Increased hepatic glucose production and insulin resistance in subjects with non-alcoholic fatty liver disease is associated to increased plasma concentrations of glucogenic amino acids

This is a pre print version of the following article:

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1631995 since 2017-04-13T10:20:22Z

Terms of use:

Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Increased hepatic glucose production and insulin resistance in subjects with NAFLD is associated to increased plasma concentrations of glucogenic amino acids

Melania Gaggini¹, Fabrizia Carli¹, Chiara Rosso², Veronica Della Latta¹, Demetrio Ciociaro¹, Milena Marietti², Emma Buzzigoli¹, Maria L. Abate², Roberto Gambino², Maurizio Cassader², Antonina Smedile², Elisabetta Bugianesi², Amalia Gastaldelli*¹

¹Cardio-metabolic Risk Laboratory, Institute of Clinical Physiology, CNR, Pisa, ²Division of Gastroenterology and Hepatology and Lab. of Diabetology, Dept. of Medical Sciences, University Of Torino, Torino, Italy

Submitting author’s email: amalia.gastaldelli@ifc.cnr.it

Do you want to apply for a Young Investigator Bursary?: No
Do you want to apply to the YI Award?: No

Background and Aims: The liver plays a central role in the regulation of glucose metabolism, being the major site of endogenous glucose production (EGP) during fasting and of glucose storage (as glycogen) during postprandial state. NAFLD subjects have increased insulin resistance (IR), especially in the liver (Hep-IR) and are at higher risk of hyperglycemia and type 2 diabetes (T2DM). However, the pathophysiological mechanisms for increased EGP and Hep-IR are still not known. Since both amino-acids and lipids contributes through gluconeogenesis to EGP, the goal was to evaluate if concentrations of glucogenic amino-acids (glutamate, alanine, branched chain amino acids (BCAA), and aromatic amino acids (AAA)) were increased and associated with EGP and Hep-IR in lean (ie without the confounding presence of obesity) non diabetic NAFLD.

Methods: We studied 44 non diabetic NAFLD subjects with liver biopsy (29 non-Obese, NAFLD-NO and 15 Obese NAFLD-Ob) and 20 non-obese controls (CT). We measured fasting EGP (by tracer infusions), plasma amino acid and free fatty acid (FFA) concentrations by GCMS and calculated Hep-IR (EGPxInsulin), HOMA and Adipo-IR (FFAxInsulin). Non-normally distributed variable were ln-transformed.

Results: From CT to NAFLD-NO to NAFLD-Ob we observed the increase in EGP (584±44 to 710±23 to 839±40 umol/min, p<0.0002) and Hep-IR (52±6 to 96±6 to 166±23 umol/kg/min x mU/l, p<0.001). Both EGP and ln(Hep-IR) increased proportionally to ln(ALT) (R=0.47 and R=0.55, p<0.0005), ln(AST) (R=0.39 and R=0.48, p<0.003), and degree of fibrosis (R= 0.55 and R=0.44, p<0.001). EGP correlated positively with ln(BCAA) (R= 0.35, p<0.009), ln (AAA) (R=0.48, p<0.0002), and ln(glutamate) (R=0.29, p<0.03); ln(Hep-IR) with ln (AAA) (R=0.33, p<0.01), and ln(alanine) (R=0.29 p<0.03). Fibrosis score was positively correlated to ln(AAA) (R=0.34, p<0.005), ln(glutamate) (R=0.38, p<0.001), ln(BCAA) (R=0.30, p<0.01), ln(alanine) (R=0.29, p<0.02).

Conclusions: Higher glucogenic amino-acid concentrations observed in NAFLD are positively associated to increased EGP, Hep-IR and fibrosis score and might explain, at least in part, the increased risk of hyperglycemia and T2DM observed in NAFLD.

Disclosure of Interest: None Declared