (i.e., changing the super class
or the implemented interfaces and adding, removing or modifying constructors,
fields, methods or nested types).

Modifying a method m of a class C means replacing the method body with a new one.
The new body may contain the call original(· · ·), that is replaced in the generated
product by a call to a new method with a fresh name m’, which has the same type and
body as m before the modification. The new method m’ is added to the class C when
the product is generated.7

3.2 DeltaJ product-line declaration

Listing 4 illustrates the declaration for the Album PL. The product line declaration:

– Lists the product features.
– Lists the delta modules.
– Describes the set of valid feature configurations by means of propositional con-

straints over the set of features (see, e.g., [4]). For each feature ϕ in the set {ϕ}
of the product line features we introduce a propositional variable with the same
name. A propositional formula P characterizes a set of feature configurations
Ψ ⊆P({ϕ}) if and only if, for every feature configuration {ψ} ∈Ψ , the for-
mula P is true when the variables in {ψ} are true and the variables in {ϕ}\{ψ}
are false. The propositional formula in Listing 4 (Base & (Groups ⇒ Owner))
represents the six valid feature configurations described by the feature diagram
(Fig. 4).

– Describes the relation between delta modules and features by means of a totally
ordered set of constraints called partitions. A partition consists of a set of when-
clauses. When-clauses in the same partition are separated by a comma and the
end of each partition is indicated by a semicolon. Consider p≥ 1 partitions, such
that the i-th partition contains qi ≥ 1 delta clauses Si, j when Pi, j (1 ≤ i ≤ p and

7 This mechanism is similar to the Super(...) call of FOP [5] and to the around advice and proceed
mechanisms of aspect-oriented programming (AOP)—see, e.g., [37,7] for a comparison between DOP
and AOP.

A novel model-based testing approach for software product lines 13

1 SPL Album {
2 Features = {Base, Remove, Owner, Groups}
3 Deltas = {DBase, DRemove, DOwner, DRemoveAndOwner, DGroups}
4 Constraints { Base & (Groups => Owner); }
5 Partitions {
6 {DBase} when (Base);
7 {DRemove} when (Remove), {DOwner} when (Owner);
8 {DRemoveAndOwner} when (Remove & Owner);
9 {DGroups} when (Groups);

10 }
11 Products {
12 A Base = {Base};
13 A Remove = {Base, Remove};
14 A Owner = {Base, Owner};
15 A RemoveOwner = {Base, Remove, Owner};
16 A OwnerGroups = {Base, Owner, Groups};
17 A OwnerRemoveGroups = {Base, Remove, Owner, Groups};
18 }
19 }

Listing 4: DeltaJ 1.5 product-line declaration for the Album PL

1 ≤ j ≤ qi). Each when-clause consists of a set of delta module names Si, j, fol-
lowed by the when keyword and by a propositional formula over features Pi, j.
The sets of delta module names Si, j are pairwise disjoint and their union consists
of all the delta modules of the SPL (i.e., the set of sets of delta module names
{Si, j | 1 ≤ i ≤ p and 1 ≤ j ≤ qi} represents a partition of the delta module set
of the SPL).8 The formula Pi, j (called the application condition of the delta mod-
ules in Si, j) describes for which feature configurations the delta modules must be
applied. Only valid feature configurations (according to the feature model) may
be used for product generation—hence the application conditions must be read
by assuming that the formula describing the set of valid feature configurations
holds. Delta modules in the same partition can be applied in any order whereas
the order between partitions must be respected. The ordering allows the designer
to enforce semantic requires-relations that are necessary for the applicability of
the delta modules.

– Declares some products that can be generated by giving a name to the associated
feature configurations (this allows developers to disable the generation of some
products without changing the set of valid feature configurations).

According to the Album PL declaration in Listing 4: The features and the valid
feature configurations are those described by the feature model in Fig. 4. The delta
modules DBase, DRemove, DOwner, and DGroups are associated with the features
Base, Remove, Owner, and Groups, respectively; moreover, when the two features
Remove and Owner have to be realized, also the delta module DRemoveAndOwner
must be applied. All the products corresponding to the six valid feature configurations
can be generated.

The delta module DBase (Listing 5) introduces the class Photo, the interface
PhotoAlbum, and the class ArrayPhotoAlbum representing the product which has

8 In DELTAJ 1.5 each constraint “Si,1 when Pi,1, . . . , Si,qi when Pi,qi ;” is called “partition”, since the set
of sets of delta module names {Si, j | 1≤ j ≤ qi} is a partition of ∪1≤ j≤qi Si, j .

14 Ferruccio Damiani et al.

1 delta DBase {
2 adds { package it.unito.Album; /∗ Same as in Listing 1 (top) ∗/ }
3 adds { package it.unito.Album; /∗ Same as in Listing 1 (middle)∗/ }
4 adds { package it.unito.Album; /∗ Same as in Listing 1 (bottom)∗/ }
5 }

Listing 5: Code base of the Album PL: delta module DBase

1 delta DRemove {
2
3 modifies it.unito.Album.PhotoAlbum {
4 adds public void removePhoto(int location);
5 }
6
7 modifies it.unito.Album.ArrayPhotoAlbum {
8 adds public void removePhoto(int location) {
9 if ((location < 0) || (size <= location))

10 throw new IllegalArgumentException("IllegalLocation");
11 photoAt[location] = photoAt[size−1];
12 photoAt[size−1] = null;
13 size = size −1;
14 }
15 }
16
17 }

Listing 6: Code base of the Album PL: delta module DRemove

1 delta DOwner {
2
3 adds { package it.unito.Album;
4 class User {
5 ... /∗ Fields, constructor, methods ∗/
6 }
7 }
8
9 modifies it.unito.Album.PhotoAlbum {

10 adds public void login(String name, String password);
11 adds public void logout();
12 adds nested { public class AlreadyLogged extends RuntimeException {} }
13 adds nested { public class AuthFailed extends RuntimeException {} }
14 adds nested { public class NotAuthorized extends RuntimeException {} }
15 adds nested { public class OwnerNotLoggedIn extends RuntimeException {} }
16 }
17
18 modifies it.unito.Album.ArrayPhotoAlbum {
19
20 ... /∗ Adds imports, adds fields, modifies constructor, adds methods ∗/
21
22 modifies addPhoto(String image) {
23 if (!isOwnerLoggedIn()) throw new OwnerNotLoggedIn();
24 return original(image);
25 }
26 }
27
28 }

Listing 7: Code base of the Album PL: delta module DOwner

A novel model-based testing approach for software product lines 15

1 delta DRemoveAndOwner {
2
3 modifies it.unito.Album.ArrayPhotoAlbum {
4 modifies removePhoto(int location) {
5 if (!isOwnerLoggedIn()) throw new OwnerNotLoggedIn();
6 original(location);
7 }
8 }
9

10 }

Listing 8: Code base of the Album PL: delta module DRemoveAndOwner

1 delta DOwner {
2
3 adds { package it.unito.Album;
4 /∗ Imports ∗/
5 class Groups {
6 ... /∗ Fields, constructor, methods ∗/
7 }
8 }
9

10 modifies it.unito.Album.Photo {
11 ... /∗Adds a field (group) and two methods (getGroup and setGroup) ∗/
12 }
13
14 modifies it.unito.Album.PhotoAlbum {
15 adds public User updateUser(String name, String password);
16 adds public Group updateGroup(String name, Set<String> memberNames);
17 adds public void removeUser(String name);
18 adds public void removeGroup(String name);
19 adds public void updatePhotoGroup(int location, String groupName);
20 adds nested { public class MissingUser extends RuntimeException {} }
21 adds nested { public class MissingUsers extends RuntimeException {} }
22 adds nested { public class MissingGroup extends RuntimeException {} }
23 adds nested { public class RemoveOwnerGroup extends RuntimeException {} }
24 adds nested { public class RemoveOwner extends RuntimeException {} }
25 }
26
27 modifies it.unito.Album.ArrayPhotoAlbum {
28 ... /∗ Adds fields, modifies constructor, modifies methods, adds methods ∗/
29 }
30
31 }

Listing 9: Code base of the Album PL: delta module DGroups

only the Base feature (cf. Section 2.1). The delta module DRemove (Listing 6) in-
troduces the Remove feature which enables to remove a photo from the album. The
delta module DOwner (Listing 7) introduces the Owner feature which protects the
photo album by enabling only the owner (who has to login) to modify the album. The
delta module DRemoveAndOwner (Listing 8) introduces the code needed to handle
the combination of the optional features DRemove and DOwner. The delta module
DGroups (Listing 9) introduces a further level of protection by requiring the owner
to create users and to associate to each photo the group of users that can view it. The
complete code of the delta modules of the Album PL is available at the DeltaFineFit
home page [43].

16 Ferruccio Damiani et al.

3.3 DeltaJ generation of the products

A product is valid if it corresponds to a valid feature configuration. The product
generation mapping is the mapping that associates each valid feature configuration
to the corresponding product (i.e., the Java program obtained by applying the delta
modules with a satisfied when-clause to the empty program). This mapping may be
partial (since a non-applicable delta module may be encountered during product gen-
eration, resulting in an undefined product) and ambiguous (since, for a given feature
consideration, two different orders of the delta-modules that are compatible with the
order of the partitions may generate two different products).

A delta module is applicable to a Java program if suitable syntactic conditions are
satisfied. E.g.:

– each class or interface to be added does not exists;
– each class or interface to be removed or modified exists;
– for every interface to be modified: each method to be added does not exist, each

method to be removed exists; and
– for every class to be modified: each method or field to be added does not exist,

each method or field to be removed exists, and each method to be modified exists
and has the same signature as in the method-modify operation.

A suitable type system could guarantee that if a DeltaJ product line is well-typed,
then its product generation mapping is total and unambiguous and all its products are
well-typed Java programs. Such a type system has been formalized for the minimal
core calculus IMPERATIVE FEATHERWEIGHT DELTA JAVA (IF∆J) [7]. However, it
is not yet implemented in DeltaJ 1.5 [22,44], where the products are generated by
considering delta modules in the order in which they occur in the product line dec-
laration,9 and most type errors in the products are detected only when the product is
generated.

3.4 Delta-oriented SPL development

Delta-oriented programming is a transformational approach for the development of
SPLs [39]. For instance, it supports developing an SPL by starting from at least one
complete product, called the core product, and writing program transformations (the
delta modules) that specify changes to be applied to the core product in order to
implement other products. In the following we use the phrase core delta module to
refer to a delta module that when applied to the empty product generates the code of
a complete product.

The main advantage of transformational approaches over compositional ones (such
as, e.g., FOP [5,3,14,2]) is that when developing an SPL starting from a set of core
products, the latter approaches require to begin from simple products (implement-
ing minimal sets of features) to be extended in order to implement the other prod-
ucts. Instead, DOP supports also developing an SPL starting from complex products
(implementing arbitrary large sets of features) and transforming them into simpler

9 Thus ruling out ambiguity.

A novel model-based testing approach for software product lines 17

1 SPL Album {
2 Features = ... /∗ Same as in Listing 4 ∗/
3 Deltas = ... /∗ Same as in Listing 4 ∗/
4 Constraints {... /∗ Same as in Listing 4 ∗/ }
5 Partitions {
6 {Dall} when (Base);
7 {DnoGroups} when (!Groups);
8 {DnoOwner} when (!Owner);
9 {DnoRemove} when (!Remove);

10 }
11 Products { ... /∗ Same as in Listing 4 ∗/ }
12 }

Listing 10: DeltaJ 1.5 product-line declaration for the complex-core implementation
of the Album PL

products by removing features (see [36,38]). More general, DOP is well-suited to
support the following SPL development approaches: proactive (i.e., all reusable arti-
facts are planned and developed in advance), reactive (i.e., only a basic set of prod-
ucts is planned and developed—when new customer requirements arise, the existing
SPL is evolved), and extractive (i.e., turning a set of existing applications into an
SPL); whereas FOP supports only the proactive approach. Note that the simple-core
approach roughly corresponds to the proactive approach, while the complex-core ap-
proach may be seen as a particular case of the extractive approach. Proactive SPL
development is the most appealing choice from the quality point of view. However, it
requires a high upfront investment. Krueger [24] proposed therefore the reactive and
extractive approaches to reduce the adoption barrier for SPL engineering.

The implementation of the Album PL illustrated above follows the simple-core
approach. Listing 10 illustrates the SPL declaration of an implementation of the Al-
bum PL that follows the complex-core approach. The delta modules (their code is
available in the DeltaFineFit home page [43]) are such that Dall introduces the code
of the product with all the features, while DnoGroups, DnoOwner and DnoRemove
remove the code that implements the features Groups, Owner and Remove, respec-
tively.

4 Delta-oriented specification of SPLs

In this section we describe delta tables, a concept that we have developed and used
to derive tabular specifications of products by specifying the difference between the
product specifications.

4.1 Delta tables and delta-table modules

In Section 2.2 we have described the tables used by the FineFit model. We refer to
them hereafter as ordinary tables. Figure 2 presents the structure of each ordinary
table. The idea of delta tables is to derive a new table from an existing one, based on
the difference (the delta) between the tables. This difference is provided in an easily
readable way.

18 Ferruccio Damiani et al.

A delta table is recognized by its name (the upper-left cell), which is preceded
with the ∆ symbol. Delta tables have the same structure as the ordinary tables, yet
their cells may contain delta operators (namely, match “∗”, remove “−”, insert “I”,
and replace “∗I”). Let us denote the set of ordinary tables by TO and the set of
delta tables by T∆ . A delta table t∆ can be applied to an ordinary table to, writ-
ten as apply(to, t∆), resulting in a new ordinary table. That is, apply is a function
apply : TO×T∆ → TO ∪ ε , where ε denotes an empty (non-existent) table in the
case that the table is removed by the application. Following is an example of a delta
table application which yields a resulting table (to be explained later). We use the
infix notation: TO apply T∆ .

f(x) x < 0 x≥ 0
y x x
z 1 0

apply
∆ f(x) x < 0 x≥ 0

y ∗I-x ∗
− − −

yields

f(x) x < 0 x≥ 0
y -x x

A delta-table module (DTM) is a set of delta and non-delta tables. Delta table
modules specify the changes to the FineFit specification of a product that are needed
to obtain the specification of another product (i.e., another set of tables). For this we
introduce the function Apply : P(TO)×P((TO∪T∆))→P(TO), where P(TO) and
P(T∆) denote sets of tables.

To define the Apply function we must distinguish between a table and its name,
since when overriding a table a with a table b the tables may be different, i.e. a 6= b,
yet they must share the same name, e.g., specify the same operation. Let t̄ denote the
name of table t and T̄ denote the set of all table names of the set of tables T . A delta
table module B ∈P((TO∪T∆)) is applied to a FineFit specification A ∈P(TO) as
follows:

Apply(A,B) =
⋃

a∈A,b∈B

{a} if ā /∈ B̄
{b} if b ∈ TO
{apply(a,b)} if b ∈ T∆ ,∆ ā = b̄ and apply(a,b) 6= ε

The three different cases are: (case 1) tables in original table set that are not present
in the DTM are copied to the resulting set of tables; (case 2)10 ordinary tables of the
DTM are copied to the resulting table (and may overwrite tables from the original set
A); and (case 3) if a table is marked with the ∆ symbol, then it is a delta table and it is
applied to the corresponding table in the original set. When apply(a,b) returns ε , a is
effectively removed. Note that multiple conditions may be satisfied simultaneously;
in this case all tables whose conditions are satisfied are included.

The first version of delta tables, as proposed in [10], is capable of describing in
a concise and an intuitive way the modification of value and variable cells and the
refinement of condition cells. The latter means that subconditions can be introduced
below existing condition cells of a table. We realized, however, that this condition
refinement is not sufficient for handling all modifications that are necessary in prac-
tice, as it is often required to change the condition hierarchy in a more complex way.

10 Note that tables satisfying this case do not satisfy case 1.

A novel model-based testing approach for software product lines 19

foo A B
C D E F

x 1 2 3 4
y i ii iii iv

<root>

foo

x

y

A

C

1

i

D

2

ii

B

E

3

iii

F

4

iv

Fig. 5 Table foo and its tree structure representation (used for explanations)

We have investigated several syntactic notations; for example, dividing the condition
cells into sections with different semantics of applications. Those notations, however,
either have been complex or their application process was hard to understand.

The challenge of defining transformations on Parnas tables results from the fact
that Parnas tables have both a tabular and a hierarchical structure. When defining
operations, we have to decide whether the tables should be treated as matrices or
as trees. We found that embedding a matrix in a tree is easier than the other way
around, and it allows us to define basic operations that are applicable to all kinds
of tables and to all kinds of cells. In particular, these operations allow a concise
treatment of hierarchical conditional cells which is the most difficult feature to design.
These operations are defined by the apply function that is introduced in Section 4.2.
To handle also the matrix structure of the tables in a concise way and to provide
also abbreviations and convenience rules for the user, we define another function–
“prepare”, which is described in Section 4.3. A strength of the approach is that it has
one core algorithm that is relatively small and is recursively and uniformly applied
on all kinds of cells of the table. Furthermore, the same algorithm is applied to all
kinds of tables in our framework.

4.2 Hierarchical representation of tables and operations of delta tables

Delta tables have the same syntax as the tables shown in Fig. 2. However, their
cells may contain special symbols representing operations that are executed by the
apply function. The operations and their corresponding symbols are: match “∗”, re-
move “−”, insert “I”, and replace “∗I”. In order to deal with the condition hierarchy
of operation tables, the apply function treats tables as ordered trees rather than as ma-
trices, and traverses them recursively from top to bottom. Consider, for example, the
table foo and its encoding as a tree (Fig. 5). The columns of the table are the branches
of the tree. A table cell c1 which is located directly below cell c0 is a child of c0 in the
tree representation. If c0 spans several cells, e.g., c1, . . . ,ck, those cells are children
of c0. The order of siblings must be the same as in the table. Implicitly there also is
present a <root> cell, whose children are the top level cells of the table. Note that
each cell represents a tree, namely the subtree which has the cell as its root. Hence,
the entire tree is represented by the <root> cell.

20 Ferruccio Damiani et al.

In the following we define the apply function and respectively the semantics of
the delta table operations which are interpreted by this function. We use the infix
notation of apply and write A to represent a cell with content A. The notation

c0: C
c1 ... ck

represents a node c0 with value C and with subnodes c1, ...,ck.11 The values of ci
are denoted by op(ci). We omit writing “c0 :” when possible. Given a table to and a
delta table t∆ , to apply t∆ yields a resulting table tr by simultaneously traversing the
structures of to and t∆ .

In Appendix B we provide the algorithm of the apply function and additional
details. Here we present a more intuitive definition, using graphical notation and ex-
amples.

4.2.1 Definition of apply : TO×T∆ → TO

For each table to ∈ TO with content A and subnodes o1, . . . ,om, and for each t∆ ∈
T∆ with subnodes d1, . . . ,dn and operation δ = op(t∆) where δ ∈ {∗,−,I,∗I},
to apply t∆ is defined inductively over the tree structure representation of the tables.

– Case “∗”: The match operator acts as a placeholder that matches any cell and
copies it to the resulting table.

o0 : A
o1 ... om

apply
∗

d1 ... dn
yields

A
r1 ... rn

The branches r1, ...,rn of the resulting table are defined as:

ri := if op(di) 6= “I” then apply(o j,di) else apply(o0,di), (1)

where I is the insert operator, j = min(i,m), and op(di) denotes the delta table
operator of node di.

Remark 1 The same definition of ri applies to all the other cases below. Formally
the definition of ri is the inductive step of the definition of apply but it is presented
here in the interest of readability.

Remark 2 When the leaf of the condition structure in the delta table is a match
operator and the original table’s hierarchy however has further subconditions at
this position, then the match operator is applied also to the subconditions of the
original table. For example, if the delta table has only one condition cell and it is
marked with “∗”, then the entire condition hierarchy of the original table is copied
to the resulting table.

The placeholder can also be used as a subexpression of a bigger expression, but
then it must be embedded in braces “(∗)”, as in the following example:

x apply (∗)+ y yields x+ y

11 The bottom line of the cells is removed to indicate that ci represents a subtree rather than the content
of a cell.

A novel model-based testing approach for software product lines 21

– Case “−”: The remove operator matches any cell content A and removes the cell
from the resulting table.

A
o1 ... om

apply
−

d1 ... dn
yields r1 ... rn

The following example combines operations. The first operation removes a cell
(i.e., it is not copied to the resulting table) whereas the second copies the cell into
the resulting table.

A
D

apply
−
∗ yields D

– Case “I”: The insert operator inserts a cell cins at the position of the current cell
ci of the original table. The apply function proceeds on subsequent cells as if
ci and all its siblings, c1, . . . ,ci, . . . ,cn, are children of cins. The insert operation
is defined partially by the following schema and partially by the recursive step
described above (Equation 1).

A
o1 ... om

apply
II

d1 ... dn
yields

I
r1 ... rn

The following example presents the case where cins has a subsequent cell:

A apply
II
∗ yields

I
A

We now demonstrate the case where cins has several subsequent cells:

A1 . . . An apply
II

∗ . . . ∗ yields
I

A1 . . . An

Multiple insert operations can be applied to the current cell of the original table.
This results in several subbranches such that the children c1, . . . ,cn of c0 occur on
each subbranch. This is the desired behavior for refining conditions. For example,

A
C D

apply
∗

II IJ
∗ ∗ ∗ ∗

yields
A

I J
C D C D

– Case “∗I”: The replace operation replaces the current cell of the original table
with the cell of the delta table. This operation can be simulated by a combina-
tion of remove and insert operations; introducing it, however, greatly improves
readability. For example,

A
o1 ... om

apply
∗IX

d1 ... dn
yields

X
r1 ... rn

If the replace operation cannot be applied because the original table does not
contain a cell at the current position (e.g., it is at the end of the branch), the
operation is changed to an insert operation.

Let us demonstrate the application of a delta table that consists of one column
and contains all the described operators. The apply function simultaneously traverses
both the original and the delta tables from top to bottom and applies the delta table
operators. For convenience, we write the recursion step numbers of the apply function
left to the cells.

22 Ferruccio Damiani et al.

1: A
2,3: C

4: 1
5: i
6: w

apply

1: *
2: II
3: ∗
4: ∗ID
5: −
6: ∗

yields

1: A
2: I
3: C
4: D
6: w

Here we show the application of a hierarchical delta table with several columns
(branches):

A
C D
1 2
i ii

apply

∗
II IJ
− ∗ ∗ −
− ∗ ∗IX −
− ∗ ∗IY −

yields

A
I J
D C
2 X
ii Y

Note that the apply function treats columns independently and does not prevent
vertical misalignment. Delta tables have to be written in such way that the desired
outcome is generated, e.g. Parnas tables. The next section describes techniques that
help writing delta tables.

4.3 Preprocessing rules

The apply function defined in the previous section takes care of the hierarchical nature
of Parnas tables and provides a simple core transformation that is uniformly applied
to all cells. Here we introduce the prepare function, which takes care of the tabular12

nature of Parnas tables and defines a set of rules that simplify writing and reading of
delta tables. The prepare function acts as a transformation layer on top of the apply
function, i.e., it compiles a delta table with abbreviations and higher-level constructs
into a delta table that uses only the basic operations.

The preprocessing rules are defined by the function prepare : TO × T∆ → T∆

which takes as parameters an ordinary table and a delta table and returns a resulting
delta table. The resulting delta table is used as input to the apply function, as has
been defined in the previous section. The function apply′ : TO× T∆ → TO ∪ ε is the
composition of the apply : TO× T∆ → TO∪ε and the prepare functions and is defined
as:

apply′(to, t∆) = apply(to,prepare(to, t∆)) (2)

for all to ∈ TO and t∆ ∈ T∆ . The function Apply′ : P(TO)×P((TO∪T∆))→P(TO)
which applies a delta-table module on a set of ordinary tables is similar to the function
Apply that is described in Section 4.1, but uses the function apply′ rather than apply.

In the following we informally describe the prepare function with a set of rules
that must be applied in the given order. Some of the rules do not depend on a particular
ordinary table, and in this case we omit the ordinary table (i.e., we omit writing the
first argument).

12 Unlike the apply function, the prepare function is aware of the row-alignment of cells in a table and
provides special treatment for different kinds of cells.

A novel model-based testing approach for software product lines 23

Rule 1. When the delta table contains a cell with no associated operation, ∗I is the
default operation. Thus in principle the user does not have to use the ∗I symbol.
However, the user should write ∗I explicitly when a cell’s content is changed to
indicate that it is not just overwritten with the same content.
Recall that ∗I can behave like an insert operation (from the definition of apply
in Section 4.2.1). Hence, depending on the position of ∗I and its content it can
replace a cell, keep a cell (by replacing it with the same content), or insert a cell.
The leading ∆ symbol is removed from the name of the delta table to match the
name with the original table.

Rule 2. If all cells below a condition cell or a name cell c contain the remove opera-
tion, c is removed as well. For example:13

∆T A
B C

D − F G
x − 2 − −
y − ii − −

prepare yields

∗IT ∗IA
∗IB −

− − − −
∗Ix − ∗I2 − −
∗Iy − ∗Iii − −

The first rule is applied here and is responsible for adding the ∗I operations.
The cells A and B are not removed because cells exist below them which are not
removed, namely 2 and ii.
This rule enables the user to remove a column of value cells and the corresponding
conditions, without having to write “−” in the condition cells. This makes it easier
to see which condition is removed. Furthermore, this rule enables to remove an
entire table T from the DTM by writing:

∆T
−

In order to remove all cells of the table except for the name cell, the user may
write ∆T .

Rule 3. A variable cell may contain a set of variables. These are expanded by the
preprocessing step into a set of rows, one for each variable. For instance:

Given
∆T A B
{x,y} 1 3

, prepare yields
∗I T ∗I A ∗I B
∗I x ∗I 1 ∗I 3
∗I y ∗I 1 ∗I 3

Rule 4. The user may write ∗ in a variable cell in order to refer to all variables of
the original table that are not explicitly mentioned in the delta table. A row that
contains the ∗ operator in its variable cell is called a default row. Only one default
row may be specified. A default row is added for each variable not mentioned in
the variable cells of the delta table.14 For instance, given

T A B
x 1 3
y 2 4

and
∆T A B
∗ − ∗
z − 6

prepare yields

∗IT − ∗IB
∗ − ∗
∗ − ∗
∗Iz − ∗I6

13 Recall that the row span of the name cell defines that the first three rows of the example are condition
rows and the other rows contain variable and value cells.

14 This includes variables checked by the conditional operator.

24 Ferruccio Damiani et al.

The actual delta table that is applied in the following example is, hence, the one
above, as created by the preprocessing. Recall that according to the definition of
apply, the replace operations in the last row of this example behave like insert
operations.

T A B
x 1 3
y 2 4

apply′
∆T A B
∗ − ∗
z − 6

yields

T B
x 3
y 4
z 6

Rule 5. When no default row is specified in the delta table, rows of the original tables
with variable names that do not occur in the delta table are copied to the resulting
table. This is achieved by filling the cells of the row with the match (*) operation,
except for those cells corresponding to columns that are removed by the delta
table. A column of a delta table is removed if all its value or variable cells contain
the remove operation. For instance, given

T A B
x 1 3
y 2 4

and
∆T A B
z − 6

, prepare yields

∗IT − ∗IB
∗ − ∗
∗ − ∗
∗Iz − ∗I6

Hence:

T A B
x 1 3
y 2 4

apply′
∆T A B
z − 6

yields

T B
x 3
y 4
z 6

Rule 6. Here we introduce the conditional remove operator X:− which may be used
only in the left most column of a table. The operator applies a remove operation
to the first occurrence of a cell with content X . If such a cell does not exist in the
original table, the entire row of the delta table with the X:− operator is ignored.
For example:

Given

A
B
C
D
E

and
C :−
∗ , prepare yields

∗
∗
−
∗
∗

The ∗ operator below C:− works as a default row (see Rule 4) and is needed
to keep all the other cells. Without the ∗ operator, rule 2 treats C:− simply as a
remove operation and the entire column would be removed in this example.
Hence:

A
B
C
D
E

apply′
C :−
∗ yields

A
B
D
E

The purpose of the conditional remove operator is to provide a convenient nota-
tion to remove cells from an enumeration table.

A novel model-based testing approach for software product lines 25

Rule 7. Rows of the delta table with variable and value cells are sorted such that the
variables names match those of the original table.15 Thus the user does not have
to pay attention to the exact order of variables but only to their names. Rows of
the delta table with additional variables (that do not exist in the original table) are
appended at the end. For example:

Given
T A
x 1
y 2

and

∆T A
y 3
z 4
x 5

, prepare yields

∗IT ∗IA
∗Ix ∗I5
∗Iy ∗I3
∗Iz ∗I4

Note that the ∗I operation is used as the default one due to rule 1. This has the
effect that the value cells of corresponding rows are overwritten with values from
the delta table, and rows defining new variables are added to the resulting table.
For example:

T A B
x 1 3
y 2 4

apply′
∆T A B
y 5 ∗
z 6 7
x ∗ 8

yields

T A B
x 1 8
y 5 4
z 6 7

Rule 8. When all value cells in a row are removed, also the variable cell of that row
is removed. This provides an intuitive way to remove variables. For instance:

Given
∆T A B
x − −
y 5 6

, prepare yields
∗IT ∗IA ∗IB
− − −
∗Iy ∗I5 ∗I6

Hence:
T A B
x 1 3
y 2 4

apply′
∆T A B
x − −
y 5 6

yields
T A B
y 5 6

Rule 9. The insert operation has been defined in a way that enables refinement of
conditions (see Section 4.2). Recall that if a cell cins is inserted at the subtree
where the corresponding original subtree has cells c1, . . . ,cn, then c1, . . . ,cn are
treated as children of cins for subsequent operations. For example:

A1 A2 apply′
II IJ
∗ ∗ ∗ ∗ yields

I J
A1 A2 A1 A2

The above example is problematic if A1 is a name cell, i.e., it contains the table’s
name, and I and J are condition cells. In this case, the name cell A1 becomes a
child of the condition cells I and J which clearly is wrong.

foo() true
x y

apply′
Iy < 0 Iy≥ 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

yields

Iy < 0 Iy≥ 0
foo() true foo() true

x y x y

15 Rows with conditional remove operators are also moved to the right place by this rule, i.e., where the
content of a cell matches the condition.

26 Ferruccio Damiani et al.

Hence, in order to obtain a well-formed operation table (Section 2.2.2), the first
column below the inserted condition cell must be removed when refining the top-
level conditions of a table. To release the user from this task and to improve
readability of the tables, the following preprocessing rule is applied. If c is a top-
level table cell, i.e. a child of the root node, containing an insert operation (say
IC), then given:

c: IC
op1 . . . opn

prepare yields
c: IC

− op1 . . . opn

where op1 . . .opn are delta operations. Once this rule is used, the delta application
in the following example is correct:

foo() true
x y

apply′
foo() Iy < 0 Iy≥ 0

∗ ∗
x -y ∗

yields

foo() y < 0 y≥ 0
true true

x -y y

The “true” has not been removed for demonstration purpose, though it easily
can be removed using the remove operation above or below the insert operation.
Another possibility to remove the cells with the “true” condition is to use the
remove operation instead of the insert operation. This works despite the fact that
the second remove operation does not have a corresponding cell in the original
table.

5 Specifying and testing the Album PL with DeltaFineFit

In this section we outline how to specify and test a delta-oriented SPL using DeltaFin-
eFit. First (in Section 5.1) we illustrate how to write the DeltaFineFit specification.
Then (in Section 5.2) we show how to extend a DeltaJ SPL in order to generate for
each product a version of the product equipped with the code for using FineFit. Fi-
nally (in Section 5.3) we outline how DeltaFineFit can be used effectively to test an
SPL.

5.1 DeltaFineFit specification

A DeltaFineFit specification of an SPL is a product line where each product is a Fin-
eFit specification of a Java program (cf. Section 2.2). It consists of a product line
declaration and a set of delta-table modules. Delta-table modules are sets of delta
and non-delta tables (cf. Section 4.1), and a DeltaFineFit product-line declaration is
a DeltaJ product line declaration where delta-table modules are used instead of delta-
modules. Notably, a DeltaJ product-line declaration can be understood as a DeltaFin-
eFit product-line declaration by providing a one-to-one mapping between delta-table
modules and delta modules.

A novel model-based testing approach for software product lines 27

The DeltaFineFit generation procedure is analogous to the DeltaJ 1.5 generation
procedure of a Java program (outlined in Section 3.3): given a valid feature configura-
tion the DTMs with a satisfied when-clause are applied to the empty FineFit specifi-
cation in the order in which they appear in the DeltaFineFit product-line declaration.
This procedure describes a mapping that associates each valid feature configuration
to the corresponding FineFit specification, and this mapping may be partial.

The tables describing the model of the Base Album (see Fig. 3) can be seen as
the DTMBase delta-table module that when applied to the empty abstract model pro-
duces the model of the Base Album. The other DTMs of the Album PL specification
are listed in Figures 6, 7, 8, and 9. The delta-table module DTMRemove (Fig. 6)
specifies the Remove feature which enables to remove a photo from the album. The
delta-table module DTMOwner (Fig. 7) specifies the Owner feature which protects
the photo album by enabling only the owner (who has to login) to modify the album.
The DTMRemoveAndOwner delta-table module (Fig. 8) introduces the needed mod-
ifications to specify the combination of the two optional features Remove and Owner.
The delta-table module DTMGroups (Fig. 9) specifies a further level of protection by
requiring the owner to create users and to associate each photo with the group of
users that can view it.

The simple-core implementation of the Album PL (Listing 4) can therefore be
understood as the DeltaFineFit product-line declaration for the specification of the
Album PL, modulo the mapping that associates the delta-table modules DTMBase,
DTMRemove, DTMOwner, DTMRemoveAndOwner, and DTMOwner to the delta
modules DBase, DRemove, DOwner, DRemoveAndOwner, and DOwner, respec-
tively.

The specification of the Album PL (Figures 6 – 9) uses the simple-core approach
(cf. Section 3.4). The declaration of the complex-core DeltaJ 1.5 implementation of
the Album PL given in Listing 10 can be used as a declaration of a complex-core
DeltaFineFit specification of the Album PL. This is achieved by associating to the
delta modules Dall, DnoGroups, DnoOwner, and DnoRemove the appropriate delta-
table modules DTMall, DTMnoGroups, DTMnoOwner, and DnoRemove, respec-
tively. The tables of the complex-core specification are available at the DeltaFineFit
home page [43]. Note that the tables of the core DTM for the product with all features,
DTMall, are the tables in the specification of the product with all features.

In the following examples we take a close look at some of the specification tables
from the figures.

Example 1 This example shows the application of the ∆addPhoto delta-operation
table of the delta-table module DTMOwner to the operation table addPhoto of the
base product. The original operation table (from Fig. 3) is defined as:

addPhoto(p?:Photo, #photoAt < MAX #photoAt ≥MAX
report!:Report) p? !in ran[photoAt] p? in ran[photoAt] true

photoAt photoAt.add[p?] = =
report! OK PHOTO EXISTS ALBUM FULL

The delta-operation table (at the bottom of Fig. 7) is defined as:

28 Ferruccio Damiani et al.

∆ addPhoto(
p?:Photo,
report!:Report)

I ownerName in loggedIn I ownerName !in loggedIn
* * - true

* * * - - true
report! * * * - - AUTH FAILED

The application results in the following operation table:

addPhoto(
p?:Photo,
report!:Report)

ownerName in loggedIn ownerName
!in loggedIn

#photoAt < MAX #photoAt ≥MAX true
p? !in ran[photoAt] p? in ran[photoAt] true true

photoAt photoAt.add[p?] = = =
report! OK PHOTO EXISTS ALBUM FULL AUTH FAILED

Then, applying to the above table the following delta-operation table ∆addPhoto of
the delta-table module DTMGroups (from Fig. 9)

∆ addPhoto(p?:Photo, report!:Report)
*

** *
* *

groupPhotos groupPhotos + p?→ OWNER GROUP = = =

yields an operation table with an additional row (which belongs to the specification
of the product with features Base, Owner and Groups). Here we use a new syntax,
where condition cells with a match operation span multiple cells of a column. These
condition cells in the corresponding column of the original table are copied to the
resulting table.16

Note that using the following table to add the additional row is not correct, be-
cause multiple variable cells occur below a condition cell:

∆ addPhoto(p?:Photo, report!:Report) *
groupPhotos groupPhotos + p?→ OWNER GROUP = = =

This is not a valid operation table and delta tables must satisfy the syntax of ordinary
tables as defined in Fig. 2.

Example 2 Next, we consider applying the delta-operation table ∆ login of DTM-
Groups to the operation table login of DTMOwner. The original operation table login
(last but third table in Fig. 7) is:

login(n?:Name, no loggedIn some loggedIn
p?:Password, n? = ownerName and n? != ownerName or true
report!:Report) p? = ownerPassword p? != ownerPassword

loggedIn loggedIn + n? = =
report! OK AUTH FAILED ALREADY IN

The delta-operation table ∆ login (third table in Fig. 9) is defined as:

∆ login(n?:Name, * *
p?:Password, ∗In? in dom[users] and ∗In? !in dom[users] or *
report!:Report) passwords[users[n?]] = p? passwords[users[n?]] != p?

I p? = ownerPassword I true I true
loggedIn loggedIn + users[n?] = =

A novel model-based testing approach for software product lines 29

removePhoto(l?:Int, l? in dom[photoAt] l? !in dom[photoAt]
report!:Report)

photoAt photoAt.delete[l?] =
report! OK NO PHOTO

∆ Report
NO PHOTO

Fig. 6 Delta-table module DTMRemove: it enables to remove a photo from the album

∆Atom Scope
Name 4

Password 4

∆ Report
AUTH FAILED
ALREADY IN

∆State variable Type
ownerName Name

ownerPassword Password
loggedIn set Name

∆Invariant name Invariant
AtMostOneLoggedIn lone loggedIn

∆ init(n?:Name, p?:Password) true
ownerName n?

ownerPassword p?
loggedIn none

login(n?:Name, no loggedIn some loggedIn
p?:Password, n? = ownerName and n? != ownerName or true

report!:Report) p? = ownerPassword p? != ownerPassword
loggedIn loggedIn + n? = =
report! OK AUTH FAILED ALREADY IN

logout() true
loggedIn none

∆ addPhoto(p?:Photo,
report!:Report)

I ownerName in loggedIn I ownerName !in loggedIn
* * - true

* * * - - true
report! * * * - - AUTH FAILED

Fig. 7 Delta-table module DTMOwner (it contains a delta-atoms table, a delta-elements table, a delta-
state table, two operation tables, and one delta-operation table): only the owner can add a photo

∆ removePhoto(l?:Int,
report!:Report)

I ownerName in loggedIn I ownerName !in loggedIn
* * - true

report! * * - AUTH FAILED

Fig. 8 Delta-table module DTMRemoveAndOwner: a photo can be removed only by its owner

30 Ferruccio Damiani et al.

∆ Atom Scope
User 4

Group 4

∆State variable Type
groups Name→ Group
users Name→ User

members Group→ User
passwords User→ Password

groupPhotos Photo→ Group
ownerPassword Name

∆Report
WRONG PASSWORD
ALREADY IN
MISSING USERS
MISSING USER
REM OWNER
REM OWNER GROUP
NO GROUP
NO PHOTO

∆Invariant name Invariant
validMembers members in ran[groups]→ ran[users]
validPasswords passwords in ran[users]→ one Password

validGroups groupPhotos in Photo→ ran[groups]

∆ init(o?:User, p?:Password, n?:Name, ogn?:Name, og?:Group) true
ownerPassword −

passwords o?→ p?
users n?→ o?

groups ogn?→ og?
members og?→ o?

ownerGroupName ogn?

∆ addPhoto(p?:Photo, report!:Report)
*

** *
* *

groupPhotos groupPhotos + p?→ OWNER GROUP = = =

∆ viewPhotos(result!: seq Photo,
report!:Report)

-
one loggedIn no loggedIn

result! photoAt.elems none
report! OK AUTH FAILED

∆ login(* *
n?:Name, ∗In? in dom[users] and ∗In? !in dom[users] or *
p?:Password, passwords[users[n?]] = p? passwords[users[n?]] != p?
report!:Report) I p? = ownerPassword I true I true

loggedIn loggedIn + users[n?] = =

The operation tables updateUser, updateGroup, removeUser, removeGroup and updatePhotoGroup
are available at the DeltaFineFit home page [43]

Fig. 9 Delta-table module DTMGroups: only groups of users authorized by the owner may view photos
in the album

A novel model-based testing approach for software product lines 31

1 SPL Album {
2 Features = {Base, Remove, Owner, Groups, FineFit}
3 Deltas = {DBase, DRemove, DOwner, DRemoveAndOwner, DGroups,
4 DBaseFineFit, DRemoveFineFit, DOwnerFineFit, DGroupsFineFit}
5 Constraints { ... /∗ Same as in Listing 4 ∗/ }
6 Partitions {
7 ... /∗ Same as in Listing 4 ∗/
8 {DBaseFineFit} when (Base & FineFit);
9 {DRemoveFineFit} when (Remove & FineFit),

10 {DOwnerFineFit} when (Owner & FineFit);
11 {DGroupsFineFit} when (Groups & FineFit);
12 }
13 Products {
14 ... /∗ Same as in Listing 4 ∗/
15 A BaseFineFit = {Base, FineFit};
16 A RemoveFineFit = {Base, Remove, FineFit};
17 A OwnerFineFit = {Base, Owner, FineFit};
18 A RemoveOwnerFineFit = {Base, Remove, Owner,FineFit};
19 A OwnerGroupsFineFit = {Base, Owner, Groups, FineFit};
20 A OwnerRemoveGroupsFineFit = {Base, Remove, Owner, Groups, FineFit};
21 }
22 }

Listing 11: Declaration of the Album PL extended with the products equipped with
code for FineFit testing

As a result, the following operation table is generated:

login(
n?:Name,
p?:Password,
report!:Report)

no loggedIn some loggedIn
n? in dom[users] and
passwords[users[n?]] = p?

n? !in dom[users] or
passwords[users[n?]] != p?

true

p? = ownerPassword true true
loggedIn loggedIn + users[n?] = =
report! OK AUTH FAILED ALREADY IN

5.2 Delta-oriented programming of the retrieve function and of the driver

The retrieve function and the driver can be conveniently programmed in a delta-
oriented way by extending the SPL with a new optional feature, FineFit, that when
selected generates a product that is equipped with the retrieve method and the class
extending the FineFitDriver base class (cf. Section 2.3).

To this aim, the declaration of the Album PL is modified by adding the feature
FineFit and appending (after the last line of the partitions-block) the partitions with
the delta modules for adding the retrieve function and the driver. The resulting decla-
ration is given in Listing 11. There is no need for a FineFit delta module correspond-
ing to RemoveAndOwner since it only changes the implementation of remove, and
therefore does not affect the interface (cf. Listing 8).

The code of the delta module DBaseFineFit is given in Listings 12. The complete
code of all the delta modules is available at [43].

16 Details can be found in Appendix B.

32 Ferruccio Damiani et al.

1 delta DBaseFineFit {
2
3 modifies it.unito.Album.ArrayPhotoAlbum {
4 import com.finefit.sut.IdMap;
5 import com.finefit.sut.State;
6 adds ... /∗ Same as in Listing 2 (bottom) ∗/
7 }
8
9 adds { package it.unito.Album;

10 ... /∗ Same as in Listing 3 ∗/
11 }
12
13 }

Listing 12: Delta module DBaseFineFit for adding the retrieve method and the Fin-
eFitDriver class to the Base product of the Album PL

5.3 Executing the tests

The product for a given feature configuration can be tested by: (i) generating its Fin-
eFit specification from the DeltaFineFit specification of the SPL, (ii) generating a
version of the product equipped with the support code for using FineFit, and (iii) run-
ning FineFit. Note that the entire testing procedure for any product is fully automatic
once the delta modules for implementing the feature FineFit have been written and
the SPL declaration has been extended (cf. Section 5.2).

The number of products of an SPL can be exponential in the number of features.
Testing all the products may be therefore unfeasible, even when the entire testing
procedure is fully automatic (as in the case of DeltaFineFit). This issue can be han-
dled by using sample-based SPL testing techniques [21,20,27,23], which address the
problem of scalability by identifying a subset of products that is supposed to cover
relevant combinations of features. Thus only the products in the identified subset have
to be generated and tested by applying single-system testing techniques.

6 Evaluation of the approach

In this section we briefly evaluate the benefits of integrating data refinement based
testing into delta-oriented SPL development from both a qualitative and a quantitative
perspective.

6.1 Qualitative evaluation

The DeltaFineFit product-line declaration and the DeltaJ product-line declaration
may be different in principle. For instance (as an extreme case), the complex-core
DeltaFineFit specification of the Album PL can be used as a specification of the
simple-core DeltaJ implementation of the Album PL (cf. Section 3.4 and 5.1). How-
ever, it is most effective to share the same product-line declaration for both the spec-
ification and the implementation, as illustrated in Section 5.1. Therefore, the delta-
table construct must be expressive enough to allow delta-table modules to mimic delta

A novel model-based testing approach for software product lines 33

Features

Base Base Base Base Base Base
Remove Remove Remove

Owner Owner Owner Owner
Groups Groups

Tables T L T L T L T L T L T L
Constants 1 1 1 1 1 1 1 1 1 1 1 1
Atoms 1 3 1 3 1 5 1 5 1 7 1 7
Enumeration 1 3 1 4 1 6 1 7 1 14 1 14
State 1 1 1 1 1 4 1 4 1 8 1 8
Invariants 1 2 1 2 1 3 1 3 1 6 1 6
Operations 3 8 4 11 5 18 6 2 10 53 11 57

TOTAL 8 18 9 22 10 37 11 42 15 89 16 93

Table 1 Size of the specifications of the 6 products of the Album PL without using DTMs. T is the number
of tables and L is the total number of lines in these tables. The specification of the Base Album is illustrated
in Fig. 3 and the specifications of the other 5 products are available at the DeltaFineFit home page [43].

modules, i.e., to allow developers to establish a one-to-one correspondence between
delta-table modules and delta modules. Based on our experiments we believe that the
delta-table construct presented in this paper satisfies this requirement.

Overall, the proposed integration of data refinement based testing with delta-
oriented SPL development supports:

1. automatic generation of product specifications from delta-table modules that cor-
respond to the delta modules by sharing the product-line declaration with the
implementation;

2. automatic generation and inclusion of auxiliary code for FineFit’s refinement-
based testing into the products (cf. Section 5.2); and

3. a clear layout of the commonalities and differences between product configura-
tions in both the product specifications and in the auxiliary code needed for using
FineFit.

6.2 Quantitative evaluation

In the following we present a quantitative evaluation of how concise is the specifica-
tion of an SPL using the delta-oriented approach compared with the specification that
does not use this approach. As case studies we considered the simple-core based and
the complex-core based development of the Album PL. Table 1 illustrates the size of
the specification of each of the six products of the Album PL, where each product
is specified separately (without using the delta-oriented approach). In this counting
scheme, we counted all rows of the tables excluding the title row for columns in
constant, atom, state, and invariant tables.17 Using the information in Table 1 it is
straightforward to compute for each kind of table the total number of tables and rows
for all products (these numbers are presented in Table 2 in the columns of the naive
approach).

Table 2 illustrates a quantitative comparison of three different specification ap-
proaches for the Album PL study:

17 The first row of enumeration tables, which consists of an atom name, was counted.

34 Ferruccio Damiani et al.

Approach Naive Simple-core delta-oriented Complex-core delta-oriented
Number of DTMs 6 5 4
Tables T L T L in Figures T L

The tables are
available at the
DeltaFineFit
home page [43]

(∆)Constants 6 6 1 1 3 1 1
(∆)Atoms 6 30 3 7 3, 7, 9 3 13
(∆)Enumeration 6 48 3 15 3, 7, 9 4 28
(∆)State 6 26 3 10 3, 7, 9 3 18
(∆)Invariants 6 22 3 6 3, 7, 9 3 12
(∆)Operation 39 169 11 75 3, 6, 7, 8, 9 26 103

TOTAL 69 301 32 114 - 40 175 -

Table 2 Quantitative comparison of specification approaches. T is the number of tables and L is the total
number of lines in these tables. For the naive specification approach, the specification of each of the 6
products of the Album PL can be considered as a core DTM (remember that a constants/atoms/enumera-
tion/state/invariants table can be considered as a delta table).

– naive specification (i.e., each product is specified separately),
– simple-core delta-oriented specification, and
– complex-core delta-oriented specification.

The naive approach requires 69 tables with a total of 301 rows to specify the whole
product line. Less than half the number of tables (32) and rows (114) are required
when using DTMs in the simple-core delta-oriented specification approach. The num-
ber of tables and rows in the complex-core delta-oriented specification approach is
bigger than in the simple-core approach. Note that:

– DTMs in simple-core specifications define how to add and expand tables,
– DTMs in complex-core specifications define how to remove and trim tables, and
– the set of delta tables for expanding tables in the simple-core specification has

roughly the size (in the number of both tables and rows) of the set of delta tables
for removing and trimming tables in the complex-core specification.

Therefore the difference in the number of tables and rows is mainly due to the fact
that the DTM used to build the core for complex-core specifications is lager than the
one used for simple-core specifications, in the number of both tables (16 vs 8) and
rows (93 vs 18)—c.f. Table 1. Conversely, the complex-core specification has less
DTMs.

It is worth to observe that the ability to support complex-core specifications and,
more general, the ability to build specifications where the DTMs mimic the delta
modules in the implementation (cf. Section 6.1) makes it possible to use DeltaFineFit
in reactive and extractive SPL development (cf. Section 3.4).

The case study confirms our expectations that the delta-oriented specification ap-
proach reduces the size of the specification of the SPL (both with the simple- and
complex-core approaches). The Album PL has only 4 features and 6 products. We
expect that these benefits will be even more significant in more complex software
product lines.

A novel model-based testing approach for software product lines 35

7 Related Work

The use of a tabular notation to specify operations was inspired by Parnas [32]. Tab-
ular expressions can be represented and interpreted in many ways. Parnas proposes
precise definitions for ten varieties of tabular expressions [32]. We use the simple and
intuitive Vector Function Tables to describe functions.

Various surveys deal with testing in SPLs; e.g., [16,30,25,8]. Delta tables lever-
age the idea of tabular notation to the specification of product lines. To the best of our
knowledge this idea has not been proposed yet. The only papers introducing similar
operations on tables, also named delta tables, describe updates or views on database,
e.g. [35]. However, it seems that this idea has not been proposed before to specify
programs.

The approach proposed by Uzuncaova et al. [42] seems the most related to our
testing approach. The paper describes a scope-bounded testing technique for pro-
grams in an SPL developed by using the feature oriented programming (FOP) ap-
proach (cf. Section 1 and Section 3.4). In the FOP approach a program is a com-
position of feature modules, where each module implements an increment in the
functionality of the program corresponding to a feature. This testing approach dif-
fers from ours as their test suite enables only to add features, whereas we allow also
to remove features. Hence, the test suite in [42] is monotonically extended with each
additional feature. Using the Alloy Analyzer, tests are generated and the correctness
of the program is checked. Each feature F is specified as an Alloy formula, and the
Alloy specification of a product is the conjunction of the specifications for its fea-
tures. To generate larger inputs, tests are generated incrementally, as the analyzer is
used each time on partial specifications rather than on the complete specification of
the program. First the analyzer solves the specification for the Base feature (which
corresponds to the base product), and the created relations are used when running the
analyzer on the specification of a feature F that is composed with Base. In our ap-
proach, we generate both the program and its specification using the DOP approach,
where a product is generated from another one by applying a delta-operation that
may add or remove functionalities. The tests are then generated by considering the
complete specification of a product. However, when a program is a composition of
features, i.e., when the delta-modules do not use the remove operation, it should be
possible to apply our approach by using the incremental approach as in [42].

More recently, Lochau et al. [29,28] proposed a model-based SPL testing frame-
work that is based on a delta-oriented SPL test model and on regression-based test
artifact generation. The framework comprises state machines as test models extended
with delta-oriented modeling concepts to express variability. The framework is aimed
to capture reuse potential, reusing both (i) test cases for different product variants,
and (ii) test results across different products. In our framework no reuse of test cases
or test results is currently supported. We believe that the technique proposed in [28]
could be applicable also to our approach, although we are using a different specifica-
tion language (Parnas tables).

Proof systems for the verification of delta-oriented SPLs have been recently pro-
posed [18,11]. These approaches are related to ours since they use DOP to generate
a product together with its specification; however, they aim at a formal verification.

36 Ferruccio Damiani et al.

Hähnle and Schaefer [18] presented a verification approach for DOP that relies on
the Liskov principle for DOP, i.e, the specification of a method modified by a delta
module must entail the specification of the previous versions of the method. This en-
sures that each delta module can be verified by approximating called methods that
are defined in other delta modules by the specification of their first introduction. In
order to relax the restriction imposed by the Liskov principle for DOP [18], Damiani
et-al. [11] suggest to use symbolic assumptions on called methods in order to sepa-
rate the specifications of method implementations from the requirements to method
calls in a way which is similar to lazy behavioral subtyping [15]. The idea is to verify
first each delta module in isolation, based on symbolic assumption for methods calls
that may be defined in other delta modules, and then to verify each product based on
the already established specification for the used delta modules. The combination of
software verification and testing techniques is encouraged due to their complemen-
tary strengths. We believe that some ideas for combining verification and testing that
already had been implemented for a single system (see [6]) could be applied to SPLs.

8 Conclusion and Future Work

We illustrated how the FineFit approach can be integrated into DOP to support the de-
velopment of correct software product lines. Refinement-based testing is completely
integrated into the delta-oriented SPL development process. Delta-oriented program-
ming is used not only to generate the system under test, but also to generate the
FineFit specification, the retrieve function and the driver for each product.

We would like to complete the development of the DeltaFineFit tool chain. In
particular, we would like to improve the tool support for the delta-oriented program-
ming of the retrieve function and the driver by developing a tabular notation that will
be automatically translated into the corresponding delta modules.

A type system for DOP, formalized for the minimal core calculus IMPERATIVE
FEATHERWEIGHT DELTA JAVA(IF∆J) [7], guarantees that if an IF∆J product line is
well-typed then its product generation mapping is total and all its products are well-
typed Java programs (cf. Section 3.3). In future work we plan to formalize a suitable
notion of well-formed FineFit specification and to develop static analysis techniques
for checking whether the product generation mapping of a DeltaFineFit specifica-
tion is total and all its products are well-formed FineFit specifications. Moreover, we
would like to extend the DeltaFineFit approach to deal with dynamic DOP [13,12].

We also plan to develop case studies to assess the effectiveness of using DeltaFin-
eFit with sample-based SPL testing techniques (see Section 5.3), and to enhance
DeltaFineFit by exploring both the use of techniques for reusing test cases or test
results similar to [28] (cf. Section 7) and the use of test prioritization techniques sim-
ilar to [26]. Another enhancement of DeltaFineFit that we would like to explore is
the integration of verification techniques (see the discussion at the end of Section 7).

Acknowledgements We thank the anonymous referees of PPPJ’13 for valuable comments on a prelimi-
nary version of this paper and the anonymous SoSyM referees for many insightful comments and sugges-
tions for improving the paper.

A novel model-based testing approach for software product lines 37

A The structure and semantics of operation tables

A FineFit operation table is a predicate that specifies the behavior of an operation as a relation between
the model’s state variables before the operation starts (the pre state) and after the operation completes (the
post state). It consists of two major areas: an expression table and a precondition tree. The expression table
is a set of columns, where each column defines the values of the state variables in the post state, given their
values in the pre state. The predcondition tree consists of predicates that determine which columns to use
in the definition of the post state. For example, consider the following operation table:

R(c?:Int) c?≤ 0 c? > 0
x < 0 x≥ 0 true

x = 0 x+ c?
y = 0 x+ y

The operation R has a single input parameter c? and determines the value of its two state variables
x and y as follows: If c? is positive then the operation must set x to x+ c? and y to x+ y (the right most
column), otherwise, if c? is not positive, the effect of the operation depends on the current value of x. When
x is not negative x and y must be set to zero and when x is negative then x and y do not change (their value
must be the same as it was when the operation started). Note that the predicate for determining whether
columns 1 and 218 are relevant for the specification is the conjunction of the child predicates x < 0 and
x≥ 0 with their parent predicate c?≤ 0.

We now define the conditions necessary for the precondition part of the table to form a tree. Consider
the precondition part of the table as a matrix of cells. Then, each predicate spans one or more consecutive
cells (in the same row) and the space that each predicate occupies must be included below the space that its
parent (the predicate above) occupies. For example, the predicate x≥ 0 occupies cell (2,2) and its parent,
the predicate c?≤ 0 occupies cells (1,1),(1,2).

Formally, consider a precondition part that is arranged in a matrix of n rows by m columns of cells.
The i-th row contains a sequence of predicates, each occupying a span of one or more cells. Let ki indicate
the sequence of spans that each predicate occupies (and therefore ki j is the j-th span in the i-th row).
For example, in the operation above, k1 = 2,1 and k2 = 1,1,1. In order for the spans to describe a valid
precondition tree, three conditions must be met:

1. The sum of spans in each row must be equal to the number of columns in the matrix:

|ki |

∑
j=1

ki j = m

where |ki| is the number of elements in the ith sequence of spans.
2. The cells that each predicate spans must be included below the span of cells of its parent:

Si j ⊆ S(i−1)l for some 1≤ l ≤ m

where the span of cells of the j-th predicate in the i-th row is

Si j =
j−1

∑
l=1

kil +1, . . . ,
j

∑
l=1

kil

3. The last row (n) must consist of individual cells, that is

kn j = 1 for all 1≤ j ≤ m.

This arrangement ensures that the predicates form a tree structure19 with m leaves, all occupying the
last row. The following matrix illustrates this structure:

18 We do not count the left most column containing the state variables.
19 In fact this is a forest. However, it can be transformed into a tree by adding an imaginary true as the

parent of the predicates at the first row.

38 Ferruccio Damiani et al.

1 2 3 4 5 6 7

3

2

1

There are three span sequences, one for each row:

k3 = 1,1,1,1,1,1,1 (3)

k2 = 3,2,2 (4)

k1 = 5,2 (5)

We can see that each span is included below the span of its parent. For example,

S2,2 = {4,5} ⊆ S1,1 = {1,2,3,4,5}

We say that the precondition tree is well formed when it satisfies the three conditions we have defined
above. In the rest of the discussion we always assume that we are working with well formed precondition
trees. Given a column i we define the guard for this column as the conjunction of the leaf that occupies the
i-th column and all its ancestors. Let v̄′ = v′1, . . . ,v

′
l be the state space vector. Let c̄i be the i-th column of

the expression table. Then the meaning of the operation specification is:

v̄′ ∈ {c̄i : 1≤ i≤ m∧guard(i)}
That is, the value of the state variables vector in the post state can be equal to the value of any of the
expression table columns whose guard was true in the pre state.
The semantics of individual predicates and expressions is explained in [17].

B The algorithm that computes the apply function

We provide (in Section B.1) a Haskell executable specification of the apply function (cf. Section 4.2.1),
and present (in Section B.2) its Java implementation. Note that in this paper all the tables resulting from
delta-table application have been generated using this implementation.

B.1 Executable specification in Haskell

The executable specification of the algorithm that computes the apply function is provided as a program
written in Haskell (Listing 13). Haskell is a functional programming language with a syntax that strongly
resembles the usual mathematical notation for defining function by cases, via pattern matching.

The Haskell code and the comments in Listing 13 should be almost self-explanatory. In the following,
we shortly explain some technicalities. The expression contained in an ordinary table cell and in a delta
table cell containing the insert or replace operators is represented using the standard library type String
(Line 4). Both ordinary tables and delta tables are represented as trees, where each node corresponds to a
cell. A tree that represents a table (ordinary or delta) is expressed as a value of the recursive data type Table
(Line 11)—a value of type Table describes the root cell and the list of its immediate subtrees. The data
type Table has five data constructors (each describes a different kind of node): Basic, Insert, and Replace

A novel model-based testing approach for software product lines 39

(all have arity two), Match and Remove (arity one).20 Ordinary tables are represented by using only the
data constructor Basic, while delta tables are represented by using only the other data constructors, which
correspond to the delta table operators.

Example 3 (Representation of ordinary tables and delta tables in Haskell) Since ordinary tables may
have more than one cell in their first row, they are always encoded by adding a top node containing the
string “ROOT”. Delta tables are therefore encoded by adding a top node containing the match operator
(matching the top node in the ordinary tables). The following ordinary and delta tables

A
C D
1 2
i ii

∗
II IJ
− ∗ ∗ −
− ∗ ∗IX −
− ∗ ∗IY −

are respectively represented by the following values of type Table:

Basic "ROOT" [Basic "A" [Basic "C" [Basic "1" [Basic "i" []]],
Basic "D"[Basic "2" [Basic "ii" []]]]]

Match [Match [Insert "I" [Remove [Remove [Remove []]],
Match [Match [Match []]]],

Insert "J" [Match [Replace "X" [Replace "Y" []]],
Remove [Remove [Remove []]]]]]

The Haskell function apply (Lines 16-51) corresponds to the apply function (introduced in Sec-
tion 4.2.1) that executes the delta operations of the delta table. To improve readability we have not modeled
the behavior described in Remark 2 of Section 4.2.1.

Line 26 declares the type of the apply function. The first argument of the function apply has type
Maybe Table. The standard library Maybe data type has two constructors: the unary data constructor
Just and the constant Nothing. It is used to specify optional values: a value of type Maybe Table either
contains a table t (represented as Just t), or it is empty (represented as Nothing).

The standard library function concat takes two lists and returns their concatenation. The standard
library function zipWith calls a given function pairwise on each member of both lists, returning a list. For
the convenience of readers zipWith’s code is as follows:

zipWith :: (a −> b −> c) −> [a] −> [b] −> [c]
zipWith [] = []
zipWith [] = []
zipWith f (x:xs) (y:ys) = (f x y) : zipWith f xs ys

Example 4 (An execution of the Haskell function apply) Consider the following delta table application,
which already has been presented at the end of Section 4.2.1 (recall that the numbers to the left of the cells
denote the recursion step):

1: A
2,3: C

4: 1
5: i
6: w

apply

1: ∗
2: II
3: ∗
4: ∗ID
5: −
6: ∗

yields

1: A
2: I
3: C
4: D
6: w

The above delta table application can be defined by appending to the code in Listing 13 the following three
lines:21

t = Basic "ROOT" [Basic "A" [Basic "C" [Basic "l" [Basic "i" [Basic "w" []]]]]]
dt = Match [Match [Insert "I" [Match [Remove [Insert "D" [Remove [Match []]]]]]]]
main = print (apply Nothing t dt)

Executing the Main program yields

Basic "ROOT" [Basic "A" [Basic "I" [Basic "C" [Basic "D" [Basic "w" []]]]]]

20 Adding deriving(Show) at the end of a data declaration enables printing instances on standard output.
21 Adding a definition for the name main makes Listing 13 a complete program.

40 Ferruccio Damiani et al.

1 module Main where
2
3
4 type Expr = String
5
6
7 −− |A table is a tree that consists of the following nodes:
8 −− 1. Basic nodes that represent the expressions in Finefit tables.
9 −− 2. Match, Remove, Insert, and Replace nodes, that represent the operations of the delta tables.

10
11 data Table = Basic Expr [Table]
12 | Match [Table] | Remove [Table] | Insert Expr [Table] | Replace Expr [Table]
13 deriving(Show)
14
15
16 −− |We assume that the tables given to the apply function, have a correct structure. For example, that each
17 −− table is a tree rooted at a dummy node, the original table has only basic expression nodes, and so on.
18 −− The complete system checks that the tables have the correct structure, adding these checks to the
19 −− specification would hinder understanding the essential ideas.
20 −− The apply function takes the following arguments:
21 −− 1. the parent of the node in the original table (or the constant Nothing, if the node is the root),
22 −− 2. the node itself,
23 −− 3. the corresponding node in the delta table.
24 −− The function returns the sequence of nodes that corresponds to the new table.
25
26 apply :: Maybe Table −> Table −> Table −> [Table]
27
28 −− |Some notes on the recursive specification of the function:
29 −− 1. We divide the specification into several cases by pattern matching on the kinds of delta table nodes
30 −− (each kind of delta table operator node has its own case).
31 −− 2. In all cases, we take care to pass the correct parent for the nodes in the recursive call.
32 −− Applying a delta table match operator to a node of the original table, keeps the content of the original
33 −− table, and recursively applies the children of the match node, to those of the original node.
34
35 apply node (Match deltas) = [Basic (content node) (apply to children node deltas)]
36
37 −− |Applying a delta table remove to a node of the original table, replaces the node by its children
38 −− (after they are transformed by the children of the delta table node).
39 −− This case is the reason why apply returns a list of tables.
40
41 apply node (Remove deltas) = apply to children node deltas
42
43 −− |Applying a delta table insert to a node of the original table, inserts a new node as the child of the
44 −− original node’s parent, and all of the parent’s children (including the original node) as the children of
45 −− the newly inserted node.
46
47 apply (Just parent) (Insert e’ deltas) = [Basic e’ (apply to children parent deltas)]
48
49 −− Replace is implemented in terms of remove followed by insert
50
51 apply p x (Replace e cs) = apply p x (Insert e [Remove cs])
52
53
54 −− |To process the children of a table node against a sequence of delta table operators, we traverse both
55 −− lists, calling apply on each pair of corresponding nodes. This generates a list of lists, that we then
56 −− concatenate to form the result.
57
58 apply to children parent deltas = concat (zipWith (apply (Just parent)) (children parent) deltas)
59
60 children :: Table −> [Table]
61 children (Basic xs) = xs
62
63 content :: Table −> Expr
64 content (Basic c) = c

Listing 13: Executable specification of the algorithm that computes the apply func-
tion introduced in Section 4.2.1; the behavior described in Remark 2 is not modeled

A novel model-based testing approach for software product lines 41

B.2 The Java implementation

The Java implementation of the algorithm that computes the apply function is given in Listings 14 and 15.
A cell of a table is represented by the Node class which extends the Vector class. Tables are represented
as trees, and an object of class Node represents a cell, which is the root of a subtree, and contains (in the
Vector’s elements) the reference to the roots of the immediate subtrees.

The applyPrime method (Lines 16–21 in Listing 14) corresponds to the apply′ function (introduced in
Section 4.3). It first calls (Line 17) the prepare method (which applies the rules described in Section 4.3),
and then invokes (Line 19) the apply method (Lines 29–58 in Listing 14). The apply method corresponds
to the apply function (introduced in Section 4.2.1 and specified in Section B.1). When calling the apply
method, the this object is the current node of the delta table, and orig and res are the current nodes of the
original table and of the resulting table, respectively.

The body of the apply method implements the recursive walking of the parse tree, which is controlled
by the operations in the cells of the delta table and, therefore, describes how each operation works. The
first part of the method (Lines 31–44) reads the operation of the current delta node and updates the content
of the resulting node; Lines 35–40 implement the behavior described in Remark 2 of Section 4.2.1. The
second part of the method (Lines 46–56) is responsible for the recursive call.22 At each recursive call
(Lines 37, 50, and 54) the method getOrCreateChild(i), which creates the nodes of the resulting table, is
called; it either returns the i-th subnode if it already exists, or it creates the i-th subnode and returns it. We
now continue illustrating the apply method using small examples. (An example of an execution trace of
the method apply is provided in Example 5.)

The loop that begins in Line 46 iterates over the siblings of the current delta table node. This means
that if at the current level the original table has more cells than the delta table, then the additional cells are
ignored. For example:

A B C apply ∗ ∗ yields A B

If the delta table has more cells than the original table at the current level, the last cell of the original table
is repeatedly used when processing the additional operations of the delta table (Line 53). For example:

A B apply ∗ ∗ ∗ yields A B B

If the original table contains no cells at the current level and the current operation of the delta table is ∗ or
−, the remaining operations of the delta table on the current branch are ignored (Line 52).

A apply
∗
∗ yields A

If the original table contains no cells at the current level and the current operation of the delta table is I or
∗I, a cell with the value of the insert or replace operations is inserted (Line 50) in the resulting table. Line
47 maps in this case the replace operation to an insert operation. For example:

A apply
∗
IB
∗IC

yields
A
B
C

It is therefore possible to extend a table with new variable and value rows by using either the insert or
replace operation.

The algorithm traverses the original table and the delta table in parallel. The recursive call in Line 54
is responsible for the operations match, remove, and replace 23. The recursive call in Line 50 handles the
insert operation, where the current node of the original table is passed as the first argument rather than the
current child of the original table. Delaying the recursive step on the original table results in the described
semantics of the insert operation.

The recursive call in Line 37 is used for convenience. If either the remove or the match operation occur
as the last condition in a condition hierarchy, but the condition cell c of the original table has additional
subconditions (this is checked by isLastConditionNode()), the remove or the match operation is applied
to all subcondition of c. For example, let A,B, and C be condition cells, then

22 Line 37 is a special case, where ∗ matches multiple condition cells.
23 If replace is not substituted by insert in Line 47.

42 Ferruccio Damiani et al.

1 import java.util.Vector;
2
3 /∗ The Node class represents a cell of a table. Subnodes represent cells below this cell. ∗/
4
5 public class Node extends Vector<Node>{
6
7 public enum Op {nop,match,remove,insert,replace};
8 public Op op = Op.nop; //Default is no operation
9 public String val = ""; //Value or content of the cell

10 public boolean cond = false; //true if this node is a condition node and not a value node
11
12 public Node(String val){this.val=val;}
13
14
15 /∗ ”this” represents the root of the delta table. ”orig” is the root of the original table. ∗/
16 public Node applyPrime(Node orig){ //corresponds to the function apply′ of Section 4.3
17 prepare(orig, this);
18 Node result = new Node("<root>");
19 apply(orig, result);
20 return result;
21 }
22
23
24 public static void prepare(Node orig, Node delta){...} //See Section 4.3
25
26
27 /∗ The parameters ”this”, ”orig”, and ”res” represent the current node (or cell) of the
28 delta table, original table, and resulting table, respectively. ∗/
29 public void apply(Node orig, Node res){ //corresponds to the function apply of Section 4.2.1
30
31 switch(op){
32 case nop: break;
33 case remove: res.op = Op.remove; //no break here
34 case match: res.val = unifyValue(orig.val);
35 if(isLastConditionNode() && !orig.isLastConditionNode()){ //see Remark 2 in Section 4.2.1
36 for(int i=0; i<orig.size(); i++){
37 apply(orig.get(i), res.getOrCreateChild(i, cond));
38 }
39 return;
40 }
41 break;
42 case insert: res.val = val; break;
43 case replace: res.val = val; break;
44 }
45
46 for(int i=0; i<size(); i++){
47 if(orig.size()==0 && get(i).op==Op.replace){ get(i).op=Op.insert; }
48
49 if(get(i).op==Op.insert){
50 get(i).apply(orig, res.getOrCreateChild(i, cond));
51 }else{
52 if(orig.size()==0) break;
53 Node newOrig = (i<orig.size()? orig.get(i) : orig.lastElement());
54 get(i).apply(newOrig, res.getOrCreateChild(i, cond));
55 }
56 }
57 res.deleteTemporaryRemoveNodes();
58 } // end of method apply
59
60
61 ... //See Listing 15
62
63 } // end of class Node

Listing 14: Java implementation of the algorithms that compute the apply′ and apply
functions

A novel model-based testing approach for software product lines 43

1 /∗ Returns true if this node is a condition node and its child nodes are non−condition (value) nodes.∗/
2 public boolean isLastConditionNode(){
3 if(!cond) return false;
4 if(size()==0) return true;
5 if(get(0).cond) return false; //For simplicity only one child is checked.
6 return true;
7 }
8
9 /∗ Returns the i’th subnode. If the subnode does not exist, then it is create and returned. ∗/

10 public Node getOrCreateChild(int i, boolean cond){
11 if(i<size()){
12 return get(i);
13 }else{
14 Node tmp = new Node("");
15 tmp.cond = cond;
16 tmp.op = Op.nop;
17 add(tmp);
18 return getOrCreateChild(i, cond);
19 }
20 }
21
22 /∗ Replaces each child of this node that is marked as remove ”−” by its grand children.
23 The algorithm operates recursively until no child is marked with remove ”−”.∗/
24 protected void deleteTemporaryRemoveNodes(){
25 boolean childRemoved=false;
26 do{
27 childRemoved=false;
28 for(int i=0; i<size();i++){
29 Node child = get(i);
30 if(child.op==Node.Op.remove){ //Replace the removed child by its children
31 remove(i);
32 for(int j=i,k=0; k<child.size();k++,j++){
33 insertElementAt(child.get(k), j);
34 }
35 childRemoved = true;
36 break;
37 }
38 }
39 }while(childRemoved);
40 }
41
42 /∗ if the delta value is ”∗”, then origVal is returned. Otherwise all occurrences
43 of ”∗” in the delta value are replace with origVal. E.g., ”x” apply ”(∗)+y” yields ”x+y”.∗/
44 public String unifyValue(String origVal){
45 if(val.equals("*"))
46 return origVal;
47 else
48 return val.replaceAll("(*)",origVal);
49 }

Listing 15: Helper methods of the apply method

A
B C

apply ∗ yields
A

B C

The reader may have noticed that unlike the other operations, the remove operation is not handled
in the loop in Lines 46–56. When a remove operation occurs, a temporary cell is created in the resulting
table that is marked to be removed (Line 33). The marked cells are removed in Line 57. Removing nodes
at the end of the recursion simplifies the implementation, because removing a node c pulls-up its children
c1, . . . ,cn to the current level. Hence, by removing a node the number of siblings at the current level may
decrease, stay constant, or increase. In the following example we assume that A is not a condition cell.

A B
C D E

apply ∗ − yields A D E

44 Ferruccio Damiani et al.

Example 5 (An execution trace of the method apply) For a complete example consider the following
delta table application, which already has been presented at the end of Section 4.2.1 and in Example 4 of
Appendix B.1:

1: A
2,3: C

4: 1
5: i
6: w

apply

1: ∗
2: II
3: ∗
4: ∗ID
5: −
6: ∗

yields

1: A
2: I
3: C
4: D
6: w

Executing the method apply in (Lines 29–58) will result in the following recursive invocations of the
method:

Recursion step this orig res

0 < root > < root > < root >
1 ∗ A A
2 II C I
3 ∗ C C
4 ∗ID 1 D
5 − i −
6 ∗ w w

At the end of the last recursion step of the apply algorithm (Line 57 in Listing 14) the method
deleteTemporaryRemoveNodes is called which removes the temporary “−” node from the resulting
tree res that is introduced at recursion step 5.

References

1. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines: Concepts
and Implementation. Springer (2013)

2. Apel, S., Kästner, C., Grösslinger, A., Lengauer, C.: Type safety for feature-oriented product lines.
Automated Software Engineering 17(3), 251–300 (2010)

3. Apel, S., Kästner, C., Lengauer, C.: Feature featherweight java: A calculus for feature-oriented pro-
gramming and stepwise refinement. In: Proceedings of the 7th International Conference on Genera-
tive Programming and Component Engineering, GPCE ’08, pp. 101–112. ACM, New York, NY, USA
(2008). DOI 10.1145/1449913.1449931

4. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Proceedings of the Interna-
tional Conference on Software Product Lines (SPLC), LNCS, vol. 3714, pp. 7–20. Springer (2005)

5. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE TSE 30(6), 355–371
(2004)

6. Beckert, B., Gladisch, C., Tyszberowicz, S., Yehudai, A.: KeYGenU: combining verification-based
and capture and replay techniques for regression unit testing. Int. J. Systems Assurance Engineering
and Management 2(2), 97–113 (2011)

7. Bettini, L., Damiani, F., Schaefer, I.: Compositional type checking of delta-oriented software product
lines. Acta Informatica 50, 77–122 (2013)

8. do Carmo Machado, I., McGregor, J.D., Cavalcanti, Y.C., de Almeida, E.S.: On strategies for testing
software product lines: A systematic literature review. Information and Software Technology 56(10),
1183 – 1199 (2014)

9. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison Wesley Longman
(2001)

10. Damiani, F., Gladisch, C., Tyszberowicz, S.: Refinement-based testing of delta-oriented product lines.
In: Proceedings of the 2013 International Conference on Principles and Practices of Programming on
the Java Platform: Virtual Machines, Languages, and Tools, PPPJ ’13, pp. 135–140. ACM, New York,
NY, USA (2013). DOI 10.1145/2500828.2500841

A novel model-based testing approach for software product lines 45

11. Damiani, F., Owe, O., Dovland, J., Schaefer, I., Johnsen, E.B., Yu, I.C.: A transformational proof
system for delta-oriented programming. In: Proceedings of the 16th International Software Product
Line Conference - Volume 2, SPLC ’12, pp. 53–60. ACM, New York, NY, USA (2012). DOI 10.
1145/2364412.2364422

12. Damiani, F., Padovani, L., Schaefer, I.: A formal foundation for dynamic delta-oriented software
product lines. In: Proceedings of the 11th International Conference on Generative Programming and
Component Engineering, GPCE ’12, pp. 1–10. ACM, New York, NY, USA (2012). DOI 10.1145/
2371401.2371403

13. Damiani, F., Schaefer, I.: Dynamic delta-oriented programming. In: Proceedings of the 15th Interna-
tional Software Product Line Conference, Volume 2, SPLC ’11, pp. 34:1–34:8. ACM, New York, NY,
USA (2011). DOI 10.1145/2019136.2019175

14. Delaware, B., Cook, W.R., Batory, D.: Fitting the pieces together: A machine-checked model of safe
composition. In: Proceedings of the the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, ES-
EC/FSE ’09, pp. 243–252. ACM, New York, NY, USA (2009). DOI 10.1145/1595696.1595733

15. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Lazy behavioral subtyping. Journal of Logic and
Algebraic Programming 79(7), 578–607 (2010)

16. Engström, E., Runeson, P.: Software product line testing - a systematic mapping study. Information
and Software Technology 53(1), 2–13 (2011)

17. Faitelson, D., Tyszberowicz, S.S.: Data refinement based testing. Int. J. Systems Assurance Engineer-
ing and Management 2(2), 144–154 (2011)

18. Hähnle, R., Schaefer, I.: A Liskov Principle for Delta-Oriented Programming. In: Leveraging Appli-
cations of Formal Methods, Verification and Validation. Technologies for Mastering Change Interna-
tional Symposium (ISoLA), Part I, LNCS, vol. 7609, pp. 32–46. Springer (2012)

19. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press (2012)
20. Johansen, M.F., Haugen, O., Fleurey, F.: Properties of realistic feature models make combinatorial

testing of product lines feasible. In: Proceedings of the International Conference on Model Driven
Engineering Languages and Systems (MODELS), pp. 638–652. Springer-Verlag, Berlin, Heidelberg
(2011)

21. Johansen, M.F., Haugen, O., Fleurey, F.: An algorithm for generating t-wise covering arrays from
large feature models. In: Proceedings of the 16th International Software Product Line Conference -
Volume 1, SPLC ’12, pp. 46–55. ACM, New York, NY, USA (2012). DOI 10.1145/2362536.2362547

22. Koscielny, J., Holthusen, S., Schaefer, I., Schulze, S., Bettini, L., Damiani, F.: Deltaj 1.5: Delta-
oriented programming for java 1.5. In: Proceedings of the 2014 International Conference on Prin-
ciples and Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools,
PPPJ ’14, pp. 63–74. ACM, New York, NY, USA (2014). DOI 10.1145/2647508.2647512

23. Kowal, M., Schulze, S., Schaefer, I.: Towards efficient spl testing by variant reduction. In: Proceedings
of the 4th International Workshop on Variability & Composition, VariComp ’13, pp. 1–6. ACM, New
York, NY, USA (2013). DOI 10.1145/2451617.2451619

24. Krueger, C.: Eliminating the Adoption Barrier. IEEE Software 19(4), 29–31 (2002)
25. Lee, J., Kang, S., Lee, D.: A survey on software product line testing. In: Proceedings of the 16th

International Software Product Line Conference - Volume 1, SPLC ’12, pp. 31–40. ACM, New York,
NY, USA (2012). DOI 10.1145/2362536.2362545

26. Li, Z., Harman, M., Hierons, R.M.: Search algorithms for regression test case prioritization. IEEE
TSE 33(4), 225–237 (2007)

27. Lochau, M., Goltz, U.: Feature interaction aware test case generation for embedded control systems.
Electronic Notes in Theoretical Computer Science 264(3), 37–52 (2010)

28. Lochau, M., Lity, S., Lachmann, R., Schaefer, I., Goltz, U.: Delta-oriented model-based integration
testing of large-scale systems. Journal of Systems and Software 91(0), 63 – 84 (2014)

29. Lochau, M., Schaefer, I., Kamischke, J., Lity, S.: Incremental model-based testing of delta-oriented
software product lines. In: TAP, LNCS, vol. 7305, pp. 67–82. Springer (2012)

30. da Mota Silveira Neto, P.A., do Carmo Machado, I., McGregor, J.D., de Almeida, E.S.,
de Lemos Meira, S.R.: A systematic mapping study of software product lines testing. Information
and Software Technology 53(5), 407 – 423 (2011). Special Section on Best Papers from {XP2010}

31. Mugridge, R., Cunningham, W.: Fit for Developing Software: framework for integrated tests. Prentice
Education, Inc. (2005)

32. Parnas, D.L.: Tabular representation of relations. Tech. Rep. 260, Research Institute of Ontario, Mc-
Master University (1992)

46 Ferruccio Damiani et al.

33. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering - Foundations, Principles,
and Techniques. Springer (2005)

34. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-oriented Proof Theories and their Com-
parison, Cambridge Tracts in Theoretical Computer Science, vol. 46. Cambridge University Press
(1998)

35. Salem, K., Beyer, K., Lindsay, B., Cochrane, R.: How to roll a join: Asynchronous incremental view
maintenance. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’00, pp. 129–140. ACM, New York, NY, USA (2000). DOI 10.1145/342009.
335393

36. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented Programming of Soft-
ware Product Lines. In: Software Product Line Conference (SPLC), LNCS, vol. 6287, pp. 77–91.
Springer (2010)

37. Schaefer, I., Bettini, L., Damiani, F.: Compositional type-checking for delta-oriented programming.
In: Proceedings of the Tenth International Conference on Aspect-oriented Software Development,
AOSD ’11, pp. 43–56. ACM, New York, NY, USA (2011). DOI 10.1145/1960275.1960283

38. Schaefer, I., Damiani, F.: Pure delta-oriented programming. In: Proceedings of the 2Nd International
Workshop on Feature-Oriented Software Development, FOSD ’10, pp. 49–56. ACM, New York, NY,
USA (2010). DOI 10.1145/1868688.1868696

39. Schaefer, I., Rabiser, R., Clarke, D., Bettini, L., Benavides, D., Botterweck, G., Pathak, A., Trujillo,
S., Villela, K.: Software diversity: state of the art and perspectives. International Journal on Software
Tools for Technology Transfer 14(5), 477–495 (2012)

40. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall International (2001)
41. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Tools and Algorithms for the Con-

struction and Analysis of Systems (TACAS), LNCS, vol. 4424, pp. 632–647. Springer (2007)
42. Uzuncaova, E., Khurshid, S., Batory, D.S.: Incremental test generation for software product lines.

IEEE TSE 36(3), 309–322 (2010)
43. The DeltaFineFit home page. http://di.unito.it/deltafinefit
44. The DeltaJ home page. https://www.tu-braunschweig.de/isf/research/deltas
45. The FineFit home page. https://github.com/coderocket/finefit

http://di.unito.it/deltafinefit
https://www.tu-braunschweig.de/isf/research/deltas
https://github.com/coderocket/finefit

	SoSyM-PublishedOnline-2016-02-13-COPERTINA.pdf
	main
	Introduction
	A recollection of data-refinement testing of Java programs with FineFit
	A recollection of delta-oriented programming of SPLs of Java programs with DeltaJ
	Delta-oriented specification of SPLs
	Specifying and testing the Album PL with DeltaFineFit
	Evaluation of the approach
	Related Work
	Conclusion and Future Work
	The structure and semantics of operation tables
	The algorithm that computes the apply function

