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Journal Name

Internal-Strain Tensor of Crystals for Nuclear-relaxed
Elastic and Piezoelectric Constants: On the Full Ex-
ploitation of its Symmetry Features

Alessandro Erba,a,∗

Symmetry features of the internal-strain tensor of crystals (whose components are mixed second-
energy derivatives with respect to atomic displacements and lattice strains) are formally pre-
sented, which originate from translational-invariance, atomic equivalences, and atomic invari-
ances. A general computational scheme is devised, and implemented into the public CRYSTAL

program, for the quantum-mechanical evaluation of the internal-strain tensor of crystals belong-
ing to any space-group, which takes full-advantage of the exploitation of these symmetry-features.
The gain in computing time due to the full symmetry exploitation is documented to be rather signif-
icant not just for high-symmetry crystalline systems such as cubic, hexagonal or trigonal, but also
for low-symmetry ones such as monoclinic and orthorhombic. Use of the internal-strain tensor
is made for the evaluation of the nuclear relaxation term of the fourth-rank elastic and third-rank
piezoelectric tensors of crystals, where, apart from a reduction of computing time, the exploitation
of symmetry is documented to remarkably increase the numerical precision of computed coeffi-
cients.

1 Introduction
The density functional theory (DFT) offers an effective way for
the quantum-mechanical calculation of many strain-related tenso-
rial properties of solids, such as the third-rank direct piezoelectric
tensor, the fourth-rank elastic tensor, and the fourth-rank photo-
elastic (or elasto-optic) tensor.1–12 By manipulating and combin-
ing these fundamental quantities, other tensorial properties can
be derived such as elastic compliances, converse piezoelectric co-
efficients and piezo-optic coefficients. The elements of all of these
tensors can be interpreted as total energy derivatives with respect
to three kinds of perturbations: periodicity-preserving atomic
displacements, homogeneous strains and homogeneous electric
fields. A formal account has been reported of the systematic treat-
ment of these three perturbations, when combined together up to
second- and third-order.13,14

The integrated quantum-mechanical evaluation of all of these
tensor components might obviously become a rather computa-
tionally prohibitive task, unless particular care is taken in devis-
ing efficient algorithms. In this respect, a cleaver exploitation of
the usually rich point-symmetry features of crystalline materials
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can lead to a significant reduction of the number of symmetry-
irreducible tensor components to be actually determined, with
the corresponding widening of the applicability domain of ab ini-
tio methods as regards the size of the systems to be investigated.
For instance, point-symmetry is known to constrain many compo-
nents of the piezoelectric, elastic and photo-elastic tensors to be
zero or to be equivalent to each other.15

Strain-induced response properties of solids can be formally
decomposed into a purely electronic “clamped-nuclei” term and
a nuclear-relaxation term due to the rearrangement of atomic
positions upon strain. The evaluation of the latter is generally
much more computationally expensive than that of the former
and can be achieved following two alternative approaches: i) per-
forming numerical geometry optimizations to relax atomic posi-
tions at actual strained lattice configurations,16,17 or ii) evaluat-
ing in a more analytical fashion the internal-strain tensor of en-
ergy second-derivatives with respect to atomic displacements and
lattice deformations, as combined with the interatomic force con-
stant Hessian matrix.13 On the one hand, the former approach
allows for an easier exploitation of symmetry given that many
solid-state quantum-mechanical packages do perform symmetry-
constrained geometry optimizations; on the other hand, though,
it is a rather slowly-converging numerical procedure requiring
particularly tight convergence criteria to be adopted. As a conse-
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quence, the latter approach is to be preferred as it ensures higher
accuracy and requires less severe computational parameters to be
used.18

This paper aims at formally illustrating the specific symmetry
features of the internal-strain tensor, and at devising a compu-
tational scheme for their effective exploitation in the quantum-
mechanical calculation of nuclear-relaxed strain-induced proper-
ties of crystals. The current approach represents an extension
to internal-strain components of the strategy originally proposed
by Stanton for point-symmetry exploitation in the construction
of interatomic force constants of molecules,19 as generalized to
solids.20 Such a scheme has been implemented into a develop-
mental version of the public CRYSTAL14 program for ab initio
solid state simulations, which is particularly suitable for exploit-
ing symmetry features of crystals.20–25

The structure of the paper is as follows: definitions of both
the force-response and displacement-response versions of the
internal-strain tensor are given in Section 2.1; expressions for
the nuclear-relaxation contribution of both elastic and piezoelec-
tric constants in terms of the internal-strain tensor are given in
Section 2.2, where a partition of such term into normal-mode
contributions is also introduced; symmetry features of atomic
and lattice parameter energy gradients are recalled in Section
2.3; Section 2.4 is devoted to the presentation of the symme-
try features of the internal-strain tensor, which originate from
translational-invariance, atomic equivalences, and atomic invari-
ances; the technical and computational aspects of the current im-
plementation are discussed in Section 3; results on the symmetry-
exploitation are presented and discussed in Section 4 as regards
both the gain in computing time and the increased accuracy
of computed elastic and piezoelectric constants; conclusions are
drawn in Section 5

2 Formalism

2.1 Preliminary Definitions

We consider a crystal belonging to a given space group G in a ref-
erence state in which the three fundamental direct lattice vectors
are a1, a2 and a3 so that the corresponding cell volume is V0 =
a1·(a2×a3). In the equilibrium configuration of the crystal, the N
atoms within the reference cell (to be labeled with a,b = 1, . . . ,N
in the following) are centered at positions ra.

In order to define the internal-strain tensor Λ, two kinds of per-
turbations have to be explicitly considered: periodicity-preserving
atomic displacements ua from equilibrium atomic positions ra,
and lattice deformations. The elements of the force-response
internal-strain tensor can be expressed as second-energy deriva-
tives with respect to an atomic displacement and to a lattice dis-
tortion:

Λai,α j =
∂ 2E

∂uai∂aα j

∣∣∣∣
E

, (1)

where uai are Cartesian components of the displacement vector ua

of atom a (i=x,y,z), aα j are Cartesian components of lattice vec-
tor aα (α=1,2,3; j=x,y,z), and the derivative is taken at constant
external electric field E to ensure compatibility with the definition
of piezoelectricity to be introduced below. In this basis of atomic

Cartesian coordinates and Cartesian lattice vector components, Λ

can be given a 3N×9 matrix representation. Let us introduce the
symmetric second-rank pure strain tensor η , whose action on an
undeformed lattice vector aα to get its deformed counterpart a′α
is given by:

a′α j = ∑
k

(δ jk +η jk)aαk , (2)

where k is a Cartesian index and δ jk is the Kronecker delta. By ex-
ploiting relation (2), the elements of the internal-strain tensor in
(1) can be transformed from the basis of Cartesian lattice vector
components to the one of strain tensor components as follows:

Λai, jk =
∂ 2E

∂uai∂η jk

∣∣∣∣
E

= ∑
α

aαk
∂ 2E

∂uai∂aα j

∣∣∣∣
E

. (3)

As the pure strain tensor η is symmetric, there are just six in-
dependent components η jk to be considered. It is convenient to
adopt Voigt’s notation, which maps the two Cartesian index nota-
tion ( jk) into a one index notation (v), where v = 1≡ xx, v = 2≡ yy,
v = 3≡ zz, v = 4≡ yz, v = 5≡ xz, and v = 6≡ xy.15 Accordingly, the
internal-strain tensor can be given a 3N×6 matrix representation:

Λai,v =
∂ 2E

∂uai∂ηv

∣∣∣∣
E

. (4)

Let us note that the definition given in Eq. (4) refers to the
force-response internal strain tensor, to be distinguished from
the displacement-response internal-strain tensor Γ, which de-
scribes first-order atomic displacements as induced by a first-
order strain:13

Γai,v =− ∂uai

∂ηv

∣∣∣∣
E

= ∑
b j

(H−1)ai,b jΛb j,v , (5)

where H is the interatomic force-constant Hessian matrix of
energy second derivatives with respect to pairs of periodicity-
preserving atomic displacements:

Hai,b j =
∂ 2E

∂uai∂ub j

∣∣∣∣
E ,η

. (6)

When mass-weighted and diagonalized, the force-constant matrix
of Eq. (6) provides the vibration frequencies of Brillouin zone-
center phonon modes (see below). Some care must be taken in
evaluating Eq. (5) in that the force-constant matrix (6) is singular
by construction (i.e. it has three null eigenvalues corresponding
to the three translational degrees of freedom) and thus can not be
inverted as such. The H−1 matrix in Eq. (5) has to be considered
a “pseudoinverse” of H where translational degrees of freedom
are projected out, as discussed in detail elsewhere.13

2.2 Nuclear Relaxation Contribution of Elastic and Piezo-
electric Tensors

It has been shown by a systematic treatment of the simultane-
ous effect of three kinds of perturbations (atomic displacements,
strains and electric fields) on the energy of the system up to
second-order, that the internal-strain tensor Λ (or Γ) enters the
definition of the nuclear-relaxation contribution (complementary
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to the purely electronic, clamped-nuclei one) of elastic constants
and piezoelectric coefficients.13 The elastic constants of a crystal
can indeed be expressed as:

Cvw =
1

V0

∂ 2E
∂ηv∂ηw

∣∣∣∣
E

= (7)

=
1

V0

∂ 2E
∂ηv∂ηw

∣∣∣∣
E ,u
− 1

V0
∑
ai

Λai,vΓai,w , (8)

where w is a Voigt’s index as v. The first and second terms on
the rhs of Eq. (8) represent the electronic clamped-nuclei elastic
constants, where atomic positions are not allowed to relax fol-
lowing the strain, and the nuclear relaxation contribution, respec-
tively. Analogously, piezoelectric coefficients can be expressed as
the sum of an electronic clamped-nuclei and a nuclear relaxation
contribution as follows:

ekv =
1

V0

∂ 2E
∂Ek∂ηv

= (9)

=
1

V0

∂ 2E
∂Ek∂ηv

∣∣∣∣
u
− 1

V0
∑
ai

Z∗k,aiΓai,v . (10)

Here, we do not enter into details about the subtleties related
to the distinction between “proper” and “improper” piezoelec-
tric coefficients, which have been extensively discussed else-
where.2,13,26–29 The Z∗ tensor in Eq. (10) contains the Born dy-
namical effective charges:

Z∗k,ai =
∂ 2E

∂Ek∂uai

∣∣∣∣
η

. (11)

2.2.1 Normal-mode Partition

The Γ internal-strain tensor, which enters the definition of the
nuclear relaxation contributions of both elastic and piezoelectric
constants, is defined in terms of the interatomic force-constant
matrix H in Eq. (5). As anticipated above, if H is mass-weighted
and diagonalized, Brillouin zone-center phonon modes and cor-
responding vibration frequencies can be determined:

H̃ai,b j =
Hai,b j√
MaMb

and H̃U = ΞU , (12)

where Ma is the mass of atom a, Ξ is a 3N× 3N diagonal matrix
whose eigenvalues ξp = ω2

p are the squared vibration frequencies
(being p = 1, . . . ,3N a phonon mode label) and U is the 3N× 3N
transformation matrix from atomic Cartesian coordinates to cor-
responding phonon normal mode coordinates. The diagonaliza-
tion of the mass-weighted interatomic force-constant matrix in
Eq. (12) opens the way for a physically meaningful partition of
the nuclear relaxation contributions given in Eqs. (8) and (10) in
terms of phonon normal modes:

Cnuc
vw = − 1

V0
∑
p

′ Λ̃pvΛ̃pw

ω2
p

; (13)

enuc
kv = − 1

V0
∑
p

′ Z̃∗k,p
Λ̃p,v

ω2
p

, (14)

where Λ̃ is the mass-weighted internal-strain tensor (Λ̃ai,v =
Λai,v/

√
Ma) and Z̃∗ the mass-weighted Born effective charge ten-

sor (Z̃∗k,ai = Z∗k,ai/
√

Ma) expressed in the basis of the normal
modes. Summations are primed in Eqs. (13) and (14) because
the three vanishing eigenvalues ω2

p are excluded, which corre-
spond to the three translational degrees of freedom.

2.3 Symmetry Features of Atomic and Cell Energy Gradients

The general symmetry operator of a space group G can be repre-
sented by the following symbol:

V̂Ro,t = {R̂o|lRo + t} , (15)

where R̂o denotes a proper or improper rotation, lRo a fractionary
translation, and t a direct lattice vector. The set of rotations R̂o

constitutes a group (the point-symmetry group P of the crystal)
of order |P| (with o = 1, . . . , |P|). We shall use the symbol

V̂Ro ≡ V̂Ro,0 = {R̂o|lRo} , (16)

to represent the |P| translationally non-equivalent symmetry op-
erators of the crystal. For symmorphic space groups all lRo are
null. We shall start by discussing how atomic energy gradi-
ents fai = ∂E/∂uai (fa is the atomic gradient vector) and lat-
tice vector energy gradients gα j = ∂E/∂aα j (gα is the lattice
vector gradient vector) are transformed by application of point-
symmetry operators. In Section 2.4, we will then combine these
symmetry-transformation properties to discuss those occurring
among internal-strain tensor components, which can be written
in terms of fai and gα j as follows:

Λai,α j =
∂gα j

∂uai

∣∣∣∣
E
≡ ∂ fai

∂aα j

∣∣∣∣
E

. (17)

2.3.1 Atomic Equivalences

Each symmetry-irreducible atom a1 in the crystal reference cell
(note that in this subsection atomic labels get a subscript to ex-
plicitly trace atomic equivalences) is located at an equilibrium
position ra1 , which is characterized by a certain site-symmetry
identified by a specific point-symmetry sub-group Ha1 defined as
the set of those symmetry operators that do not move atom a1:

Ha1 = {R̂q}q=1,...,|Ha1 | where R̂qra1 = ra1 ∀R̂q ∈Ha1 .

Atom a1 will have nstar
a1
− 1 equivalent atoms generated by appli-

cation of those symmetry operators which do not belong to Ha1 ,
where nstar

a1
= |P|/|Ha1 | is the ratio between the order of the

point-symmetry group and the order of the site-symmetry sub-
group. Symmetry-equivalent atoms are said to constitute a star
of atoms. A compact list of those symmetry operators that, once
applied to a symmetry-irreducible atom a1, generate its equiva-
lent atoms in the star can be obtained by performing a so-called
left-coset partition of P in terms of Ha1 :

P =
nstar

a1

∑
s=1

R̂sHa1 , (18)
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where the R̂s are the left-coset representative operators (by con-
vention being R̂1 ≡ E, the identity operator) that, when applied to
a1, provide the corresponding equivalent atoms as. The invariant
sub-groups Has of the equivalent atoms can then be derived from
the reference one as: Has = R̂sHa1 R̂−1

s . These atomic symme-
try equivalences can be exploited to reduce the number of atomic
energy gradients fa to be computed down to one per star of equiv-
alent atoms as the following transformation property applies:

fas = R̂sfa1 if ras = R̂sra1 . (19)

2.3.2 Transformation Properties of Cell Gradients

Upon application of any point-symmetry operator R̂o, cell gradi-
ent vectors gα transform as fundamental reciprocal lattice vectors
bα do. For this reason, we shall now briefly discuss symmetry-
transformation properties of reciprocal lattice vectors. Given the
three fundamental direct lattice vectors a1, a2 and a3 (from now
on we shall assume these vectors to refer to the conventional cell
for ease of exemplification), the corresponding three reciprocal
lattice vectors b1, b2 and b3 are defined through the following
orthogonality relation:

aα ·bβ = 2πδαβ with α,β = 1,2,3 . (20)

Whenever a symmetry operator R̂o is applied to a fundamental
reciprocal lattice vector, it is rotated into a linear combination of
the three fundamental vectors as:

R̂obα = ∑
β

co
αβ

bβ , (21)

where the coefficients co
αβ

can be either±1 or 0. Correspondingly,
as anticipated before, lattice vector energy gradients gα transform
as:

R̂ogα = ∑
β

co
αβ

gβ , (22)

where coefficients co
αβ

in Eq. (22) coincide with those in Eq. (21).
For most Bravais lattices (such as cubic, tetragonal, orthorhombic,
monoclinic, triclinic ones), only one coefficient of the linear com-
binations in Eqs. (21) and (22) is non-null for any given pair o,α.
However, for hexagonal and trigonal lattices, two coefficients can
be simultaneously different from zero for some pairs o,α.

2.4 Symmetry Features of the Internal-Strain Tensor

The force-response internal-strain tensor Λ defined in Eq. (1) ex-
hibits three main symmetry features: 1) translational invariance,
2) atomic equivalences, and 3) atomic invariances. While prop-
erty 1) is relatively trivial, properties 3) and 2) require a rigorous
symmetry analysis in order to be fully-exploited and are based
on the partition of point-group P given in Eq. (18) in terms of
the invariant site-symmetry sub-group proper of each atom and of
the corresponding left-coset representatives, which generate the
equivalent atoms, respectively.

2.4.1 Translational Invariance (TI)

The energy E of the crystal is invariant with respect to a rigid
translation of all atoms by the same displacement along any of

the three Cartesian directions, which leads to the following sum-
rule for atomic gradients:

∑
a

∂E
∂uai

= 0 for each i = x,y,z . (23)

Condition (23) on the atomic energy gradients, propagates to the
internal-strain tensor so that, for each Cartesian component aα j

of a fundamental direct lattice vector aα , and for each Cartesian
direction i

∑
a

Λai,α j = 0 . (24)

Condition (24) always applies and can be exploited to generate
the three rows of the Λ tensor corresponding to the three Carte-
sian displacements of an atom aTI at almost no cost through the
relation:

ΛaTIi,α j =− ∑
b 6=aTI

Λbi,α j . (25)

2.4.2 Atomic Equivalences (AE)

The atomic equivalences introduced in Section 2.3.1 can be ex-
ploited to reduce the number of elements of the internal-strain
tensor Λ to be explicitly computed. Let us introduce the 3× 3
block Λ

a1α of the internal-strain tensor proper of a symmetry-
irreducible atom a1 and of a given fundamental direct lattice vec-
tor aα . The elements of the internal-strain tensor corresponding
to symmetry-equivalent atoms as can be obtained by means of the
following transformation:

R̂sΛ
a1α R̂−1

s = ∑
β

cs
αβ

Λ
asβ , (26)

where R̂s is one of the left-coset representative operators intro-
duced in Eq. (18) and the extension of Eq. (22) to internal-strain
components has been exploited.

According to the AE symmetry, only those rows of Λ that corre-
spond to symmetry-irreducible atoms (three rows per atom; one
for each Cartesian direction) must be evaluated while the others
can be easily generated at almost zero cost through Eq. (26).
In Section 2.4.3, the exploitation of atomic invariances will be
shown to lead to a further reduction of the number of rows per
atom to be explicitly evaluated for symmetry-irreducible atoms.

2.4.3 Atomic Invariance (AI)

Analogously to what has been shown by Stanton for the in-
teratomic force-constant matrix H,19 the number of rows of
the internal-strain tensor to be explicitly evaluated for each
symmetry-irreducible atom can be reduced from 3 to 1 or 2 de-
pending on whether the atom lies on a three-fold (or higher-
order) rotation axis or on an order two symmetry operator other
than inversion and identity (two-fold rotation axis or symmetry
plane). A necessary condition for the aforementioned atomic in-
variances to be effectively exploited is the existence of at least
one symmetry operator R̂q belonging to the site-symmetry sub-
group Ha1 , defined in Section 2.3.1, which allows for the mixing
between 3 or 2 Cartesian directions, respectively.

Before discussing how the AI symmetry applies to Λ, it is worth
defining how Cartesian unit vectors x, y and z transform upon
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application of a symmetry operator:

R̂qi = ∑
k

dq
ikk with i,k = x,y,z , (27)

where the dq
ik coefficients are reals.

Let Λ
a1iα be a vectorial block of the internal-strain tensor cor-

responding to the i-th Cartesian displacement of the symmetry-
irreducible atom a1 and to the aα fundamental lattice vector. By
application of a symmetry operator R̂q ∈Ha1 , it transforms as:

R̂qΛ
a1iα = ∑

β

cq
αβ

(
∑
k

dq
ikΛ

a1kβ

)
, (28)

which can be exploited to obtain at almost zero cost 1 or 2 rows
per symmetry-irreducible atom depending on the nature of the
corresponding site-symmetry sub-group.

3 The Implementation
In this section we shall briefly present the implementation of a
scheme for the quantum-mechanical calculation of the internal-
strain tensors Λ and Γ, which fully exploits all the symmetry-
features introduced in Section 2.4. This scheme has been im-
plemented into a developmental version of the public CRYSTAL14
program,21 which allows for all-electron Gaussian-type function
basis sets and several approximations of the exchange-correlation
functional of the DFT (local-density, generalized-gradient, global
and range-separated hybrid) to be used.

3.1 Internal-strain Tensor

Algorithms for the analytical evaluation of energy gradients with
respect to both Cartesian atomic coordinates fa and Cartesian lat-
tice vector components gα have been implemented into the CRYS-
TAL program for periodic systems of any dimensionality by Doll
and collaborators.30–33

The elements of the internal-stain tensor Λ can thus be ob-
tained as numerical derivatives of lattice or atomic gradients ac-
cording to either of the two equalities in Eq. (17), respectively. As
such, the second equality would be preferred as it would involve
just 6 lattice deformations instead of 3N atomic displacements.
However, given that the 3N atomic displacements have anyhow to
be performed for the evaluation of the Hessian matrix H (which
is required to get Γ), the first equality in Eq. (17) is used as it
reduces the total number of calculations from 3N+6 to 3N.

Thus, by taking advantage of analytical cell gradients, the ele-
ments Λai,α j of the force-response internal-strain tensor are here
computed as finite differences of gα with respect to atomic Carte-
sian displacements, by means of a generalized “Pulay’s force
method” originally proposed for interatomic force constants.34

Single- and double-sided finite difference formula have been im-
plemented, according to which:

Λai,α j =

[
∂E

∂aα j

∣∣∣∣
{u}=0;uai=u

− ∂E
∂aα j

∣∣∣∣
{u}=0

]
/u ; (29)

Λai,α j =

[
∂E

∂aα j

∣∣∣∣
{u}=0;uai=u

− ∂E
∂aα j

∣∣∣∣
{u}=0;uai=−u

]
/2u ,

where u is the amplitude of the applied atomic displacement, with
a default value of 0.003 Å. Use of the latter formula is generally
preferable as it allows for the cancellation of contaminating ef-
fects of cubic anharmonicity.

The structure of the implementation is as follows:

1. A full symmetry analysis of the system is performed: the Nirr
at

symmetry-irreducible atoms a1 are determined as well as the
corresponding nstar

a1 equivalent atoms in the star.

2. For each irreducible atom a1, the number of Cartesian rows
of the Λ tensor to be explicitly computed as analytical gra-
dient finite differences is determined from the symmetry-
invariance properties of atom a1, according to the criteria
introduced in Section 2.4.3. Symmetry-irreducible rows are
computed via Eq. (29) or its double-sided analogue.

3. Symmetry-reducible Cartesian rows of each symmetry-
irreducible atom a1 are generated at almost zero cost by ap-
plication of selected symmetry operators R̂q belonging to the
site-symmetry sub-group of atom a1 through Eq. (28).

4. Once the three rows proper of each symmetry-irreducible
atom a1 have been obtained, the blocks of the Λ tensor corre-
sponding to its symmetry-equivalent atoms as are generated
at almost zero cost by the application of symmetry operators
R̂s (the left-coset representatives introduced in Eq. (18))
through Eq. (26).

5. If for one atom aTI there are no symmetry-equivalent atoms
(nstar

aTI = 1), the “translational invariance” symmetry intro-
duced in Section 2.4.1 can be effectively exploited to further
reduce the number of rows to be actually evaluated through
Eq. (29). Indeed, the three rows of atom aTI can be ob-
tained with Eq. (25), provided all the other atoms of the
system have already been treated.

For symmetry-irreducible rows of symmetry-irreducible atoms,
when the elements of Λ are computed as cell gradient finite dif-
ferences through Eq. (29), a fourth kind of symmetry is exploited:
the “residual symmetry”. When an atom is displaced by u along
a given Cartesian direction, the point-symmetry of the system is
reduced but may not be completely lost; this residual symmetry
can be exploited in the solution of the self-consistent-field (SCF)
step and in the calculation of analytical energy gradients.

When passing from the force-response Λ to the displacement-
response Γ internal-strain tensor, the interatomic force-constant
matrix H is required, whose symmetry features are already fully-
exploited in its calculation as implemented into the CRYSTAL pro-
gram.20 Given that the actual atomic Cartesian displacements to
be considered for the SCF and analytical gradient calculation are
the same for both objects, the current implementation for the
internal-strain tensor has been devised in such a way to simul-
taneously compute Λ and H, nearly at the same computational
cost as for the calculation of H alone. The evaluation of Γ can
thus be performed straightforwardly at the end of the calculation
through the matrix multiplication in Eq. (5).
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Table 1 For each of the six symmetric crystalline systems, a representative crystal is chosen, whose main symmetry features are given in the table.
The number of point-symmetry operators Nsym, the total number of atoms per primitive cell Nat and the number of symmetry-irreducible atoms per
primitive cell N irr

at are reported. The last three rows of the table report the total number of rows Ntot
rows of the internal-strain tensor Λ that should be

computed if symmetry was not to be exploited, the number of rows NAE
rows to be computed by exploiting just the AE symmetry, and the number of rows

NAE+AI
rows to be computed by exploiting both the AE and AI symmetries.

Crystal Pyrope Zinc Oxide α-Quartz Urea α-Forsterite Coesite

Formula Mg3Al2(SiO4)3 ZnO SiO2 CO(NH2)2 Mg2SiO4 SiO2
Lattice Cubic Hexagonal Trigonal Tetragonal Orthorhombic Monoclinic
Space Group Ia3d P63mc P3221 P421m Pbnm C2/c
Nsym 48 12 6 8 8 4
Nat 80 4 9 16 28 24
Nirr

at 4 2 2 5 6 7

Ntot
rows 240 12 27 48 84 72

NAE
rows 12 6 6 15 18 21

NAE+AI
rows 8 4 4 10 18 21

3.2 Nuclear-relaxed Elastic and Piezoelectric Tensors

Once the internal-strain tensor Λ and the interatomic force-
constant matrix H have been computed, the evaluation of the
nuclear-relaxation contribution Cnuc

vu to the elastic constants can
be performed rather straightforwardly either by the pseudo-
inversion of H through Eq. (8) or by the diagonalization of its
mass-weighted counterpart H̃ through Eq. (13). Both approaches
have been implemented. In the CRYSTAL program, the electronic
clamped-nuclei term of the fourth-rank elastic tensor is obtained
from finite differences of analytical cell gradients at strained lat-
tice configurations.7,8

The evaluation of the nuclear-relaxation term of the third-
rank “proper” direct piezoelectric tensor requires a further quan-
tity to be computed: the effective Born charge tensor Z∗ of Eq.
(11). In the current implementation, advantage is taken of a
fully-analytical scheme for the calculation of such a quantity,
which is based on the Coupled-Perturbed-Hartree-Fock/Kohn-
Sham (CPHF/KS) technique,35,36 at variance with the usual nu-
merical procedure based on the Berry-phase approach.1–3 Also
for piezoelectric constants, two strategies have been implemented
for the nuclear-relaxation term, following Eq. (10) or Eq. (14),
depending on whether the interatomic force-constant matrix is
pseudo-inverted or diagonalized. In the CRYSTAL program, the
electronic clamped-nuclei term can be computed numerically
though a Berry-phase approach,4,37–39 or analytically with a
recently-developed CPHF/KS-based scheme.29

For both the elastic and piezoelectric tensors, before the cur-
rent implementation, nuclear-relaxation terms were taken into
account by performing geometry-optimizations40 of the internal
atomic positions at strained lattice configurations,5,41–45 which is
a rather slowly-converging numerical procedure compared to the
evaluation of the internal-strain tensor, as it requires particularly
tight convergence criteria.18 While the present paper aims at doc-
umenting both the computational and numerical advantages (in
terms of reduced computing time and increased numerical accu-
racy) due to the full symmetry-exploitation in the construction

of the internal-strain tensor, a detailed numerical comparison be-
tween internal-strain and geometry-optimization strategies will
be addressed in a forthcoming paper.

4 Results and Discussion
The effect of a full exploitation of symmetry is generally two-fold:
on the one hand, it significantly reduces the computational cost of
a calculation in terms of required memory and computing time;
on the other hand, it contributes to increasing the numerical pre-
cision of the computed quantities. In this section, we shall discuss
both effects.

4.1 Computational Performance

We start by documenting the gain factor in terms of computing
time that can be achieved in the quantum-mechanical evaluation
of the internal-strain tensor of crystals by fully exploiting its sym-
metry features introduced in Section 2.4. To do so, and to doc-
ument the generality of the current implementation as well, we
shall consider six crystals belonging to the six crystalline systems
that are characterized by a certain degree of point-symmetry (all
but the triclinic one): the most abundant member of the silicate
garnet family of rock-forming minerals, Pyrope, is here taken as
representative of cubic lattices, it belongs to the Ia3d space group
and it is characterized by 48 symmetry-operators in the corre-
sponding point-symmetry group; Zinc oxide is considered as a
hexagonal crystal, which belongs to the P63mc space group with
12 point-symmetry operators; α-Quartz represents trigonal lat-
tices as it belongs to the P3221 space group with 6 point-symmetry
operators; the molecular crystal of Urea has been chosen to rep-
resent tetragonal lattices, it belongs to the P421m space group
and it exhibits 8 point-symmetry operators; as a representative
of the orthorhombic crystals, we consider one of the main con-
stituents of the Earth upper mantle, α-Forsterite, which belongs
to the Pbnm space group with 8 point-symmetry operators; finally,
for the monoclinic crystalline system, a different polymorph of sil-
ica with respect to α-Quartz is considered, Coesite, which belongs
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to the C2/c space group with 4 point-symmetry operators.
Selected symmetry features of these six crystals are given in

Table 1, where the effect of the exploitation of the three sym-
metries discussed in Section 2.4 on the reduction of the number
of rows of the internal-strain Λ tensor to be explicitly computed
as cell gradient finite differences over displaced atomic config-
urations through Eq. (29) is quantified. The number of point-
symmetry operators Nsym, the total number of atoms per primi-
tive cell Nat and the number of symmetry-irreducible atoms per
primitive cell Nirr

at are reported. The last three rows of the table
refer to the internal-strain tensor and report the total number of
rows Ntot

rows = 3×Nat that should be computed without exploiting
any symmetry feature, the number of rows NAE

rows to be computed
by exploiting just the “atomic equivalence” symmetry discussed
in Section 2.4.2, and the number of rows NAE+AI

rows to be computed
by exploiting also the “atomic invariance” symmetry discussed in
Section 2.4.3. For none of these six crystals, the exploitation
of the “translational invariance” symmetry discussed in Section
2.4.1 would lead to an actual reduction of the number of rows to
be explicitly computed with respect to the AE and AI symmetries.

The following considerations can be made: i) in all cases (in-
cluding those crystalline systems, such as monoclinic and or-
thorhombic, characterized by a relatively low point-symmetry),
the reduction of the number of rows of the internal-strain tensor
to be explicitly computed with costly SCF and gradient calcula-
tions is rather significant; ii) for Pyrope (a system characterized
by many atomic equivalences) the gain factor is as large as 30, is
about 7 for α-Quartz and is about 5 even for the tetragonal and
orthorhombic representatives; iii) For the four crystals belonging
to the most highly symmetric crystalline systems (cubic, hexago-
nal, trigonal and tetragonal) both the “atomic equivalence” and
the “atomic invariance” symmetries contribute to the reduction
of the number of symmetry-irreducible rows, whereas for the two

Fig. 1 (color online) Wallclock time (in minutes) for the calculation of the
internal-strain tensors Λ and Γ by exploiting (red) or not (green) their
symmetry features. Calculations are performed using the PBE
exchange-correlation functional of the DFT and have been run in parallel
over 16 processors on a Linux cluster of Intel-Xeon processors, working
at 2.13 GHz.

Table 2 Nuclear contribution of non-null elastic constants Cvw (in GPa)
and direct piezoelectric constants ekv (in C/m2) of Zinc Oxide as
obtained by exploiting (“Sym”) or not (“No Sym”) symmetry in the
evaluation of the internal strain tensor. Values are obtained both by
using a single- and double-sided formula for cell gradient finite
differences. The mean absolute deviation from zero |∆| of all of those
constants that should vanish is also reported (in units of 10−4 GPa and
10−4 C/m2 for elastic and piezoelectric constants).

Single-sided Double-sided
Sym No Sym Sym No Sym

Cnuc
11 -68.06 -66.97 -67.30 -66.95

Cnuc
22 -67.58 -68.27 -67.30 -67.62

Cnuc
12 29.00 28.41 28.47 28.78

Cnuc
13 38.02 37.85 38.02 37.90

Cnuc
23 38.02 37.96 38.02 38.04

Cnuc
33 -74.47 -73.79 -74.46 -74.88

Cnuc
44 -18.72 -18.80 -18.56 -18.79

Cnuc
55 -18.72 -18.70 -18.56 -18.61
|∆| 426 1154 3 43

enuc
15 -0.811 -0.809 -0.810 -0.809

enuc
24 -0.811 -0.809 -0.810 -0.809

enuc
33 1.769 1.775 1.769 1.769

enuc
31 -0.903 -0.911 -0.903 -0.908

enuc
32 -0.903 -0.908 -0.903 -0.907
|∆| 0 7 0 0

orthorhombic and monoclinic crystals the “atomic equivalence”
symmetry brings the whole reduction.

The actual gain due to the full exploitation of symmetry in
terms of computing time for the calculation of the internal-strain
tensors Λ and Γ for these six crystals is documented in Figure
1. In addition to the gain factor expected from the symmetry
considerations (AE and AI) of Table 1, wallclock timings in Fig-
ure 1 (in minutes) also reflect the impact of the exploitation of
the “residual symmetry” at displaced configurations, introduced
in Section 3. All calculations have been performed with a de-
velopmental version of the CRYSTAL14 program,21 by running
in parallel mode over 16 Intel-Xeon processors working at 2.13
GHz, on a Linux cluster with Ethernet connection. The machine
has 8 cores per node and 2 GB of memory per core. The PBE
generalized-gradient exchange-correlation functional46 is used in
combination with all-electron basis sets of triple-zeta quality for
all systems47 but Pyrope.48

In the figure, the time required for computing the Λ and Γ

internal-strain tensors without the exploitation of point-symmetry
(in green) is compared to that required when point-symmetry is
fully-exploited according to the implementation described in Sec-
tion 3 (in red). For Coesite and α-Forsterite the observed gain
factor almost coincides with the one that could be expected from
Table 1, given that displaced atomic configurations are completely
asymmetrical and thus no “residual symmetry” can be exploited.
For the other four systems, where most of the displaced atomic
configurations still exhibit a non-null point-symmetry, the “resid-
ual symmetry” is actually exploited and the observed gains are
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Table 3 Nuclear contribution of non-null elastic constants Cvw (in GPa)
and direct piezoelectric constants ekv (in C/m2) of α-Quartz as obtained
by exploiting (“Sym”) or not (“No Sym”) symmetry in the evaluation of
the internal strain tensor. Values are obtained both by using a single-
and double-sided formula for cell gradient finite differences. The mean
absolute deviation from zero |∆| of all of those constants that should
vanish is also reported (in units of 10−4 GPa and 10−4 C/m2 for elastic
and piezoelectric constants).

Single-sided Double-sided
Sym No Sym Sym No Sym

Cnuc
11 -240.15 -240.26 -240.23 -240.26

Cnuc
22 -240.35 -239.16 -240.23 -240.58

Cnuc
12 -70.85 -70.65 -70.60 -70.66

Cnuc
13 -115.29 -114.51 -115.47 -115.42

Cnuc
23 -115.29 -114.95 -115.47 -115.39

Cnuc
33 -176.03 -175.52 -176.58 -176.32

Cnuc
44 -113.46 -113.77 -113.10 -113.29

Cnuc
55 -113.46 -113.11 -113.10 -113.32

Cnuc
14 -31.42 -31.84 -30.90 -31.03

Cnuc
24 31.44 29.41 30.90 31.04

Cnuc
56 -31.40 -31.07 -30.90 -31.10
|∆| 338 4790 34 249

enuc
11 0.336 0.334 0.335 0.335

enuc
12 -0.337 -0.335 -0.335 -0.335

enuc
26 -0.336 -0.335 -0.335 -0.335

enuc
14 -0.137 -0.139 -0.140 -0.140

enuc
25 0.137 0.141 0.140 0.140
|∆| 2 3 0 0

always slightly more favorable than those of Table 1.

4.2 Nuclear-relaxed Elastic and Piezoelectric Constants
We shall now document the effect of symmetry-exploitation in
the evaluation of the internal-strain tensors on the numerical ac-
curacy of the computed nuclear-relaxation contribution of both
elastic and piezoelectric constants. In order to do so, we restrict
our attention to two piezoelectric crystals among those consid-
ered so far: Zinc Oxide and α-Quartz. The effect on computed
values of using a single- or double-sided form of the cell gradient
finite difference formula will also be explicitly documented.

Computed values of the nuclear relaxation term of elastic Cvw

and piezoelectric ekv constants of Zinc Oxide are reported in Table
2, as obtained by exploiting (“Sym”) or not (“No Sym”) symme-
try in the evaluation of the internal strain tensor. By definition
(see Eq. (7)), the 6×6 elastic tensor is symmetric, Cvw ≡Cwv, so
that we can restrict our attention to its 21 upper-triangular ele-
ments. Zinc Oxide has 8 non-null elastic constants: C11 ≡ C22,
C33, C44 ≡C55, C12 and C13 ≡C23. The 3×6 piezoelectric tensor is
characterized by 5 non-null constants: e15 ≡ e24, e33 and e31 ≡ e32.
All these non-null constants are explicitly given in the table, along
with an overall index |∆|, which measures the mean absolute de-
viation from zero of the remaining vanishing constants.

From inspection of Table 2, the following considerations can
be made: i) as expected, when symmetry is exploited, the equiv-

alences among elastic (C11 ≡ C22, C44 ≡ C55 and C13 ≡ C23) or
piezoelectric (e15 ≡ e24 and e31 ≡ e32) constants are more ac-
curately described compared to the case when symmetry is not
exploited; ii) the full exploitation of point-symmetry provides a
much cleaner description of the vanishing constants, reflecting
an overall increased precision of computed values: for elastic con-
stants, for instance, when symmetry is exploited, |∆| passes from
1154 to 426 or from 43 to 3 (in units of 10−4 GPa), depending
on whether the single- or double-sided formula for finite differ-
ences is used; iii) passing from the single- to the double-sided
formula for finite differences significantly increases the numeri-
cal precision of the computed elastic constants: when symmetry is
exploited, the C11 ≡C22 equivalence is fully-recovered and |∆| de-
creases from 426 to 3; iv) values computed by exploiting symme-
try are found to be more numerically stable while values obtained
without a symmetry exploitation are changing more significantly
when passing from a single- to a double-sided finite difference
formula, for instance (see the e33 piezoelectric constant).

The computed nuclear-relaxation term of elastic and piezoelec-
tric constants of α-Quartz is reported in Table 3, which has been
given the same structure of the previously discussed Table 2. The
α-Quartz crystal is characterized by 11 non-null elastic constants:
C11 ≡ C22, C33, C44 ≡ C55, C12, C13 ≡ C23, and C14 ≡ C56 ≡ −C24.
The piezoelectric tensor in this case has 5 non-null constants:
e14 ≡ −e25 and e11 ≡ −e12 ≡ −e26. From inspection of Table 3,
analogous considerations can be made to those just discussed
for Zinc Oxide: i) when point-symmetry is fully-exploited and a
double-sided formula for finite differences is used, the symmetry-
equivalences among elastic and piezoelectric constants are nicely
described, which is clearly not the case when symmetry is not ex-
ploited, even more so if a single-sided formula is adopted; ii) the
overall numerical precision of the calculation is increased by the
exploitation of symmetry, which is reflected in the lower value
of |∆| with respect to the non-exploitation of symmetry: for elas-
tic constants, it passes from 4790 to 338 and from 249 to 34
for single- and double-sided cases, respectively (in units of 10−4

GPa); iii) as expected and as already noticed above, use of a
double-sided expression for the finite difference formula signif-
icantly increases the numerical precision of the computed elastic
and piezoelectric constants.

5 Conclusions
The specific point-symmetry features of the internal-strain ten-
sor of crystals have been illustrated and traced back to fun-
damental atomic equivalences and invariances. A computa-
tional scheme has been devised for their full-exploitation in the
quantum-mechanical evaluation of nuclear-relaxation terms of
strain-related elastic and piezoelectric properties of solids. The
proposed computational method represents a generalization of
Stanton’s approach to point-symmetry exploitation in the in-
teratomic force constant calculation according to “Pulay’s force
method”.

The full symmetry exploitation in the construction of the
internal-strain tensor has been documented to significantly re-
duce the cost of the calculation for crystals belonging to any non-
asymmetric crystalline system (from cubic to monoclinic), and
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to increase the numerical accuracy of computed nuclear-relaxed
elastic and piezoelectric constants of two reference crystals: Zinc
Oxide and α-Quartz. Work is currently in progress for a detailed
comparison as regards both numerical accuracy and computa-
tional efficiency between an internal-strain tensor and a geometry
optimization approach to nuclear-relaxed elastic and piezoelectric
coefficients.
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