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Abstract 

The genus Penicillium comprises different economically important species 

with the ability to produce a wide array of secondary metabolites. Among different 

Penicillium species, P. griseofulvum is worldwide distributed and has been associated 

with blue mold decay. In the present study, the complete genome of P. griseofulvum 

strain PG3 isolated from rotted apples harvested in Italy was sequenced and some 

important secondary metabolites clusters present in PG3 were reported. The PG3 

estimated genome size was of 29.3 Mb, and the phylogenetic analysis at the whole-

genome level revealed that P. griseofulvum is branched off after the divergence of P. 

oxalicum and before P. chrysogenum. Genome-wide analysis of PG3 genes uncovered 

a putative gene cluster for patulin biosynthesis. In vitro results clearly confirmed 

that PG3 is a high patulin producer. In addition to patulin, we detected a functional 

griseofulvin gene cluster.This study will enable to gain insight into secondary 

metabolite synthesis in P. griseofulvum and assess its potential applications in 

biotechnology and threats for food safety.  

 

INTRODUCTION 
 P. griseofulvum Dierckx (syn. P. patulum Bain.; P. urticae Bain.) is worldwide 

distributed and it has been isolated from fruits, decaying plants, cereal grains and animal 

feed (Shim et al., 2006). P. griseofulvum has been associated with blue mold decay in 

storage apple fruits, which is considered as one of the most important postharvest diseases 

of pome fruits worldwide (Pianzzola et al., 2004).  

Besides the economic losses, P. griseofulvum may represent a potential health risk 

because of its ability to produce mycotoxins such as patulin. The genes forming the 

patulin cluster were characterized in P. expansum and Aspergillus clavatus (Artigot et al., 

2009; Tannous et al., 2014; Ballester et al., 2015; Li et al., 2015); however no information 

is yet available about the composition of the patulin cluster in P. griseofulvum. This 

information is needed to clearly understand the mechanisms leading to patulin production 

in this fungus and to define strategies for patulin control.     

P. griseofulvum is also known to produce a wide array of important useful 

https://en.wikipedia.org/wiki/High-performance_liquid_chromatography


secondary metabolites, including griseofulvin (Samson RA et al., 2004; Shim et al., 2006) 

which has been in use for many years in medical and veterinary applications (Finkelstein 

et al., 1996). The griseofulvin biosynthetic gene cluster consists of 13 putative genes and 

has been reported in P. aethiopicum (Chooi et al., 2010; Cacho et al., 2013, 2015), but it is 

still not known the genes forming the griseofulvin cluster in P. griseofulvum. 

To gain insight into secondary metabolite clusters in P. griseofulvum and assess its 

biotechnological potential and define better the threats for food safety, we have sequenced 

for the first time its genome. 

 

MATERIALS AND METHODS 
Penicillium griseofulvum Dierckx (syn: P. urticae Bainier) strain PG3 (deposited 

at Centraalbureau voor Schimmelcultures, with Accession number CBS 140421) was 

obtained from rotten apples harvested in Piedmont, Northern Italy. 

Total DNA was extracted from the strain PG3 as previously described by Ballester 

and collaborators (Ballester et al., 2015) and then DNA concentration and purity were 

checked by a spectrophotometer (Nanodrop 2000, Thermo Scientific, Wilmington, USA). 

The genome of P. griseofulvum PG3 was sequenced at the Genomics Platform of the 

Parco Tecnologico Padano using the Illumina MiSeq technology. SPAdes was used to 

assemble the P. griseofulvum genome (Bankevich et al., 2012) and the genes encoded in 

the genome were predicted by Augustus trained with Aspergillus nidulans (Keller et al., 

2011). A phylome, designed as the complete collection of phylogenetic trees for each 

gene encoded in a genome, was reconstructed for P. griseofulvum. Fourteen other species 

were included in the phylome. These comprised the other sequenced Penicillium genomes 

(P. chrysogenum, P. oxalicum, P. roqueforti, P. camemberti, P. expansum, P. digitatum and 

P. italicum) and members of the Aspergillus and Talaromyces clade. Species tree was 

reconstructed using the method of gene concatenation. RaxML was used to reconstruct 

the species tree using the PROTGAMMALG model (Stamatakis et al., 2005). A collection 

of 114 secondary metabolism clusters were used to look for homologous clusters in the P. 

griseofulvum genome following the method described in Ballester and collaborators 

(Ballester et al., 2015). PG3 colony diameter (mm) was measured for up to 10 days of 

growth, and then patulin and griseofulvin production were analyzed by high-performance 

liquid chromatography (HPLC). 

 

RESULTS AND DISCUSSION 
 

Genome sequencing and comparative genomics 
The genome of P. griseofulvum strain PG3 was sequenced. Table 1 shows the final 

statistics of the genome assembly, which is composed of 363 contigs, 14 of which were 

larger than 100 kb. The estimated genome size was of 29.3 Mb. Gene annotation showed 

that 9,631 proteins were encoded in the genome. We compared the genome of P. 

griseofulvum with the genomes of 14 other fully-sequenced Penicillium and Aspergillus 

species. To determine the phylogenetic position of P. griseofulvum in relation with other 

sequenced species, we reconstructed a species tree based on the concatenation of 2,134 

genes that were found to be single copy in all considered species. Our results show that P. 

griseofulvum is branched off between P. chrysogenum and P. oxalicum (Figure 1A).  

 

Genome-wide analysis of P. griseofulvum PG3 genes revealed two putative gene 
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clusters for patulin and griseofulvin biosynthesis 
The presence of secondary metabolites clusters in PG3 was analyzed by searching 

for homologs of about 114 gene clusters present in the database. A patulin gene cluster is 

identified for the first time in P. griseofulvum, PG3 strain, containing 15 genes gathered 

together ordered similarly to the patulin cluster of P. expansum strain PEXP (Ballester et 

al., 2015) (Figure 1B). This result confirms that the changes in gene order observed 

between the cluster in A. clavatus and the cluster in P. griseofulvum and P. expansum 

happened before the two Penicillium species diverged.  

Besides the patulin gene cluster, we found a griseofulvin gene cluster (Figure 1C). 

This gene cluster was originally described in P. aethiopicum and consists of 13 genes 

(Chooi et al., 2010). 

When we compared the griseofulvin gene cluster of P. aethiopicum with the one found in 

PG3, we found that three genes (gsfR2, gsfK and gsfH) were not located within the PG3 

griseofulvin gene cluster: gsfR2 codes for a putative transcription factor, gsfK, encodes a 

putative NAD(P)-dependent oxidoreductase, and gsfH codes for a isochorismatase-like 

protein. However these proteins have homologs in a different position of the genome and 

therefore we could not discard the option that they are still playing a function in the 

synthesis of griseofulvin. 

Patulin and griseofulvin production in vitro by PG3 
Patulin and griseofulvin production by P. griseofulvum PG3 was quantified in vitro 

for up to 10 days. After 3 days of incubation in vitro, PG3 produces considerable amount 

of patulin (about 446.86 µg/plate), then increased significantly to reach 3498.71 µg/plate 

at day 10 (figure 2B). Interestingly, these concentrations are in the same range as the 

patulin production by P. expansum strain PEXP which has similar genes number and 

order as the putative PG3 patulin cluster (Ballester et al., 2015), although PG3 exhibited 

distinct differences in colony morphology and slower growth kinetics compared with 

PEXP (figure 2A/B).  

As mentioned before, P. griseofulvum is known to produce thesecondary 

metabolite griseofulvin that has been used for many years in medical and veterinary 

applications.In the present work, griseofulvin production by PG3 was investigated, and 

the results clearly confirm that PG3 produced significant levels of griseofulvin in vitro, 

which increased over the time to reach at the day 10 about 215 µg/plate (Figure 2C).  

The production of griseofulvin by the newly sequenced P. griseofulvum PG3 strain 

indicates that the lack of three genes within the gene cluster is apparently not affecting the 

synthesis of griseofulvin. However we do not know whether or not these genes are 

nevertheless involved in the synthesis of this compound. 

 

 

CONCLUSIONS 
In this study, we sequenced and annotated for the first time the genome of the 

postharvest pathogen P. griseofulvum PG3 isolated from rotted apples in Italy. Our data 

suggest that PG3 genome size is 29.3 Mb, and the phylogenetic analysis at the whole-

genome level revealed that P. griseofulvum is branched off after the divergence of P. 

oxalixum and before P. chrysogenum. 

Then our analyses uncovered two important secondary metabolite gene clusters in 

PG3: a griseofulvin cluster and a patulin gene clusterthat is similar to the cluster 

identified in P. expansum.  

Finally, in vitro analysis conducted in the present study revealed that PG3 



produces a considerable amount of patulin and griseofulvin. 

Our data give insight into secondary metabolites synthesis in P. griseofulvum PG3 

and assess its potentiality in term of threats for food safety, but also pave the way for its 

future biotechnological applications such as using PG3-knocked out of PKS of the patulin 

cluster for producing griseofulvin.  
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Table 

 

Table 1. Genome assembly statistics for the P. griseofulvum PG3 genome. 

 

 Penicillium griseofulvum PG3 

Genome size 29.3 Mb 

Number of contigs 363 

Number of contigs > 100kb 14 

N50 2.8 Mb 

Number of Ns 322 

GC content 0.47 

Number of predicted proteins 9631 

Average protein length 521 aa 
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Fig. 1. Species tree showing the phylogenetic position of P. griseofulvum across the 

studied species and summary of the detected secondary metabolism clusters in PG3. 

A) Maximum likelihood species tree derived through gene concatenation of 2134 single-

copy genes that are present in PG3 and in the other 14 fully-sequenced Penicillium and 

Aspergillus considered species. All bootstrap values are maximal (100). 

B) Comparison of patulin cluster genes in PG3 and in other phylogenetically close patulin 

producing species. The species used for comparison are P. expansum and A. clavatus 

which have a complete patulin gene cluster. Each gene is marked by a square and named 

according to their position in the original cluster described in A. clavatus. 

C) Schematic representation of the griseofulvin gene cluster in P. aethiopicum (C1) and 

PG3 (C2). Each gene is named according to its position in the original cluster described in 

P. aethiopicum. 
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Fig. 2. Fungal growth and secondary metabolites production by PG3.  

A) Colony view (A1) and diameter (A2) of P. griseofulvum strain PG3. 

Spore suspensions of PG3 was inoculated on the center of 55 mm PDA plates and 

incubated for up to 10 days post inoculation (dpi) at 24°C in the dark. Error bars indicate 

standard deviations of three biological replicates. 

B) Patulin production by P. griseofulvum in vitro. C) Griseofulvin production by P. 

griseofulvum in vitro. 
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