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Abstract. Software is increasingly individualized to the needs of cus-
tomers and may have to be adapted to changing contexts and envi-
ronments after deployment. Therefore, individualized software adapta-
tions may have to be performed. As a large number of variants for
a�ected systems and domains may exist, the creation and deployment
of the individualized software should be performed automatically based
on the software's con�guration and context. In this paper, we present
a toolchain to develop and deploy individualized software adaptations
based on Software Product Line (SPL) engineering. In particular, we
contribute a description and technical realization of a toolchain ranging
from variability modeling over variability realization to variant derivation
for the automated deployment of individualized software adaptations. To
capture the variability within realization artifacts, we employ delta mod-
eling, a transformational SPL implementation approach. As we aim to
ful�ll requirements of industrial practice, we employ model-driven en-
gineering using statecharts as realization artifacts. Particular statechart
variants are further processed by generating C/C++ code, linking to ex-
ternal code artifacts, compiling and deploying to the target device. To
allow for �exible and parallel execution the toolchain is provided within
a cloud environment. This way, required variants can automatically be
created and deployed to target devices. We show the feasibility of our
toolchain by developing the industry-related case of emergency response
systems.

Keywords: Software Product Lines, Delta Modeling, Model-Driven En-
gineering, Statecharts

1 Introduction

Software is increasingly individualized and adapted to the needs of speci�c cus-
tomers. Moreover, after development and deployment, it may often have to be

? The authors of this paper are listed in alphabetical order.



adapted to changing needs and environments. To this end, the software may
be replaced by a di�erent variant of the software having di�erent functional-
ity. As also these software adaptations may be individualized depending on the
software's con�guration and the host device's environment (e.g., sensor data),
such software is often developed as a Software Product Line (SPL) capturing
its commonalities and variabilities across di�erent variants [15,18]. Moreover,
such software variants often run distributed on remote devices in heterogeneous
environments, e.g., on a car's Electronic Control Unit (ECU). To allow for in-
dividualized adaptations of these distributed variants based on the software's
con�guration and the device's environment, an individual recon�guration and
deployment is required. Furthermore, a development environment is necessary
to describe the particular domain variability as well as to develop variability-
aware realization artifacts.

In this paper, we present an integrated toolchain for the development of SPLs
as well as the automated derivation and deployment of their respective software
variants. We employ Feature Models (FMs) [10] to capture the commonalities
and variabilities of the di�erent variants. Furthermore, we employ delta model-
ing [17], a transformational variability realization mechanism, to express vari-
ability within realization artifacts. As statecharts are common industrial practice
to model the behavior of a system, we follow a model-driven engineering process
employing statecharts as realization artifacts to integrate the toolchain in exist-
ing industrial processes. To deploy the variants, we generate C code from the
variant statecharts and link this code, e.g., to device-speci�c code artifacts. As
also these external code artifacts may be customizable, we combine the coarse-
grained delta-oriented variability on statecharts with �ne-grained preprocessor-
based variability within the code artifacts. Finally, we deploy the generated,
linked and compiled variant to the respective target device.

The variant derivation for a software adaptation is triggered based on the
deployed variant's con�guration and the device's environment (e.g., changing
context information such as GPS coordinates) [12,13]. Therefore, environmental
information has to be received from the target device and a �exible and scal-
able infrastructure must be available to perform multiple parallel recon�guration
processes for a potentially immense number of variants. To this end, the variant
derivation, code generation, linking and compilation are performed in a cloud
environment.

In particular, we make the following contributions:

� We present a toolchain for modeling an SPL using statecharts and C code
as realization artifacts. We provide automatic variant derivation of a state-
chart variant as well as C code generation, linking to external code artifacts,
compilation and automatic deployment of the variant to a target device.

� We employ a combination of two di�erent variability mechanisms: delta-
oriented modeling for coarse-grained variability on the level of statecharts,
as well as preprocessors for �ne-grained variability on the code level.

� To employ delta modeling, a language to express transformations must exist,
which is speci�c to the respective target language. To this end, we present a



delta language for statecharts and a delta language for adding external code
artifacts to the variant, which we call metadata.

The paper is structured as follows. Section 2 describes relevant foundations
that are used throughout the toolchain. Section 3 elaborates on the running
example used throughout the paper. Section 4 introduces the general work�ow
and the components of our toolchain. Section 5 describes how to specify an
SPL using the tool suite DeltaEcore and our provided extensions to it. Section 6
describes the process of variant generation, code generation, linking, compilation
and deployment of a particular variant. Section 7 contrasts our work to related
work. Finally, Section 8 gives a conclusion and and an outlook on future work.

2 Background

In this section, we present technology and concepts of the toolchain. In partic-
ular, we present the technologies to realize variability on metamodels, to create
models de�ning variants, to compile and link source code created from our mod-
els to existing source code.

2.1 Model-Driven Software Development with the Eclipse Modeling
Framework (EMF)

In Model-Driven Software Development, models represent an abstraction of the
reality [7]. A metamodel is an abstraction of models and speci�es types of mod-
els. The Object Management Group (OMG) speci�ed a standard for metamod-
els, i.e., a meta-metamodel, in the Meta-Object Facility (MOF)1 and also a
reduced Essential MOF (EMOF) standard. With the Eclipse Modeling Frame-
work (EMF), it is possible to specify Ecoremetamodels, which are mostly based
on the EMOF standard. Ecore models are speci�ed by classes, attributes for
the classes and references between them. EMF also provides a code generator,
which generates Java code for metamodels de�ned in Ecore.

2.2 Yakindu Statecharts

As the explicit goal of our toolchain is to integrate into common industrial
practice, we mainly use statecharts as realization artifacts which specify the
behavior of software products. As a representative for tool support, we use the
open source Yakindu statechart tools2. Yakindu statecharts are de�ned as
an Ecore metamodel. With Yakindu, it is possible to de�ne statecharts with
states and transitions between these states. Moreover, it is possible to de�ne
so-called speci�cations for the statechart. These speci�cations can consist of
variables which are accessible from transactions or states. To this end, Yakindu
de�nes several primitive and platform independent types. Moreover, it is possible

1 http://www.omg.org/mof
2 https://www.itemis.com/en/yakindu/statechart-tools



to specify interfaces and external operations. Each operation has a signature and
can also be used in transactions or states. Yakindu provides a graphical editor
to ease the creation of statecharts in a visual representation similar to UML
state diagrams3.

To generate an executable application out of a Yakindu statechart, there
are three di�erent code generators for the C/C++/Java programming languages.
As input, the code generators take a fully speci�ed statechart and produce the
source code for traversing the di�erent states and transactions in the respective
target language. Moreover, the generators create de�nitions for the variables,
interfaces and external operations speci�ed in the speci�cation of a statechart
in the respective programming language. Additionally, Yakindu supports the
speci�cation of customized code generators that are able to generate source code
for arbitrary languages.

2.3 Autotools

Autotools, also known as The GNU Build System4, is a set of tools designed to
allow source code compilation for di�erent Unix-based environments. Compila-
tion of C/C++ source code can be very di�erent from one Unix-based system to
another, among others, because system headers and library functions can change
decisively. To this end, Autotools automatically generate Make�les for certain
platforms and environments. As input, Autotools receive user-speci�ed high-
level con�guration and make�les, as Figure 1 illustrates. In the Make�le.am, the

Autoconf

./configure

Automake

Makefile.am Makefile.in

configureconfigure.ac

makefile

Fig. 1: Work�ow to generate a make�le

user writes an abstracted make�le in a high-level speci�cation, which is then
translated to a template, the Make�le.in, for a concrete make�le. Users write a
meta script, which abstracts over di�erent execution environments for the script,
which is called con�gure.ac. From this meta script, a portable concrete con�g-
ure script is created, which is used to generate a concrete make�le out of the
Make�le.in.

3 http://www.omg.org/spec/UML
4 https://www.gnu.org/software/software.en.html



2.4 Software Product Lines

Software Product Lines (SPLs) are a methodology for large-scale reuse for fam-
ilies of closely related software systems in terms of variabilities and commonali-
ties [15]. Conceptually, in the problem space, the variabilities and commonalities
of an SPL are captured in a variability model, e.g., a Feature Model (FM) [9].
Variability models de�ne all possible con�gurations of an SPL. FMs consist
of multiple features representing functionality of the SPL, independent of the
implementation. Features are structured hierarchically and can be optional or
mandatory. Moreover, features can be grouped into alternative or or groups. In
alternative groups, exactly one feature has to be selected, whereas in or groups,
at least one feature has to be selected. Moreover, cross-tree constraints (CTC) in
terms of propositional formulas can be used to de�ne dependencies between fea-
tures independent of their hierarchical structures. Figure 2 illustrates an example
of a visual representation of an FM.

The features in the problem space represent conceptual functionality, the re-
alization artifacts, e.g., code or documentation, reside in the solution space. The
realization artifacts are the artifacts, which are suitable for reuse in the SPL. The
con�guration knowledge de�nes the relations between the problem and the solu-
tion space, i.e., Boolean formulas de�ning under which feature selection certain
realization artifacts are selected. Individual systems created from a con�guration
of an SPL are called variants or products.

Di�erent variability realization mechanisms exist to describe variability in
the realization artifacts [18]. In compositional approaches, e.g., Feature-Oriented
Programming (FOP), new functionality, representing the selected features, is
added to a base implementation [16,5]. In FOP, feature modules are speci�ed,
which de�ne the new functionality and target for composition. In annotative
approaches, for instance pre-processor directives (#ifdefs) in C [8], the variable
code is annotated and removed if not needed. In transformational approaches,
for instance delta modeling [6], a certain base artifact is transformed by means
of adding, removing or modifying functionality. Delta languages de�ne domain-
speci�c delta operations, specifying add, remove and modify operations. In delta
modeling, delta modules are speci�ed, which contain a set of delta operation calls
to realize the changes associated with certain combinations of features.

During the variant derivation, variability is resolved for a speci�c con�gura-
tion, i.e., feature selection. For #ifdefs, a pre-processor removes the code whose
annotations are not satis�ed by the feature selection. In FOP and delta mod-
eling, the feature and delta modules are selected and applied to the base code
based on the feature selection using the con�guration knowledge.

2.5 Delta Modeling with DeltaEcore

DeltaEcore is a tool suite, which supports developers in de�ning delta lan-
guages for their Ecore5 metamodels [20]. Moreover, delta modules de�ned using

5 https://eclipse.org/modeling/emf/



the created language can be applied to a base variant. The di�erent delta mod-
ules and the base variant represent the solution space of an SPL.

When creating a language for an Ecore metamodel, DeltaEcore provides
a set of pre-de�ned delta operations based on the structure of the metamodel.
Standard operations in a delta language of DeltaEcore can access arbitrary
elements of a model of the respective metamodel and, additionally, can have Java
primitives, String types and model elements as attributes. In addition, custom
operations can be created by de�ning a signature of complex operations with user
de�ned semantics. DeltaEcore then generates stubs for these operations which
merely have to be implemented by the developer. Finally, if a delta language is
completely speci�ed, a text editor is generated, in which it is possible to de�ne
delta modules, potentially consisting of multiple delta blocks. Each delta block
speci�es a base variant which is transformed by delta operations called in this
block. Note that it is possible to de�ne delta blocks in di�erent delta languages
in one delta module to realize logically cohesive changes to realization artifacts
of di�erent languages.

To be able to support the whole work�ow of an SPL, DeltaEcore also sup-
ports the de�nition of FMs, covering the problem space of an SPL. Moreover, it
is also possible to de�ne a mapping between the FM and available delta mod-
ules, covering the con�guration knowledge. When delta modules, an FM and a
mapping are de�ned, it is possible to de�ne con�gurations, consisting of selected
features. Using such a con�guration, DeltaEcore provides the possibility to
generate variants by applying delta modules if their respective expression in the
mapping is satis�ed.

3 Running Example � Emergency Response Systems

In this section, we present the running example used throughout the paper,
which is based on a real scenario of the automotive domain: emergency response
systems for cars. An emergency response system aims to automatically dial emer-
gency numbers in the event of a serious road accident and to wirelessly send
impact sensor information and location coordinates to local emergency agencies.
Di�erent programs exist such as the eCall/E112 program of the European Union
as well as the Russian ERA GLONASS system.

As di�erent requirements for di�erent countries exist, software for the emer-
gency response system must behave di�erently depending on the current loca-
tion of the car. For example, the eCall/E112 program uses the Global Positioning
System (GPS) for location information, whereas the Russian ERA GLONASS
system employs the Russian Global Navigation Satellite System (GLONASS).
Hence, depending on the current location of the vehicle, the system needs to be
recon�gured to use a di�erent satellite navigation system.

The feature model of the emergency response system for the particular use
case of supporting both the (European) �eCall� and the �EraGlonass� features
is presented in Fig. 2. Depending on which system is used, a di�erent satel-
lite system (i.e., �GPS� or �GLONASS�) and a di�erent language (�Russian� or



�EU_Languages�) is used. Moreover, the feature �ERA_GLONASS� requires the
�Diagnostic� feature to be selected, whereas it is optional for the case of �eCall�.

Feature

Mandatory Feature

Optional Feature

Or Group

Alternative Group

LegendEmergencyCall

Base Languages GNSS Diagnostic

eCall EraGlonass Russian EU_Languages GPS Glonass

eCall → GPS
eCall → EU_Languages
EraGlonass → Glonass
EraGlonass → Russian
EraGlonass → Diagnostic

Fig. 2: Feature model and constraints for the emergency response system

To implement emergency response systems in vehicles, an Electronic Control
Unit (ECU) must be deployed inside, which can connect to cellular communica-
tion networks and integrates a localization module. The Autonomous Telematics
Box (ATB2) 6 is such an ECU. It integrates a telephone modules for connection
to cellular communication networks and a multi-constellation satellite localiza-
tion module (e.g., GPS and GLONASS). The ATB2 is particularly suitable in the
eCall/E112 use case because it supports remote updates of the running �rmware.

4 Overall Concept and Architecture

In this section, we introduce the general work�ow and the components of our
toolchain. Figure 3 depicts the steps of the work�ow, the responsible components
and the incorporated artifacts. The work�ow is separated in two main phases:
the SPL design phase and the variant-generation phase. The components and
artifacts involved in the SPL design phase are located to the left of the dashed
box. In both phases, both coarse-grained variability in terms of delta modules
and �ne-grained variability in terms of preprocessor directives are considered.
In the SPL design phase, the SPL is de�ned using Yakindu and DeltaEcore,
which consists of the core statechart and the delta modules.

Using the SPL de�nition in the variant-generation phase in the cloud, the
DeltaEcore Variant Generator �rst creates a Variant Model, i.e., the vari-
ant's statechart, by applying the delta modules which are selected using the con-
�guration knowledge and a feature selection. Then, the Yakindu Code Gener-

ator creates code out of the statechart. Additionally, the DeltaEcore Variant

6 Magneti Marelli http://www.magnetimarelli.com

http://www.magnetimarelli.com
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Fig. 3: Components of the Toolchain

Generator generates build automation �les. To this end, it de�nes suitable meta-
data, which specify which features are selected, which external code artifacts
should be linked and the name of the variant. The statechart's code together
with the build automation �les result in the Intermediate Source Code. Au-
totools link existing source code artifacts with the statechart's code and create
a concrete make�le which is contained in the Variant Source Code. The exist-
ing source code artifacts may be annotated with pre-processor directives, whose
values may be �lled by Autotools. The Cross-Compiler compiles the source
code using the provided make�le. The binary code is then deployed to the end
device.

On the end device, the new binary is installed. Subsequently, it collects sensor
data and sends it to the cloud. The sensor data is processed by HyVarRec
which, if necessary, computes a new con�guration and then starts a new loop of
the variant-generation phase.

Our architecture is strongly component based. Distributed to the cloud, it
achieves very �exible scaling. For instance, if the Yakindu code generator is
very slow, multiple instances of it could be created in the cloud. In this paper,
we explain the complete toolchain except for the deployment, the recon�gura-
tion process (parts connected with dashed arrows in Figure 3) and the cloud
technology itself. The recon�guration process is explained in [13,12].

5 Software Product Line Design Phase

For designing the SPL, we use DeltaEcore and Yakindu statechart tools.
With DeltaEcore, it is possible to de�ne the complete SPL in terms of the
problem space, solution space (based on metamodeling) and con�guration knowl-
edge. In the following, we describe how to specify an SPL for our use case, using
DeltaEcore, Yakindu and our provided extensions to it.



5.1 Core Statechart

As DeltaEcore is relying on delta modeling, which is a transformational ap-
proach, we need to specify a core statechart that can serve as source for trans-
formation. In our toolchain, we specify the core statechart by using the standard
Yakindu statechart editor. This allows us to use the complete functionality pro-
vided by Yakindu and does not break the work�ow with statecharts that system
engineers are used to. This core statechart is then modi�ed by delta modules to
create variants.

5.2 Managing Variability

In the problem space, we use FMs which are implemented in DeltaEcore.
DeltaEcore provides an editor, which allows us to de�ne FMs. Figure 2 depicts
an FM representing the problem space of our running example.

In the solution space, DeltaEcore relies on delta modeling for metamodels.
To be able to transform these models, it is necessary to de�ne a delta language
for each metamodel, which consists of a common base delta language and a
metamodel-speci�c delta dialect. In our case, we need to de�ne two delta di-
alects. One for the statecharts and one for the metadata. Figure 4 shows an

Fig. 4: Excerpt of delta dialect for Yakindu statecharts

excerpt of the delta dialect for the Yakindu statecharts. With this dialect, it is
possible to modify an existing statechart, e.g., by adding, removing or modifying
states and transitions. Moreover, it is possible to modify the speci�cation of the
statechart via the delta operation modifySpecificationOfStatechart(...).
In the speci�cation of a statechart, it is possible to de�ne variables, events, op-
erations and interfaces. This is very important as these operations can be used to
call existing external code artifacts. This will be explained later in more detail.

The second dialect is de�ned to create metadata, which can be seen in Fig-
ure 5. As the metadata is not available as Ecore metamodel, we only use
the delta dialect to trigger operations provided for the metadata libraries. To
this end, we introduced the operations preMetadata() and postMetadata(),
which initialize and write out the metadata, respectively. The delta operation
addSourceFile(...) de�nes external code artifacts which should be integrated
by Autotools and which should be linked to operations of the statechart. With



Fig. 5: Delta dialect for metadata

the delta operation addFeature(...), the values for annotative variability in the
external code artifacts is set. Finally, the setVariantName(...) delta operation
is used to provide information on how to pack the �nal binary of a variant.

With these two dialects, it is possible to de�ne delta modules consisting of
a set of delta operations. Figure 6 depicts an excerpt of delta module of our

Fig. 6: Excerpt of a delta module of the running example

running example. Among others, this delta module adds a state which is re-
sponsible for adding diagnostic information of the feature �Diagnostic� of Fig-
ure 2. In each delta module, a core model can be speci�ed with the keyword
modifies, which should be modi�ed by the delta module. Additionally, it is
possible to de�ne whether a delta module is dependent on another delta module
via the keyword requires. As Figure 6 shows, in one delta module, multiple
delta dialects can be used. In our case, this is sensible, as we de�ne operations in
the statechart's speci�cation which need to be linked to existing code artifacts.
Thus, it is necessary to specify the respective code artifact to be integrated.
However, in each delta module, it is possible to reference existing elements of
the modi�ed model. For example, the addState(...) operation adds the newly



created state to an existing region of the statechart. In particular, the state
initAdditionalDataState is added to the region identi�ed by <eCall.main

region.init_ecallmessage.InitEcallMessage>. Additionally, a new transi-
tion is added from an existing state to the new state. For the metadata, a source
�le, i.e., the encode_optionaldata.c, is marked for integration. Moreover, it is
speci�ed that the feature Diagnostic has been selected and the variant's name
is russia_comb in version 1.0.

In the problem space, we de�ned the features of our product line. In the
solution space, we de�ned delta modules, which specify how a given statechart
is modi�ed and which existing code artifacts should be integrated. It is further
necessary to link the problem and the solution space. This is done by the con�g-
uration knowledge, consisting of mappings between features and delta modules.
Figure 7 depicts part of the con�guration knowledge for our running example.

Fig. 7: Exemplary mapping of features to a delta module

First, an application condition needs to be speci�ed. This is a Boolean expres-
sion on features, de�ning in which feature selection this mapping should be
executed. In the example, the application condition is EraGlonass && Russian

&& Diagnostic, saying that the following deltas should only be applied if the
features �EraGlonass�, �Russian� and �Diagnostic� of our running example are
selected together. The second part is a list of delta modules that should be ap-
plied if the application condition is true. In our example, this is only one delta
module, i.e., the Russia_comb.decore.

6 Variant-Generation Phase

The second phase of the work�ow consists of the variant generation. The variant
generation is triggered by receiving a new con�guration. For our running ex-
ample, this could be a con�guration consisting of the features �EmergencyCall�,
�Base�, �Languages�, �GNSS�, �EraGlonass�, �Russian� and �Diagnostic�. After
having the SPL de�ned, the component DeltaEcore Variant Generation uses
the SPL artifacts and selects the delta module according to the feature selection
in the con�guration and the mapping in the con�guration knowledge. Assuming
the above mentioned con�guration and the mapping of Figure 7, this would be
the delta module Russia_comb.decore. Then, the delta modules are applied
to the core statechart. According to the delta module Russia_comb.decore de-
picted by Figure 6, a new state for collecting the diagnostic information and an
external operation call would be added. Moreover, new source �les are speci�ed
in the metadata. As a result, this component produces the variant model (i.e.,
the variant's statechart) and the build automation �les. In our case, the build



automation �les consist of an .am �le and an .ac �le, which are both used as in-
put for Autotools. Assuming the application of the Russia_comb.decore delta
module, the build automation �les contain references to the newly added source
�les.

In the next step, the Yakindu Code Generator receives the variant's state-
chart as input and generates code out of it. In our case, this is currently C code
but it is also possible to generate C++ or Java code. However, this code includes
interfaces/header �les, which represent the operations of the statechart (see Sec-
tion 5.2). These interfaces/header �les do not yet have an implementation but
will be linked in a following phase.

Figure 8 illustrates the general work�ow of the Autotools component. As

Source code
repository

Makefile.am
configure.ac

Variant
source code

Makefile

Generated
source code

Autotools
component

Fig. 8: Overview on the work�ow of the Autotools component

input, the Autotools component receives the build automation �les (i.e., the
Makefile.am and the configure.ac), the source code repository, in which ex-
isting code artifacts are stored and the generated code from the variant's state-
chart. It processes these artifacts in three phases: In the �rst phase, it collects
the existing code artifacts from a repository, which were speci�ed in the meta-
data (see Section 5.2). In the second phase, the generated interfaces/header �les
of the Yakindu Code Generator are linked to the concrete implementations of
the existing code artifacts. In the third phase, a make�le is created as Figure 1
illustrates. The Autotools component's output is the variant's source code, i.e.,
the generated source code and the linked existing code artifacts as well as the
make�le.

The Cross-Compiler component receives the variant's source code as well
as the make�le and compiles the code for a certain target platform. In our case,
the target platform is the Autonomous Telematics Box (ATB2) which is based
on an ARM platform. As a result, we receive a binary, which is deployed to
the end device. In our case, the binary code is packed to a �rmware image for
the ATB2 and then deployed. For brevity, we do not explain the process of
deployment in this paper. After having a new �rmware installed, the end device



continuously collects sensor data and sends it to our cloud infrastructure. The
component HyVarRec receives the data as input and, if necessary, computes a
new con�guration. This new con�guration triggers a new cycle of the variant
generation phase. However, a description of how HyVarRec works can be found
in [12,13].

7 Related Work

A prominent framework for research on Feature-Oriented Software Development
is FeatureIDE [21], which is based on the Eclipse platform7. FeatureIDE
provides comprehensive tools for variability modeling with feature models as well
as the ability to include di�erent variability realization mechanisms. However,
FeatureIDE focuses on the development of SPLs, their analysis, con�guration
and �nally, the variant derivation for di�erent variability realization mechanisms.
In contrast, we present an integrated toolchain for the development and deploy-
ment of software variants for distributed host devices.

DeltaEcore [20] is a tool suite for delta modeling on languages based on
EMFEcoremetamodels. UsingDeltaEcore, it is possible to semi-automatically
create a delta languages for a particular EMF-based target language consisting
of delta operations speci�c to that target language. Moreover, DeltaEcore
provides comprehensive tools for variability modeling and con�guration as well
as variant derivation using the custom delta languages. In this work, we employ
DeltaEcore for the development of SPLs and the variant derivation. How-
ever, using our toolchain, we further process the model variant by producing an
executable variant and deploying it to the target device (cf. Section 4).

DeltaJava [17,11] is a custom-tailored delta language for the Java pro-
gramming language. Thus, DeltaJava provides delta operations to transform
legacy Java software to another variant of that software. However, DeltaJava
is tailored to Java, whereas our target language is C/C++. To this end, Fea-
tureC++ [3], employing FOP as the variability realization mechanism for SPLs
based on C/C++, would be more suitable. However, delta modeling allows for
more �exibility and improves expressiveness over FOP as elements may be re-
moved. Other implementation approaches to SPLs include FeatureHouse [2],
a language-independent composition tool that requires a general structure model
of the base language called Feature Structure Tree (FST), as well asAHEAD [4],
an algebraic foundation for module composition, which is implemented for Java.

pure:variants8 is a tool suite that uses family models as 150% models
of supported realization artifacts. Con�guring these family models, a variant
can be generated. BigLever's9 Gears Product Line Engineering Tool
and Lifecycle FrameworkTM is an SPL development tool suite based on
feature models and an annotative variability realization mechanism. However,
neither pure:variants nor Gears Product Line Engineering Tool and

7 http://www.eclipse.org
8 https://www.pure-systems.com
9 http://www.biglever.com

http://www.eclipse.org
https://www.pure-systems.com
http://www.biglever.com


Lifecycle FrameworkTM support delta modeling as a variability realization
mechanism. Moreover, pure:variants does not support C/C++ as the target
language.

Clafer Tools [1] is an integrated set of tools based on Clafer, a language
for structural modeling of SPLs. Using Clafer Tools, variability modeling,
con�guration, and variant derivation of structural models (e.g., class diagrams)
can be performed. However, Clafer Tools does not support behavioral mod-
eling of systems, such as statecharts. Therefore, generating executable variants
is not possible using Clafer Tools, which is essential to our work.

8 Conclusion and Future Work

In this paper, we presented an integrated toolchain for the development and
deployment of increasingly individualized software that is adapted to changing
contexts. To this end, we employed SPL engineering in a model-driven context
where realization artifacts are modeled as Yakindu statecharts and variability
is realized using delta modeling with DeltaEcore. After variant derivation, the
model variant is further processed to derive executable C/C++ code, including
metadata consisting of build automation �les. To allow a �exible and parallel
recon�guration, the variant derivation, linking and compilation processes are
performed in a cloud infrastructure. Using the industry-related case of emergency
response systems, we showed the feasibility of our toolchain for developing the
SPL and deriving and deploying speci�c variants to target devices.

In the future, we plan to extend the application of the toolchain to a di�er-
ent and more challenging scenario where the generation of Java code is required.
Moreover, we plan to support evolution of features (i.e., feature versions) [19]
and evolution of the feature model [14] within the toolchain. This way, we would
enable distributing di�erent (e.g., older) versions of particular (parts of) vari-
ants.
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