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ABSTRACT

We report the discovery of K2-98 b (EPIC 211391664 b), a transiting Neptune-sized planet monitored

by the K2 mission during its campaign 5. We combine the K2 time-series data with ground-based

photometric and spectroscopic follow-up observations to confirm the planetary nature of the object

and derive its mass, radius, and orbital parameters. K2-98 b is a warm Neptune-like planet in a 10-day

orbit around a V=12.2 mag F-type star with M?=1.074 ± 0.042 M� , R?=1.311+0.083
−0.048 R�, and age

of 5.2+1.2
−1.0 Gyr. We derive a planetary mass and radius of Mp= 32.2± 8.1 M⊕ and Rp=4.3+0.3

−0.2 R⊕.

K2-98 b joins the relatively small group of Neptune-sized planets whose both mass and radius have

been derived with a precision better than 25 %. We estimate that the planet will be engulfed by its

host star in ∼3 Gyr, due to the evolution of the latter towards the red giant branch.

Keywords: planets and satellites: detection — planets and satellites: individual: K2-98 b

(EPIC 211391664 b) — stars: fundamental parameters

1. INTRODUCTION

The transit of an exoplanet in front of its host star

provides us with valuable information about its size.

When combined with radial velocity (RV) measurements

(e.g., Mayor & Queloz 1995) or transit timing variations

(TTVs, e.g., Ford et al. 2011), transit photometry gives

us access to the geometry of the orbit, enabling the mea-

surement of the true mass of the planet, of its radius,

and consequently of its mean density. Masses, radii,

densities, and orbital parameters are fundamental “in-

gredients” to study the internal structure, composition,

dynamical evolution, tidal interaction, architecture, and

atmosphere of exoplanets (e.g., Winn & Fabrycky 2015;

Hatzes 2016).

The space-based photometry revolution of CoRoT

(Baglin et al. 2006) and Kepler (Borucki et al. 2010)

has given us access to the small-radius planet do-

main (Rp . 6R⊕, i.e., Neptune- and Earth-sized plan-

ets), a regime that is not easily accessible from

the ground. Neptune-like planets (2.0.Rp . 6.0 R⊕,
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10.Mp . 40 M⊕ Borucki et al. 2011) are of special in-

terest as they mark the transition from Super-Earths to

larger planets with higher volatile content, more akin to

the icy giants in our solar system. However, our knowl-

edge of these planets is still quite limited. Although

Kepler has found that ∼26 % of Sun-like stars in our

Galaxy host small planets with orbital period shorter

than 100 days (Marcy et al. 2014), determinations of

masses with a precision of ∼25 % – or better – have

been possible only for a few dozen Neptune-like plan-

ets1. This is because of the small RV variations induced

by such planets and the faintness of most of the Kepler

host stars (V>13 mag), which makes them not suitable

for precise RV follow-up observations.

In its extended K2 mission, Kepler is surveying dif-

ferent stellar fields located along the ecliptic, perform-

ing 80-day-long continuous observations of 10 000–20 000

stars per campaign. K2 data products have no propri-

etary period and are released to the community typi-

cally three months after the end of each campaign, en-

abling immediate follow-up observations. The K2 mis-

sion is an unique opportunity to gain knowledge of tran-

siting Neptune-sized planets (e.g., Espinoza et al. 2016;

David et al. 2016). K2 is targeting a number of bright

dwarfs (V≤12 mag) higher than the original Kepler mis-

sion (Howell et al. 2014). This is a definitive advantage

for any RV follow-up observations.

As part of the KEST, ESPRINT, and PICK2 collabo-

rations (Cochran et al. 2015; Grziwa et al. 2015; Sanchis-

Ojeda et al. 2015; Johnson et al. 2016; Nespral et al.

2016), we have recently started a RV follow-up program

that aims at confirming Neptune-sized candidates de-

tected by the K2 mission and at measuring their masses

via high-precision RV follow-up observations. We herein

report the discovery of K2-98 b (EPIC 211391664 b), a

transiting Neptune-sized planet in a 10-day orbit around

a relatively bright (V=12.2 mag) solar-like star photo-

metrically monitored by the K2 mission during its Cam-

paign 5. We combine the K2 photometry with ground-

based follow-up observations to assess the planetary na-

ture of the transiting object and derive its mass. We

note that K2-98 b has been recently identified as a planet

candidate by Pope et al. (2016) and Barros et al. (2016),

but has not previously been confirmed. We are the first

team to confirm and characterize in detail this planetary

system.

The paper is organized as follows: in Sect. 2 we present

the K2 photometry, and in Sect. 3 and 4 our ground-

based photometric and spectroscopic follow-up, respec-

tively. Sect. 5 reports on the characterization of the

1 As of June 2016; source: exoplanet.org.

host star. Sect. 6 describes the joint RV and photo-

metric analysis. Results, discussion, and conclusion are

given in Sect. 7 and 8.

2. K2 LIGHT CURVE

K2 Campaign 5 observations began on 27 April

2015 UT and lasted until 10 July 2015 UT2. Dur-

ing the observations the boresight of the Kepler

spacecraft was pointed at coordinates α= 08h 40m 38s,

δ= +16◦ 49 ′47 ′′. A total of 26 054 light curves were si-

multaneously acquired by K2; 25 850 in long cadence

mode (∼30 minute integration time) and 204 in short

cadence mode (∼1 minute integration time).

In this work, we use the light curves extracted by Van-

derburg & Johnson (2014)3. They were the only pub-

licly available light curves at the time we started the

detection of transiting planet candidates in K2 Field 5.

We search the light curves for transit signals using the

DST algorithm (Cabrera et al. 2012) and the EXOTRANS

pipeline (Grziwa et al. 2012). DST and EXOTRANS have

been applied extensively to both CoRoT (Carpano et al.

2009; Cabrera et al. 2009; Erikson et al. 2012; Carone

et al. 2012; Cavarroc et al. 2012) and Kepler (Cabrera

et al. 2014; Grziwa & Pätzold 2016) data. All transit

detection algorithms search for a pattern in the data

and use statistics to assess whether a signal is present

in the data or not. When compared to widely used al-

gorithms such as, e.g., Box Least Squares (BLS; Kovács

et al. 2002), DST uses an optimized transit shape, with

the same number of free parameters as BLS, and an op-

timized statistic for signal detection. EXOTRANS uses a

combination of the wavelet based filter technique VARLET

(Grziwa & Pätzold 2016) and the BLS detection algo-

rithm. VARLET was developed to reduce both stellar

variability and data discontinuities. EXOTRANS cal-

culates the Signal Detection Efficiency (SDE) for every

light curve when the BLS algorithm is used. The Gen-

eralized Extreme Value (GEV) distribution is used to

calculate the SDE threshold (Grziwa et al. 2012). We

consider all light curves with a SDE value higher than

the SDE threshold for further inspection (about 4 % of

the sample).

Both DST and EXOTRANS identify a periodic transit-

like signal associated with the target EPIC 211391664.

The star was proposed for K2 observations by programs

GO5007 (P.I.: J. Winn) and GO5029 (P.I.: D. Charbon-

neau). For brevity we will hereafter refer to the star and

its transiting planet as K2-98 and K2-98 b, respectively.

The target passes all of the tests that we carry out to

2 See http://keplerscience.arc.nasa.gov/k2-fields.html.

3 Publicly available at https://www.cfa.harvard.edu/

~avanderb/allk2c5obs.html.

exoplanet.org
http://keplerscience.arc.nasa.gov/k2-fields.html
https://www.cfa.harvard.edu/~avanderb/allk2c5obs.html
https://www.cfa.harvard.edu/~avanderb/allk2c5obs.html
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identify likely false positives with the DST and EXOTRANS

pipelines. These tests were regularly used during the

CoRoT mission. Briefly, we stack and fit even and odd

transits separately using the Transit Analysis package

TAP (Gazak et al. 2012). We find neither significant

odd-even transit depth variations, nor ellipsoidal vari-

ability/tidal deformation signatures in the light curve,

both typically observed in eclipsing binaries. We find

also no shallow secondary eclipses that might suggest

an eclipsing binary scenario. Possible secondary eclipses

are simulated using the detached eclipsing binary light

curve fitter (DEBIL; Devor 2005) we first described in

Pätzold et al. (2012). Similar tests are performed us-

ing the DST pipeline and are described in Cabrera et al.

(2009) and Cabrera et al. (2012). Large photometric

variation in phase with the candidate orbital period is

a hint for a possible binary. Such variations are also

not found, and so we proceed to more detailed fitting of

the light curve, as well as high-resolution imaging, re-

connaissance spectroscopy, and RV observations (Sect. 3

and 4).

We also search the K2 light curve of K2-98 for ad-

ditional transit signals, but none are found. The main

identifiers, optical and infrared magnitudes, and proper

motions of this star are listed in Table 2.

3. FASTACAM HIGH-RESOLUTION IMAGING

We observed K2-98 on 17 May 2016 with the FAST-

CAM lucky imaging camera (Oscoz et al. 2008) mounted

on the 1.5m Carlos Sánchez Telescope of Teide Obser-

vatory in Tenerife (Spain). To account for the low al-

titude of the object at the time of our observation, we

used a relatively long exposure time of 300 milliseconds

and acquired a total of 5 000 images. The integration

time of 300 milliseconds does not completely freeze the

atmosphere, but this duration was necessary to collect

enough light to detect faint objects. We selected the 300

best images, i.e., those with the highest Strehl ratio, and

processed the data using the COELI4 algorithm (Cagigal

et al. 2016a). COELI provides a map of the temporal

covariance between the intensity of K2-98 and the in-

tensity of the remaining pixels (Fig. 1). This removes

the speckled halo surrounding the host star and creates

a dark ring-shaped region around it, which is the zone

were the algorithm is more sensitive to the presence of

faint objects (Cagigal et al. 2016b). COELI also rein-

forces in this zone those pixels whose intensity follows

the same temporal fluctuations as K2-98, which can only

happen when the pixels contain an object. We estimate

that in the ring-shaped region, at distances of 0.5–1.7′′,

4 ImageJ Plugin available at https://imagej.nih.gov/ij/
plugins/index.html.

Table 1. Main identifiers, magnitudes, and proper motion
of K2-98.

Parameter Value Source

Main Identifiers

EPIC 211391664 EPIC

UCAC 508-047859 EPIC

2MASS 08255719+1130402 EPIC

α(J2000.0) 08h05m57.189s EPIC

δ(J2000.0) +11◦30′40.12′′ EPIC

Magnitudes

B 12.646±0.030 EPIC

V 12.166±0.030 EPIC

g 12.313±0.030 EPIC

r 12.031±0.030 EPIC

J 11.124±0.022 2MASS

H 10.905±0.025 2MASS

K 10.869±0.028 2MASS

W1 10.823±0.023 WISE

W2 10.856±0.020 WISE

W3 10.678±0.108 WISE

W4 8.258 WISE

Proper motions

µα cos δ (mas yr−1) −15.4 ± 2.3 UCAC2

µδ (mas yr−1) −8.8 ± 1.5 UCAC2

Note—Values of fields marked with EPIC are taken from the Ecliptic
Plane Input Catalog, available at http://archive.stsci.edu/k2/epic/
search.php. Values marked with UCAC2, 2MASS, and WISE are from
Zacharias et al. (2004), Cutri et al. (2003), Cutri & et al. (2013),
respectively. The WISE W4 magnitude is an upper limit.

there are no background objects brighter than V≈19

mag (i.e., ∆V≈7 mag).

The final image shows the target to be isolated except

for the detection of an object located 1.9′′ South-East of

K2-98. The detected object is located just outside the

dark ring-shaped region, in a zone where COELI provides

relatively poor contrast and small spots show arbitrar-

ily amplified noise. Nevertheless, due to being rather

bright, we consider the source as a secure detection, and

estimate it to be 50±10 times fainter (4.2±0.2 mag) than

the main target. The distance of 1.9′′ between the tar-

get and the faint object is less than the sky-projected

size of the Kepler/K2 CCD pixel (∼4′′). We therefore

assume that the light from the faint object contributes

with a fraction of 1/(50±10) to the measured flux of

K2-98 and correct the K2 light curve accordingly prior

to performing the joint analysis presented in Sect.6.

No additional contaminants are identified. The DSS

images reveal that the next closest star with a brightness

comparable to the target is a ∼3.5-mag fainter object

https://imagej.nih.gov/ij/plugins/index.html
https://imagej.nih.gov/ij/plugins/index.html
http://archive. stsci.edu/k2/epic/search.php
http://archive. stsci.edu/k2/epic/search.php
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Figure 1. FASTCAM image of K2-98 processed with COELI.
The pixel scale is 0.042′′; North is left, East is down. K2-98 is
at the center of the ring-shaped feature, which is an artifact
of the image processing. The faint nearby star 1.9′′ South-
East of K2-98 is indicated with a green arrow. Colors from
blue to red represent the increasing level of temporal covari-
ance with the central target, following the data processing
with COELI.

that is located at ∼42′′ East of K2-98, which is too large

to produce any relevant influence onto the K2 light curve

of K2-98.

4. SPECTROSCOPIC FOLLOW-UP

OBSERVATIONS

We took 2 reconnaissance spectra of K2-98 with the

Harlan J. Smith 2.7m Telescope and the Tull Coudé

Spectrograph (Tull et al. 1995) at McDonald Obser-

vatory. The Tull spectrograph covers the entire op-

tical spectrum (3450–9800 Å) at a resolving power of

R≈60 000. We used exposure times of 1800 seconds,

which resulted in a signal-to-noise ratio (SNR) of ∼ 30

per pixel at 5500 Å. We derived a first estimate of the

spectroscopic parameters by using our code Kea that

compares observed high-resolution spectra to a large li-

brary of synthetic models (Endl & Cochran 2016). For

the first spectrum we obtain the following parameters:

Teff = 5880± 107 K, log g? = 3.81± 0.31 (cgs), [Fe/H] =

−0.06 ± 0.07 dex and a v sin i? = 8.8 ± 0.3 km s−1. For

the second observation: Teff = 5820 ± 116 K, [Fe/H] =

−0.03 ± 0.08 dex, log g? = 4.00 ± 0.35 (cgs) and a

v sin i? = 8.7± 0.4 km s−1. We also measure an absolute

RV of 76.7 ± 0.2 km s−1 by cross-correlating the data

with spectra of the RV standard star HD 50692 (Udry

et al. 1999).

We also acquired 4 high-resolution spectra (R≈67 000)

in November 2015 and January 2016 using the FIbre-fed

Échelle Spectrograph (FIES; Frandsen & Lindberg 1999;

Telting et al. 2014) mounted at the 2.56m Nordic Op-

tical Telescope (NOT) at Roque de los Muchachos Ob-

servatory (La Palma, Spain). We adopted the observing
strategy described in Buchhave et al. (2010) and Gan-

Table 2. Radial velocity measurements of K2-98.

BJDTDB RV σRV CCF FWHM CCF BIS

−2 450 000 (km s−1) (km s−1) (km s−1) (km s−1)

FIES

7342.706590 76.6027 0.0082 15.1659 0.0390

7344.744082 76.6243 0.0081 15.1694 0.0401

7347.706247 76.6143 0.0082 15.1770 0.0430

7394.699773 76.6130 0.0082 15.1790 0.0366

HARPS

7509.495449 76.7558 0.0084 10.3567 0.0430

7511.495428 76.7516 0.0053 10.3617 0.0442

7512.472984 76.7376 0.0055 10.3632 0.0450

7516.525371 76.7425 0.0068 10.3729 0.0600

HARPS-N

7371.582060 76.7393 0.0077 10.3474 0.0407

7371.601679 76.7324 0.0098 10.3309 0.0499

7448.440479 76.7499 0.0074 10.3352 0.0456

7512.429111 76.7313 0.0048 10.3558 0.0580

dolfi et al. (2013, 2015), i.e., we took 3 consecutive expo-

sures of 1200 seconds per observation epoch – to remove

cosmic ray hits – and acquired long-exposed (Texp≈35

seconds) ThAr spectra immediately before and after the

three sub-exposures – to trace the RV drift of the in-

strument. We reduced the data using standard IRAF

and IDL routines. The signal-to-noise ratio (SNR) of

the extracted spectra is ∼30 per pixel at 5500 Å. Ra-

dial velocity measurements were derived via multi-order

cross-correlation with the RV standard star HD 50692

– observed with the same instrument set-up as K2-98.

They are listed in Table 2 along with the full-width at

half maximum (FWHM) and bisector span (BIS) of the

cross-correlation function (CCF).

We also acquired 8 high resolution spectra using the

HARPS (R≈115 000; Mayor et al. 2003) and HARPS-

N spectrographs (R≈115 000; Cosentino et al. 2012)

mounted at the ESO-3.6m telescope at La Silla observa-

tory (Chile) and the 3.58m Telescopio Nazionale Galileo

(TNG) at the Roque de los Muchachos Observatory (La

Palma, Spain), respectively. The observations were per-

formed between December 2015 and May 2016, setting

the exposure times to 1800–3600 seconds depending on

the sky condition. We monitored the Moon background

light using the second fiber and reduced the data with

the dedicated HARPS and HARPS-N data reduction

software pipeline. The SNR of the extracted spectra

is SNR=35–45 per pixel at 5500 Å. Radial velocities

(Table 2) were extracted by cross-correlation with a G2

numerical mask (Baranne et al. 1996; Pepe et al. 2002).

We search for possible correlations between the RVs
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and the CCF FWHM, as well as between the RVs and

CCF BIS. By combining all the three data sets, we de-

rive for the RV and BIS data a Pearson correlation co-

efficient of -0.36 with a p-value of 0.25, while for the RV

and FWHM measurements we obtain a Pearson correla-

tion coefficient of -0.32 with a p-value of 0.31. The lack

of significant correlations at a 0.05 confidence level pro-

vides further evidence that the observed RV variations

are caused by the orbital motion of the planet rather

than stellar activity. It also excludes the presence of an

unseen stellar contaminant whose CCF is blended with

the cross-correlation function of K2-98. We also per-

form a visual inspection of the Tull, FIES, HARPS, and

HARPS-N spectra and search the CCFs for the presence

of a secondary peak. We find no significant evidence of

a second set of spectral lines in the data.

5. PROPERTIES OF THE HOST STAR

We co-add the spectra from the NOT, ESO-3.6m, and

TNG separately to get a combined FIES spectrum, a

separate combined HARPS spectrum, and a third sep-

arate HARPS-N spectrum. The co-added data have a

SNR of ∼100 per pixel at 5500 Å. We use the three

combined spectra to refine the estimates of the spec-

troscopic parameters of the host star. Following the

spectral analysis of CoRoT and Kepler host stars (e.g.,

Fridlund et al. 2010; Gandolfi et al. 2010, 2015), we se-

lect spectral features that are sensitive to different pho-

tospheric parameters. Our method is based on Spec-

troscopy Made Easy (SME), a software package that cal-

culates synthetic spectra and fits them to high resolution

observed spectra (Valenti & Piskunov 1996). SME is es-

pecially designed to determine basic stellar and atomic

parameters from a match of the observed and normal-

ized spectrum to the synthetic spectra generated from

the parameterized atmospheres. It uses a non-linear

least squares algorithm to solve for any subset of allowed

parameters, which include atomic data (log gf and van

der Waals damping constants), the model atmosphere

parameters (Teff , log g?), the metal abundances, and

the projected rotational velocity v sin i?. The SME 4.43

distribution includes a grid with a very large set of

1D-LTE plane-parallel stellar atmospheric models (AT-

LAS9, ATLAS12, NextGen, and MARCS models; Ku-

rucz 1993, 2013; Hauschildt et al. 1999; Gustafsson et

al. 2008). ATLAS12 is an opacity sampling model at-

mosphere program that computes the same models as

ATLAS9 but instead of using pretabulated opacities and

models with arbitrary abundances, ATLAS12 uses indi-

vidual abundances and line data.

Our spectral analysis begins by primarily using the

wings of the Hα and Hβ Balmer lines to determine

Teff , adopting the calibration equations of Bruntt et al.

(2010) and Doyle et al. (2014) to estimate the micro-

turbulent (Vmic) and macroturbulent (Vmac) velocities.

The projected rotational velocity v sin i? is determined

from a set of iron lines after which Mg i lines at λ= 5167,

5173, and 5184 Å and Ca i lines at λ= 6102, 6122, 6162,

and 6439 Å, are used to estimate the surface gravity

log g?. In order to verify the accuracy of this method,

we analyze a Solar spectrum from Wallace et al. (2011).

Comparing with the discussion given in Valenti & Fis-

cher (2005), we find the errors quoted there to be repre-

sentative of what can currently be achieved when calcu-

lating synthetic spectra in order to fit high resolution,

high SNR spectra.

We obtain stellar parameters from the FIES, HARPS,

HARPS-N consistent to within 1-sigma uncertainties.

Our final adopted values for Teff , log g?, [M/H], and

v sin i? are the weighted means of the values produced

by the three co-added spectra and the quoted errors are

the 1-σ standard deviation. They are also consistent

within 2-σ with the preliminary values derived from the

2 reconnaissance spectra taken at McDonald observa-

tory (Sect. 4). We note that the v sin i? estimates ob-

tained from the Tull spectroscopic data using KEA should

be regarded as upper limits as they do not account for

the line broadening induced by the macroturbulent ve-

locity (Endl & Cochran 2016).

We determine stellar mass, radius, and age by combin-

ing the effective temperature Teff and metallicity [M/H]

with the mean density ρ? obtained from the transit light

curve modeling (Sect. 6). We compare the position of

the host star on a ρ?-versus-Teff with a fine grid of evolu-

tionary tracks. The latter are computed ad hoc for this

work using the FRANEC code (Tognelli et al. 2011), set-

ting the same configuration as for the Pisa stellar evo-

lution data base for low-mass stars5 (Dell’Omodarme

et al. 2012). We adopt the mixing-length parameter

αml =1.74, which is our solar calibrated value for the

heavy element mixture of the Sun by Asplund et al.

(2009). We account for microscopic diffusion by means

of the routine developed by Thoul et al. (1994). The fi-

nal grid contains tracks in the mass range 0.90-1.30 M�,

with a step of 0.01 M�, computed for five different cou-

ples of initial metallicity Z and helium abundance Y ,

namely, (0.006, 0.260), (0.008, 0.265), (0.010, 0.268),

(0.011, 0.271), (0.012, 0.273), and (0.013, 0.274). We

find that evolutionary models with initial metal content

between Z=0.011 and Z=0.013 reproduce the current

photospheric metallicity. With a mass of M?=1.074 ±
0.042 M�, radius of R?=1.311+0.083

−0.048 R� and an age of

5.2+1.2
−1.0 Gyr (Table 3), K2-98 is a slightly evolved star

leaving the main sequence. Based on the calibration of

5 Available at http://astro.df.unipi.it/stellar-models/.

http://astro.df.unipi.it/stellar-models/
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Straizys & Kuriliene (1981) for dwarf stars, the effective

temperature of the star translates into a F8 V spectral

type. The stellar mass and radius imply a surface grav-

ity of log g? = 4.23+0.03
−0.05 (cgs), which agrees within 1-σ

with the value of log g? = 4.35± 0.10 (cgs) derived from

the co-added spectra.

We check the K2 data for evidence of rotational

modulation. The lack of significant periodic and

quasi-periodic photometric variation prevents us from

estimating the stellar rotation period. Assuming

that the star is seen equator-on, the projected rota-

tional velocity v sin i?=6.1±0.5 km s−1 and stellar ra-

dius R?=1.311+0.083
−0.048R� imply a rotational period of

Prot=10.9+1.0
−0.8 days.

Following the technique described in Gandolfi et al.

(2008), we use the magnitudes listed in Table 2 and

our spectroscopic parameters to estimate the inter-

stellar extinction and distance to the star. We find

that the light of K2-98 suffers a negligible reddening

(Av=0.05±0.05 mag) and the star is located at a dis-

tance d = 435+40
−20 pc from the Sun.

6. JOINT RV-TRANSIT MODELING

We perform the joint modeling of the photomet-

ric and spectroscopic data using the code pyaneti, a

Python/Fortran software suite that finds the best fit-

ting solution using Markov Chain Monte Carlo (MCMC)

methods based on Bayesian inference (Barragán et al., in

preparation). The code implements ensemble sampling

with affine invariance for a larger coverage of parameter

space (Goodman & Weare 2010).

The photometric data included in the joint analy-

sis are subsets of the whole K2 light curve. We se-

lect ∼13 hours of data-points centered on each of the

7 transits6 observed by K2. We de-trend the individual

transits using a second-order polynomial locally fitted

to the ∼16 out-of-transit points per transit (8 points

per side). The final data-set contains 180 photometric

points. The modeled RV data-set contains the 12 mea-

surements listed in Table 2.

The radial velocity model is given by a Keplerian or-

bit and an offset term for each systemic velocity (see,

e.g., Perryman 2014). We fit for the systemic velocity

γj (as measured by the jth instrument), the RV semi-

amplitude variation K, the transit epoch T0, the period

Porb, the eccentricity e, and the argument of periastron

of the star’s orbit ω measured from the ascending node

to its periastron.

The transit model follows the quadratic limb-darkened

law of Mandel & Agol (2002). We account for the

K2 long integration (Texp=29.425 minutes) by supers-

6 The transit duration is ∼5 hours.

ampling the transit model with 10 sub-samples per long

cadence data (Kipping 2010). For the linear u1 and

quadratic u2 limb darkening coefficients, we use the

q1 = (u1 + u2)2 and q2 = u1 [ 2 (u1 + u2) ]−1 parameter-

ization described in Kipping (2013). The fitted transit

parameters are T0, Porb, e, ω, q1, q2, scaled semi-major

axis a/R?, planet-to-star radius ratio Rp/R?, and im-

pact parameter b.

We use the Gaussian likelihood

L = (2π)−n/2

[
n∏
i=1

σi

]
exp

[
−

n∑
i=1

(Di −Mi)
2

2σ2
i

]
, (1)

where n=ntr +nRV is the number of transit and RV

points, and σi is the error associated to each data point

Di, and Mi is the model associated to a given Di.

We fit for both a circular and an eccentric

model. The joint modeling is carried out run-

ning 500 independent chains with uninformative uni-

form priors in the wide ranges Porb = [10.1, 10.2] days,

T0 = [2457145.7, 2457146.3], b= [0, 1], a/R? = [5, 100],

Rp/R? = [0.005, 0.2], K = [0.001, 1.0] km s−1, and γj =

[1, 100] km s−1. For the circular model we set e= 0

and ω= 90 deg, while for the eccentric fit we set unifor-

mative uniform priors between the limits e= [0, 1] and

ω= [0, 360] deg. For q1 and q2 we set uniformative uni-

form priors in the range [0, 1] to sample a physical solu-

tion for the limb darkening coefficients (Kipping 2013).

We check the chain convergence by comparing the

“between-chain” and “within-chain” variance using the

Gelman-Rubin statistics. The burning-in phase used

25 000 additional iterations with a thin factor of 50, lead-

ing to a final number of 500 independent points for each

chain, i.e., 250 000 independent points for each fitted

parameter.

An initial global fit to the data yields the parame-

terized limb darkening coefficients q1 =0.27+0.29
−0.12 and

q2 =0.47+0.26
−0.24 which corresponds to u1 = 0.47+0.14

−0.17

and u2 = 0.03+0.36
−0.21 . As described in Csizmadia et

al. (2013), the large uncertainties arise from the shal-

low transit depth (∼0.1 %), the small number of data

points (∼180) and transits (7), and the K2 long inte-

gration time (∼30 minutes). We thus choose to con-

strain the limb darkening coefficient interpolating the

table of Claret & Bloemen (2011) and assuming conser-

vative 20 % error bars. We stress that the system pa-

rameters derived with uninformative priors on the limb

darkening coefficients are consistent to within 1-σ uncer-

tainties with those obtained by constraining u1 and u2.

7. RESULTS AND DISCUSSION

Figure 2 shows the folded transit light curves and

phase-folded RV curve, along with their best fitting

models. The parameter estimates and error bars are
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Figure 2. Left panel : Transit light curve folded to the orbital period of K2-98 b and residuals. The red points are the K2 data
and their error bars. The solid line mark the re-binned best fitting transit model. Right panel : Phase-folded FIES (blue circles),
HARPS-N (green diamonds) and HARPS (red triangles) RV measurements of K2-98 and best fitting circular orbit (solid line),
following the subtraction of the systemic velocities as measured from each instrument.

listed in Table 3. They are taken as the median and

the 68 % central interval of the final posterior distribu-

tions (Gregory 2010). Our results are consistent with

the transit parameters derived by Pope et al. (2016) and

Barros et al. (2016).

Our RV measurements do not allow us to constrain

the eccentricity of the system. A fit for an eccentric or-

bit yields 0.19+0.17
−0.13 with a significance of only about 1-σ.

In order to further check whether the non-zero eccentric-

ity solution is significant or not, we run an F-test and

calculate the p-value, i.e., the probability that the ap-

parent eccentricity could have arisen if the underlying

orbit were circular (Lucy & Sweeney 1971). In doing

so we take into account the number of fitted parame-

ters – both for the circular and eccentric model –, the

number of measurements and their uncertainties, and

the residuals from the best fitting circular and eccen-

tric solution. We find a p-value of 0.87, which is much

higher than the 0.05 significance threshold suggested by

Lucy & Sweeney (1971) to prefer e 6= 0 over e= 0. We

therefore conclude that the nonzero best fitting eccen-

tricity obtained with models where e is allowed to vary

is not significant. Moreover, we find that the circular

(DOF=153) and eccentric (DOF=151) models provide

very similar minimum χ2 values of ∼152. The difference

of the Bayesian information criterion is ∆BIC=10 be-

tween the two models, implying that the circular model

is favored. We therefore adopt the circular model as the

one that better describes our data. We note that the de-

rived system parameters for a non-zero eccentricity are

consistent to within 1-σ uncertainties with those derived

assuming a circular orbit.

K2-98 b has a mass of Mp = 32.2 ± 8.1 M⊕ and a

radius of Rp = 4.3+0.3
−0.2 R⊕, consistent with a density

of 2.15+0.67
−0.60 g cm−3. These parameters are calculated

adopting the stellar mass and radius derived in Sect. 5
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Figure 3. Mass-radius diagram for Neptune-sized planets
(2.0.Rp . 6.0R⊕) whose both mass and radius have been
determined with a precision of at least ∼25 % (Exoplanet
Orbit Database, as of June 2016; Han et al. 2014). The red
circle marks the position of K2-98 b. The green diamond
and blue square show the position of Neptune and Uranus,
respectively. The solid and dashed lines mark the Earth
(5.5 g cm−3) and Neptune (1.6 g cm−3) isodensity curves.

and listed in Table 3. Figure 3 shows the position of K2-

98 b in the mass-radius diagram for Neptune-sized plan-

ets. The plot includes only those objects whose both

mass and radius have been estimated with a precision

of at least ∼25 %. K2-98 b joins the family of inter-

mediate mass (20<Mp<50M⊕) Neptune-sized planets.

Whereas its radius is slightly larger than that of Neptune

(3.9R⊕), the mass of K2-98 b is almost twice as large as

the mass of Neptune. This implies that a solid massive

core surrounded by a large atmosphere is expected (see,

e.g., Weiss & Marcy 2014).

Assuming a minimum mass solar nebula (MMSN), the

isolation mass (Schlichting 2014) of a planet at 0.093

AU is ∼0.004M⊕, which is significantly lower than the

mass of K2-98 b. In order to form K2-98 b in situ, a disk
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surface density ∼5500 times larger than the MMSN is

required. This value would generate gravitational insta-

bilities in the disk, because its Toomre parameter would

be Q ≈ 0.03� 1 (Schlichting 2014). This scenario does

not support the in situ formation of K2-98 b.

Valsecchi et al. (2014) proposed that Neptune-mass

planets may form via migration of hot Jupiters that

come so close to their host stars as to fill their Roche lobe

and start conservative mass transfer to the star. This

may reverse the direction of migration and increase the

orbital period. However, it seems very difficult to reach

a final orbital period of about 10 days, as in the case

of K2-98 b. Moreover, this formation scenario cannot

easily account for the measured relatively low density of

the planet (2.15+0.67
−0.60 g cm−3). Therefore, we argue that

K2-98 b likely formed in the outer region of the proto-

planetary disk and then migrated inwards to its current

position (see, e.g. Kley & Nelson 2012).

We integrate the equations of tidal and rotational evo-

lution as in Lanza & Mathis (2016) assuming a constant

modified tidal quality factor Q′? for the star. Given

that the stellar rotation period is close to the orbital pe-

riod (Sect. 5), tidal dissipation by inertial waves inside

the star is considered leading to a remarkably stronger

tidal interaction than in the case of the equilibrium tide

(Ogilvie & Lin 2007). Therefore, we explore the evo-

lution for three fixed values of Q′?, i.e., 105, 106, and

107, from the stronger to the weaker coupling. Follow-

ing Lanza et al. (2011), we include the loss of angu-

lar momentum produced by the stellar magnetized wind

considering a saturation regime for an angular velocity

greater than 8 Ω�, where Ω� is the present solar angu-

lar velocity. We assume that the orbit of the planet is

circular, although the tidal interaction is so weak that

any initial eccentricity could survive up to the present

stage of the system evolution (see below).

Fig. 4 shows the evolution of the rotation period of

the star (upper panel), semi-major axis of the planet’s

orbit (middle panel), and stellar radius (lower panel)

as obtained from the evolutionary models presented in

Sect. 5. Tidal interaction is so weak that there is vir-

tually no evolution of the orbital separation since the

planet arrived at the present semi-major axis (Fig. 4,

middle panel). The rotation of the star is braked solely

by the stellar wind with a completely negligible tidal

exchange between the orbital and the spin angular mo-

menta, and no dependency on the stellar tidal quality

factor Q′?, owing to the small mass of the planet and

large separation. (Fig. 4, upper panel). Under our model

assumptions, we estimate that the star reached the zero

age main sequence (ZAMS) with a rotation period of

about 1.5 days.

The tidal evolution of the planet will become impor-

tant in the future – after ∼3 Gyr from now – due to

Figure 4. Rotational period of the star (upper panel), semi-
major axis of the planet orbit (middle-panel), and stellar
radius (lower panel) versus time. Different line styles refer to
different initial semi-major axis a0 and tidal quality factor of
the star Q′? as follows: solid line: Q′? = 106, a0 = 0.0943 AU;
dotted line: Q′? = 107, a0 = 0.0943 AU; dashed line: Q′? =
105, a0 = 0.0943 AU; dash-dotted: Q′? = 105, a0 = 0.037
AU (corresponding to an orbital period of 2.5 days); dash-
triple-dotted: Q′? = 106, a0 = 0.037 AU.

the increase of the stellar radius and rotational period

of the star, leading to a rapid decay of the planet’s orbit

(Fig. 4, middle panel).
The amount of angular momentum in the orbit is

insufficient to synchronize the rotation of the star, so

the present approximately synchronous state cannot be

maintained. Damiani & Lanza (2015) showed that other

systems having host stars with an effective temperature

around 6100 K show a rather wide distribution of the ra-

tio of the orbital period to the stellar spin period, even

in the case of more massive planets, thus supporting the

conclusion that the present approximate synchronicity

is probably coincidental.

Finally, we consider the possibility that the planet was

initially significantly closer to the star when the latter

reached the ZAMS and was pushed outwards by the ac-

tion of tides because angular momentum was transferred

from the stellar spin to the orbit, provided that the ro-

tational period of the star was shorter than the orbital

one. We find that also this scenario is unlikely. As

an illustrative case, we show in Fig. 4 two integrations
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for the planet initially at an orbital period of 2.5 days,

corresponding to a semi-major axis of 0.037 AU. This

is the minimum orbital period for observed Neptune-

mass planets around main-sequence stars (cf. Fig. 4 of

Valsecchi et al. 2014) that we choose in order to maxi-

mize the strength of the tidal interaction. Since the star

was initially rotating faster than the planet, the tidal

interaction was initially pushing the planet outwards, in

particular for Q′? = 105 (Fig. 4, middle panel). How-

ever, the fast rotational braking of the star led soon to

a rotation period longer than the orbital period. Since

the amount of orbital angular momentum was too small

to maintain the synchronous state, the final fate of the

planet was to fall towards the star under the action of

tides within a few Gyrs7. This scenario would account

for the significant dearth of Neptune-like planets with

orbital periods below 2-4 days (see, e.g., Szabó & Kiss

2011; Mazeh et al. 2016).

The tidal evolution of the system further supports an

inward migration scenario for K2-98 b, from the outer

region of the system to its current position.

8. CONCLUSIONS

We confirm the planetary nature of K2-98 b and

derive the system parameters. Our results are based on

photometric data from the K2 space mission combined

with high-precision Tull, FIES, HARPS, and HARPS-N

RV measurements and lucky imaging. K2-98 b is a tran-

siting Neptune-sized planet in a 10-day-orbit around an

F8 V leaving the main sequence. It has a mass of Mp =

32.2 ± 8.1 M⊕ and a radius of Rp = 4.3+0.3
−0.2 R⊕, trans-

lating into a mean density of 2.15+0.67
−0.60 g cm−3. K2-98 b

joins the still relatively small number of Neptune-size

planets (∼20 objects) whose mass and radius have been

determined with a precision better than 25 %.
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planet is shorter than 2.5 days (i.e., a0 < 0.037 AU), tidal push is
stronger, but for a shorter time interval before the rotation period
of the star becomes longer than the orbital period, after which the

orbit decays faster. If the planet is further out (P0,orb > 2.5 days
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Table 3. Stellar and Planetary Parameters.

Parameter Value

Model Parameters

Orbital period Porb (days) 10.13675± 0.00033

Transit epoch T0 (BJDTDB−2 450 000) 7145.9807± 0.0012

Scaled semi-major axis a/R? 15.388+0.543
−1.192

Scaled planet radius Rp/R? 0.0301+0.0004
−0.0003

Impact parameter, b 0.27+0.17
−0.14

Parameterized limb-darkening coefficient q1
a 0.40± 0.05

Parameterized limb-darkening coefficient q2
a 0.26± 0.05

Eccentricity e 0 (fixed)

Radial velocity semi-amplitude variation K (m s−1) 9.1± 2.3

Systemic velocity γFIES (km s−1) 76.6116± 0.0029

Systemic velocity γHARPS (km s−1) 76.7479± 0.0022

Systemic velocity γHARPS−N (km s−1) 76.7417± 0.0026

Derived parameters

Semi-major axis of the planetary orbit a (AU) 0.0943+0.0061
−0.0052

Transit duration τ14 (hours) 5.03+0.05
−0.04

Transit ingress/egress duration τ12 = τ34 (hours) 0.16+0.03
−0.01

Orbit inclination along the line-of-sight ip (◦) 89.0+0.5
−0.7

Stellar parameters

Star mass M? (M�) 1.074± 0.042

Star radius R? (R�) 1.311+0.083
−0.048

Surface gravity log g? (cgs)b 4.23+0.03
−0.05

Mean density ρ? (g cm−3) 0.66+0.07
−0.12

Star age (Gyr) 5.2+1.2
−1.0

Spectral typec F8 V

Effective temperature Teff (K) 6120± 80

Iron abundance [Fe/H] (dex) −0.2± 0.1

Nickel abundance [Ni/H] (dex) −0.1± 0.1

Silicon abundance [Si/H] (dex) −0.1± 0.1

Calcium abundance [Ca/H] (dex) −0.1± 0.1

Sodium abundance [Na/H] (dex) −0.0± 0.1

Magnesium abundance [Mg/H] (dex) −0.0± 0.1

Microturbulent velocity vmic
c 1.3± 0.1

Macroturbulent velocity vmac
d 3.7± 0.6

Projected rotational velocity v sin i? 6.1± 0.5

Distance d (pc) 435+40
−20

Visual interstellar extinction Av (mag) 0.05± 0.05

Planetary parameters

Planet mass Mp (M⊕) 32.2± 8.1

Planet radius Rp (R⊕) 4.3+0.3
−0.2

Planet density ρp (g cm−3) 2.15+0.67
−0.60

Equilibrium temperature Teq (K) 1102+26
−20

Note—The adopted Sun and Earth units follow the recommendations from the International Astronomical Union (Prsa et al. 2016).

aThe limb-darkening coefficient parameterization follows Kipping (2013). The estimates have been obtained assuming u1 = 0.33 ± 0.06 and
u2 = 0.30± 0.06 for the linear and quadratic limb-darkening coefficients (Claret & Bloemen 2011), adopting 20 % conservative error bars.

b Stellar surface gravity log g? as measured from the global fit and evolutionary tracks. The spectroscopic analysis gives log g? = 4.35± 0.10 (cgs).

c Based on the spectral type vs. effective temperature calibration of Straizys & Kuriliene (1981) for dwarf stars.

dMicro and macroturbulent velocities from the calibration equations of Bruntt et al. (2010) and Doyle et al. (2014), respectively.
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