Bilberry pomace in growing rabbit diets: effects on quality traits of hind leg meat

Sihem Dabbou, Manuela Renna, Carola Lussiana, Francesco Gai, Luca Rotolo, Attawit Kovitvadhi, Alberto Brugiapaglia, Ahmed Noureddine Helal, Achille Schiavone, Ivo Zoccarato & Laura Gasco

To link to this article: http://dx.doi.org/10.1080/1828051X.2017.1292413

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Published online: 22 Feb 2017.

Submit your article to this journal

Article views: 292

View related articles

View Crossmark data
Bilberry pomace in growing rabbit diets: effects on quality traits of hind leg meat

Sihem Dabboua,b, Manuela Rennaa, Carola Lussiana, Francesco Gai, Luca Rotoloa, Attawit Kovitvadhia,d, Alberto Brugiapiagliaa, Ahmed Noureddine Helalb, Achille Schiavonee, Ivo Zoccaratoa and Laura Gascoa,c

aDipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Grugliasco, Italy; bLaboratory of Bioresources, Integrative Biology and Valorisation, Higher Institute of Biotechnology of Monastir, Monastir, Tunisia; cIstituto Scienze delle Produzioni Alimentari, National Research Council, Grugliasco, Italy; dDepartment of Physiology, Kasetsart University, Bangkok, Thailand; eDipartimento di Scienze Veterinarie, University of Torino, Grugliasco, Italy

ABSTRACT

The aim of the present study was to evaluate the effects of dietary bilberry pomace (BP) on colour, cooking losses, proximate composition and fatty acid (FA) profile of hind leg meat in growing rabbits. One hundred and forty-four Grimaud weaned rabbits (35 days old) were randomly divided into four groups of 36 animals each and fed ad libitum with a basal diet (C diet) tested against three assay diets developed by substituting 50, 100 and 150 g/kg of the C diet with BP (BP5, BP10 and BP15 diets, respectively). At 83 days of age, the rabbits were slaughtered without fasting. Inclusion of BP in the diet did not significantly affect colour, cooking losses, ash and protein contents, but determined a significant increase of ether extract in the muscle. Increasing dietary inclusion of BP also determined a proportional increase of total polyunsaturated fatty acids (PUFA) and total n-3 FA, as well as a proportional decrease of total saturated fatty acids (SFA), total branched chain fatty acids (BCFA) and total monounsaturated fatty acids (MUFA) in the muscle. Dietary BP significantly improved the PUFA/SFA ratio, the \(\Delta 5 \)-desaturase plus \(\Delta 6 \)-desaturase index. The obtained results suggest that BP inclusion in growing rabbit diets can improve the fatty acid profile of hind leg meat, with consequent health benefits to consumers.

ARTICLE HISTORY

Received 22 September 2016
Revised 22 December 2016
Accepted 29 December 2016

KEYWORDS

Rabbit; Vaccinium myrtillus; by-product; thigh; fatty acids

Introduction

Over the last years, there has been a growing interest in the lipid composition of meat from domestic animals because of its relationship to human health (De Smet & Vossen 2016). The positive perception of the nutritional properties of rabbit meat by consumers is related to unique characteristics compared to meat derived by other livestock: lean meat with low fat and cholesterol contents, favourable fatty acid (FA) profile and particularly a high content of unsaturated FA. Moreover, these appreciated properties can be further improved through dietary strategies (Dal Bosco et al. 2004; Trebušák et al. 2014). The manipulation of rabbits’ diet is very effective in producing ‘enriched meat’; some bioactive compounds such as n-3 polyunsaturated fatty acids (PUFA), conjugated linoleic acid and vitamin E can be easily incorporated into the meat (Dalle Zotte & Szendrö 2011). On the basis of these evidences, scientists have developed feeding strategies that guarantee the sustainability of livestock production systems based on cost-effective alternatives and local feed sources in order to capitalise the potential of rabbit meat as a ‘functional food’.

The interest in the use of agro-industrial wastes from healthy plants has recently increased. Fruit and vegetable processing by- and co-products are promising sources of valuable substances such as phytochemicals (carotenoids, phenolics and flavonoids), antioxidants, antimicrobials, vitamins and dietary fats that possess favourable technological activities or nutritional properties (Schieber et al. 2001; Dabbou et al. 2015). They have traditionally been used in animal nutrition as the main feed ingredients (Crawshaw 2001; Bampidis & Robinson 2006; Pfaltzgraff et al.
Pomace is the residue remaining when fruits are processed for juice, wine or marmalade. Many studies reported that the fruit pomaces contain abundant phenolic compounds (Struck et al. 2016), which indicates that by-products from juice and wine industries might be useful feed additives for improving quality and safety of meat products (Ahmad et al. 2015; Peiretti & Gai 2015).

At this regard, bilberry (Vaccinium myrtillus L.) has been reported as a rich source of phenolic compounds in the human diet. Large amounts of pomace by-product are generated from juice processing of bilberries and they still contain an assortment of beneficial phytochemicals including proanthocyanidins, anthocyanins and other flavonoids, being therefore suitable for the development of novel functional food ingredients (Vulić et al. 2011). The antioxidant activity of bilberry pomace (BP) was also recently confirmed by a high percentage of inhibition (about 65%) of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (Dabbou et al. 2017). In addition, BP has already been used as ingredient in extruded products which have been associated with in vivo health benefits in animal models, such as reduced plasma cholesterol and abdominal fat (Khanal et al. 2009, 2012).

To the best of our knowledge, till now no studies have been carried out to determine the effects of dietary BP on rabbit hind leg meat quality. Therefore, the objective of this trial was to evaluate the effect of dietary inclusion of BP on quality traits and FA composition of rabbit hind leg and consequently to assess the related nutritional value for human consumption.

Materials and methods

Animals and experimental design

The study was carried out at the experimental rabbitry of the Department of Agricultural, Forest and Food Sciences (DISAFA) of the University of Turin, located in Carmagnola (TO), Italy. One hundred and forty-four weaned crossbred (Grimaud) rabbits (35 days old) were randomly divided into four groups of 36 animals each with initial weight equal to 938 ± 33 g. The animals were housed individually in wire cages (41 cm × 0.30 cm × 28 cm height) and had free access to clean drinking water. The temperature and photoperiod in the rabbitry were 22 ± 2°C and 16L:8D, respectively. The rabbits were fed *ad libitum* with a basal diet not containing BP (C diet; alfalfa meal 300, wheat bran 200, barley 170, dried beet pulp 150, soybean meal 115, molasses 20, wheat straw 20, and soybean oil 5 g/kg fresh matter) tested against three assay diets developed by substituting 50, 100 and 150 g/kg of the C diet with BP (BP5, BP10 and BP15 diets, respectively) according to Goby and Gidenne (2008). All diets also contained a vitamin-mineral premix and bicalcium phosphate (15 and 5 g/kg fresh matter, respectively). BP was included in the treated diets during the raw material mixing process. All diets were pelleted fresh and stored in darkness to prevent auto-oxidation of the lipid sources.

Proximate composition and fatty acid profile of bilberry pomace and experimental diets

All analyses were carried out on three replicates of each feed sample, according to the European Group on Rabbit Nutrition recommendations (European Group on Rabbit Nutrition 2001). The BP and the experimental diets were ground with a cutting mill to pass a 1-mm screen sieve (Pulverisette 15 – Fritsch GmbH, Idar-Oberstein, Germany). They were analysed for dry matter (DM, # 930.15), ash (# 923.03), crude protein (CP, # 984.13), ether extract (EE, # 2003.05), acid detergent fibre (ADF, # 973.18) and acid detergent lignin (ADL, # 973.18) according to AOAC procedures (AOAC International 2000, 2003). Neutral detergent fibre (NDF) was determined according to Van Soest et al. (1991); α-amylase (Sigma Aldrich, Saint Louis, MI) but no sodium sulphite was added and results were corrected for residual ash content. Feed proximate composition was expressed as g/kg DM. Gross energy (GE) was measured using an adiabatic calorimetric bomb (C7000, IKA, Staufen, Germany). The digestible energy content of the diets was estimated according to the prediction equation proposed by Villamide et al. (2009). Feed FA composition was assessed as described by Renna et al. (2014). The results are expressed as g/100 g DM and reported as g/100 g of total detected FA.

The proximate and FA compositions of feeds are reported in Tables 1 and 2, respectively.

Growth performance, slaughter procedures and muscle sampling

During the experiment, live weight and feed intake were recorded individually on a fortnightly basis. Average daily feed intake (ADFI) and feed conversion ratio (FCR) were calculated.
At 83 days of age, 12 rabbits per group were randomly chosen (mean weight 2984 ± 138 g) and slaughtered in a slaughterhouse without fasting. After 24 h chilling at 4 °C, samples of hind legs were taken immediately after dissection, following the procedure described by Blasco and Ouhayoun (1996). Meat colour was measured on the biceps femoris (BF) muscle of the right hind leg of each rabbit; the same muscle was then used for cooking losses evaluation. The whole thigh of left hind leg of each rabbit was entirely deboned to separate bones and cartilages from edible meat and the latter was then ground and freeze-dried. The freeze-dried samples were used for the analysis of proximate composition and FA profile.

Quality parameters of hind leg meat

Colour

Meat colour was measured at room temperature (20 °C) in a transversal section of the BF muscle surface using a portable colorimeter Chroma Meter CR-400 Konica Minolta Sensing (Minolta Sensing Inc, Osaka, Japan). Colour measurements were reported in terms of lightness (L°), redness (a°) and yellowness (b°) in the CIELAB colour space model (Commission Internationale de l’Eclairage 1976). The values were recorded for CIE standard illuminant D65 and CIE 2° standard observer. Chroma (C°), which is a measure of the colour intensity, and hue angle (H°), which describes the fundamental colour of a substance, were calculated as: (a°2 + b°2)0.5 and tan−1 (b°/a°), respectively. Negative values of the hue angle were converted to positive values by adding 180° when a° was negative and b° positive and when both a° and b° were negative. The colour values were obtained considering the average of three readings for each sample.

Cooking losses

Samples of BF muscle of each rabbit were weighed, vacuum-packed in plastic bags and cooked at 80 °C for 1 h by immersion in a water bath as described by Dabbou et al. (2014b). Cooked samples were cooled under running water for 30 min. The samples were then removed from the bags, blotted and weighed. Cooking losses were determined by calculating the weight difference in samples before and after cooking and expressed as percentage of initial weight.

Proximate composition

The proximate analyses were carried out according to the AOAC International (2000) methods. Water content in tissue samples was directly determined using the difference in weight before and after drying the sample at 125 °C for 5 h (# 950.46). The samples remaining from water analysis were lyophilised and ground in a blender for the analyses of nitrogen, fat and ash. Nitrogen was determined by Kjeldahl method and CP was calculated by multiplying N × 6.25 (# 960.52). Lipid extraction was determined by Soxhlet method.

Table 1. Ingredients (g/kg as fed) and proximate composition (g/kg DM, unless otherwise stated) of bilberry pomace (BP) and experimental diets.

<table>
<thead>
<tr>
<th>Experimental diets</th>
<th>BP</th>
<th>C</th>
<th>BP5</th>
<th>BP10</th>
<th>BP15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal mixturea</td>
<td>–</td>
<td>980</td>
<td>930</td>
<td>880</td>
<td>830</td>
</tr>
<tr>
<td>Bilberry pomace</td>
<td>–</td>
<td>0</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Vitamin-mineral premixb</td>
<td>–</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Bicalcium phosphate</td>
<td>–</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Proximate composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter, g/kg</td>
<td>944</td>
<td>882</td>
<td>882</td>
<td>880</td>
<td>885</td>
</tr>
<tr>
<td>Ash</td>
<td>18</td>
<td>75</td>
<td>75</td>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td>Crude protein (CP)</td>
<td>142</td>
<td>177</td>
<td>177</td>
<td>175</td>
<td>176</td>
</tr>
<tr>
<td>Ether extract (EE)</td>
<td>155</td>
<td>26</td>
<td>33</td>
<td>39</td>
<td>42</td>
</tr>
<tr>
<td>Neutral detergent fibre (NDF)</td>
<td>692</td>
<td>368</td>
<td>372</td>
<td>391</td>
<td>408</td>
</tr>
<tr>
<td>Acid detergent fibre (ADF)</td>
<td>433</td>
<td>198</td>
<td>208</td>
<td>220</td>
<td>233</td>
</tr>
<tr>
<td>Acid detergent lignin (ADL)</td>
<td>258</td>
<td>35</td>
<td>46</td>
<td>56</td>
<td>68</td>
</tr>
<tr>
<td>Gross energy, MJ/kg DM</td>
<td>22.7</td>
<td>17.9</td>
<td>18.1</td>
<td>18.4</td>
<td>18.6</td>
</tr>
<tr>
<td>Digestible energy2, MJ/kg DM</td>
<td>–</td>
<td>11.5</td>
<td>11.4</td>
<td>11.3</td>
<td>11.1</td>
</tr>
</tbody>
</table>

DM: dry matter.

aContaining (g/kg fresh matter): alfalfa meal 300, wheat bran 200, barley 170, dried beet pulp 150, soybean meal 115, molasses 20, wheat straw 20, soybean oil 5.

bContaining (per kg of diet): Vitamin A 200 U, α-tocopheryl acetate 16 mg, Niacin 72 mg, Vitamin B6 16 mg, Choline 0.48 mg, DL-methionin 600 mg, Ca 500 mg, P 920 mg, Na 1 g, Mg 60 mg, Mn 17 mg, Cu 0.6 mg.

2The digestible energy content of the diets was estimated according to the following prediction equation proposed by Villamide et al. (2009): DE = −16.43 − 0.0191 ADF − 0.0208 Ash + 0.0148 EE.

Table 2. Fatty acid composition (g/100 g of total FA) of bilberry pomace (BP) and experimental diets.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>BP</th>
<th>C</th>
<th>BP5</th>
<th>BP10</th>
<th>BP15</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10:0</td>
<td><0.01</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>C12:0</td>
<td>0.02</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>C14:0</td>
<td>0.06</td>
<td>0.39</td>
<td>0.32</td>
<td>0.33</td>
<td>0.24</td>
</tr>
<tr>
<td>C16:0</td>
<td>4.82</td>
<td>21.21</td>
<td>17.25</td>
<td>15.09</td>
<td>13.37</td>
</tr>
<tr>
<td>C16:1 r3</td>
<td>0.03</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>C16:1 c9</td>
<td>0.09</td>
<td>0.19</td>
<td>0.16</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>C18:0</td>
<td>1.19</td>
<td>3.41</td>
<td>2.85</td>
<td>2.63</td>
<td>2.48</td>
</tr>
<tr>
<td>C18:1 c9</td>
<td>23.50</td>
<td>17.28</td>
<td>18.78</td>
<td>20.02</td>
<td>21.50</td>
</tr>
<tr>
<td>C18:1 c11</td>
<td>0.58</td>
<td>0.98</td>
<td>0.92</td>
<td>0.86</td>
<td>0.83</td>
</tr>
<tr>
<td>C18:2 n6 - 5</td>
<td>36.33</td>
<td>43.33</td>
<td>44.24</td>
<td>42.08</td>
<td>40.61</td>
</tr>
<tr>
<td>C18:3 n-3</td>
<td>32.59</td>
<td>8.88</td>
<td>13.47</td>
<td>16.98</td>
<td>19.06</td>
</tr>
<tr>
<td>C18:3 n-6</td>
<td>0.10</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>C20:0</td>
<td>0.30</td>
<td>0.54</td>
<td>0.47</td>
<td>0.49</td>
<td>0.52</td>
</tr>
<tr>
<td>C20:1 c11</td>
<td>0.16</td>
<td>0.35</td>
<td>0.34</td>
<td>0.28</td>
<td>0.27</td>
</tr>
<tr>
<td>C20:4 n-6</td>
<td>0.02</td>
<td>0.17</td>
<td>0.14</td>
<td>0.12</td>
<td>0.09</td>
</tr>
<tr>
<td>C22:0</td>
<td>0.13</td>
<td>0.57</td>
<td>0.44</td>
<td>0.42</td>
<td>0.38</td>
</tr>
<tr>
<td>C24:0</td>
<td>0.09</td>
<td>0.42</td>
<td>0.34</td>
<td>0.28</td>
<td>0.26</td>
</tr>
<tr>
<td>Σ MUFA</td>
<td>24.35</td>
<td>18.89</td>
<td>20.28</td>
<td>21.35</td>
<td>22.79</td>
</tr>
<tr>
<td>Σ PUFA</td>
<td>69.03</td>
<td>54.45</td>
<td>57.92</td>
<td>59.27</td>
<td>59.85</td>
</tr>
<tr>
<td>TFA, g/100 g DM</td>
<td>15.21</td>
<td>2.13</td>
<td>2.72</td>
<td>3.32</td>
<td>3.96</td>
</tr>
</tbody>
</table>

FA: fatty acids; t: trans; c: cis; SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; TFA: total fatty acids; DM: dry matter.

For the data analysis, the chemical composition and FA profile were determined in triplicate for each diet.
lose source (Borycka & Gorecka 2001). The CP content of BP used in this study resulted higher than those detected in an industrial seedless blackcurrant pomace by Sójka and Król (2009), who reported values ranging from 118 to 126 g/kg of DM in seedless size fractions. As far as the fibre fractions values are concerned, our BP samples contained 626, 433 and 258 g/kg DM of NDF, ADF and lignin, respectively. Similar values were reported by Nawirska and Uklańska (2008) in blackcurrant pomace samples, which contained 636 and 477 g/kg DM of NDF and ADF, respectively. On the other hand, similar values of lignin (241 and 246 g/kg of DM) were also found by Nawirska and Kwaśniewska (2005) and Górecka et al. (2010) in dried chokeberry and raspberry pomace, respectively.

According to the chemical composition of BP, the EE and fibre fractions levels of the experimental diets increased while increasing the dietary inclusion level of the by-product. The digestible energy of the diets decreased with increasing dietary levels of BP; this may be ascribed to the high ADF content found in BP. The FA compositions of BP and experimental diets are reported in Table 2. Results showed that BP is rich in unsaturated FA (93.38 g/100 g total FA). The most abundant FA was linoleic acid (C18:2 n-6, LA; 36.33 g/100 g total FA), followed by α-linolenic acid (C18:3 n-3, ALA; 32.59 g/100 g total FA) and oleic acid (C18:1 c9, OA; 23.50 g/100 g total FA). BP consists of skins, pulp residue and seeds, with the latter containing the major content of FA and a notable high proportion of unsaturated FA such as OA (21.8%), LA (35.9%) and ALA (36.1%) (Yang et al. 2011). Although studies on the FA composition of bilberries are still scarce, Bunea et al. (2012) also showed that OA, LA and ALA are the most abundant FA in some wild and cultivated Romanian blueberries.

Inclusion of BP increased the total FA content in the experimental diets. Monounsaturated fatty acid (MUFA) and PUFAs represented the major classes of the FAs in BP diets. OA was the most abundant MUFA in the control diet (17.28 g/100 g total FA) and its content in the BP diets increased substantially (up to 18.78, 20.02 and 21.50 g/100 g total FA) in BP5, BP10 and BP15 diets, respectively. The content of ALA in the experimental diets proportionally increased following increased BP inclusion. Saturated fatty acids (SFA) decreased mainly due to the reduction of C16:0. The values of the Σ n-6/Σ n-3 ratio were 5.13, 3.30, 2.49 and 2.14 in C, BP5, BP10 and BP15 diets, respectively.

Growth performance

The inclusion of BP in the diet significantly reduced both ADFI (C: 165.30 g; BP5: 159.20 g; BP10: 147.60 g;
BP15: 155.90 g) and FCR (C: 3.54; BP5: 3.41; BP10: 3.17; BP15: 3.30) of the growing rabbits \(p < .001 \), resulting in a better feed efficiency if compared to the control group.

Colour, cooking losses and proximate composition of hind leg meat

The colour, cooking losses and proximate composition of meat are summarised in Table 3. Colour and cooking losses were not significantly different among groups. Abdel-Khalek (2013) reviewed that dietary supplementation with antioxidants has no clear effects on the physical and chemical characteristics of rabbit meat. The proximate composition of the hind leg meat was not significantly affected by the inclusion of BP in the diet. The only exception was the ether extract content that significantly increased with increasing BP dietary inclusion levels, mirroring the increased ether extract content of the corresponding diets.

Fatty acid composition and nutritional indexes of hind leg meat

The FA composition and nutritional indexes of hind leg meat are shown in Table 4. Several factors (e.g. sex, housing system, genetic type, age, slaughter weight) are able to affect the FA composition of meat, the diet component being considered as a major one in monogastric animals (Dalle Zotte 2000; Pla 2004). The inclusion of BP in the diets induced significant modifications in the proportion of the majority of individual detected FA in the hind leg meat.

Usually in beef, pork and sheep, variations in the intramuscular fat concentration can determine differences in the FA composition of the meat. De Smet et al. (2004) reviewed that meat with higher intramuscular fat content shows higher levels of SFA or a lower PUFA/SFA ratio. For rabbit meat, such relationship is not consistently found (Cavani et al. 2004; Hernández et al. 2008; Dal Bosco et al. 2014b). The results obtained in our trial are in agreement with those reported by Peiretti et al. (2011), who found that rabbit meat with increasing EE content showed decreasing levels of SFA and MUFA and increasing levels of PUFA.

Gigaud and Le Cren (2006) stated that the nutritive value of rabbit meat is strongly correlated with the FA profile of their diet. Our results showed that the FA profile of the meat well reflected the composition of dietary FA, which is in agreement with previous reports on hind leg meat of rabbits (Ramirez et al. 2005; Papadomichelakis et al. 2010a; Hernández et al. 2008).

As expected, palmitic (C16:0), oleic and linoleic acids were the most abundant FA in the hind leg meat. The dietary BP inclusion led to a significantly lower SFA content \(p < .001 \) in the hind leg meat, mainly due to a reduction in the contents of C14:0, \(p < .001 \), C15:0 \(p < .001 \), C16:0 \(p < .001 \) and C17:0 \(p = .014 \). Branched chain fatty acids (BCFA) are indicative of the rabbit peculiar digestive system, which allows the recycling of large amounts of caecal microorganisms, and consequently microbial FA, via caecotrophy (Papadomichelakis et al. 2010b). The total BCFA amount was significantly affected \(p = .014 \) by BP inclusion in the diet, with lower values recorded in the BP15 group if compared to the other groups. Till now very few literature data are published reporting BCFA contents of rabbit meat. Papadomichelakis et al. (2010c) reported unchanged concentrations of BCFA in the caecotrophs of rabbits fed unsaturated lipid supplemented diets when compared to a control diet, which were reflected to unchanged concentrations of BCFA incorporated into BF muscle. In contrast, our results seem to suggest a difference in caecotrophy activity among treatments, which may be related to the lipid composition or the antioxidant properties of

Table 3. Effect of dietary bilberry pomace (BP) on the quality traits of hind leg meat.

<table>
<thead>
<tr>
<th>Colour</th>
<th>C</th>
<th>BS</th>
<th>BP10</th>
<th>BP15</th>
<th>SEM</th>
<th>(p) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L*</td>
<td>53.53</td>
<td>55.44</td>
<td>54.98</td>
<td>55.08</td>
<td>0.378</td>
<td>.299</td>
</tr>
<tr>
<td>a*</td>
<td>−1.02</td>
<td>−1.21</td>
<td>−1.46</td>
<td>−1.55</td>
<td>0.128</td>
<td>.451</td>
</tr>
<tr>
<td>b*</td>
<td>3.18</td>
<td>3.58</td>
<td>3.59</td>
<td>3.40</td>
<td>0.136</td>
<td>.683</td>
</tr>
<tr>
<td>Hue</td>
<td>106.25</td>
<td>108.37</td>
<td>115.55</td>
<td>115.11</td>
<td>2.293</td>
<td>.380</td>
</tr>
<tr>
<td>Chroma</td>
<td>3.51</td>
<td>4.18</td>
<td>4.12</td>
<td>4.00</td>
<td>0.134</td>
<td>.278</td>
</tr>
<tr>
<td>Cooking losses, %</td>
<td>23.47</td>
<td>23.73</td>
<td>22.67</td>
<td>23.31</td>
<td>0.343</td>
<td>.742</td>
</tr>
</tbody>
</table>

Proximate composition, % fresh matter

Water	74.05	74.17	73.56	73.09	0.155	.051
Protein	21.78	21.30	21.82	22.15	0.115	.063
Ether extract	2.22b	2.68b	2.90b	3.15b	0.086	<.001
Ash	1.33	1.34	1.34	1.33	0.005	.456

* Different superscripts within a row indicate significant differences.
Table 4. Effect of dietary bilberry pomace (BP) on the fatty acid profile (g/100 g of total FA) of hind leg meat.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>BP5</th>
<th>BP10</th>
<th>BP15</th>
<th>SEM</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ SFA</td>
<td>45.80a</td>
<td>41.26b</td>
<td>40.63b</td>
<td>37.74e</td>
<td>0.485</td>
<td><.001</td>
</tr>
<tr>
<td>C10:0</td>
<td>0.20</td>
<td>0.20</td>
<td>0.16</td>
<td>0.21</td>
<td>0.011</td>
<td>.351</td>
</tr>
<tr>
<td>C12:0</td>
<td>0.23</td>
<td>0.24</td>
<td>0.20</td>
<td>0.21</td>
<td>0.060</td>
<td>.421</td>
</tr>
<tr>
<td>C14:0</td>
<td>3.21a</td>
<td>2.81b</td>
<td>2.62c</td>
<td>2.41f</td>
<td>0.054</td>
<td><.001</td>
</tr>
<tr>
<td>C15:0</td>
<td>1.08a</td>
<td>0.96b</td>
<td>0.91c</td>
<td>0.87f</td>
<td>0.018</td>
<td><.001</td>
</tr>
<tr>
<td>C16:0</td>
<td>31.97a</td>
<td>28.56b</td>
<td>28.00c</td>
<td>25.53d</td>
<td>0.400</td>
<td><.001</td>
</tr>
<tr>
<td>C17:0</td>
<td>0.73a</td>
<td>0.72b</td>
<td>0.66c</td>
<td>0.67d</td>
<td>0.010</td>
<td><.014</td>
</tr>
<tr>
<td>C18:0</td>
<td>7.18</td>
<td>6.55</td>
<td>6.94</td>
<td>6.76</td>
<td>0.084</td>
<td>.050</td>
</tr>
<tr>
<td>C20:0</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.002</td>
<td>.549</td>
</tr>
<tr>
<td>C22:0</td>
<td>0.12b</td>
<td>0.17a</td>
<td>0.14b</td>
<td>0.15ab</td>
<td>0.006</td>
<td>.019</td>
</tr>
<tr>
<td>Σ BCFA</td>
<td>1.01a</td>
<td>0.99b</td>
<td>0.97c</td>
<td>0.86d</td>
<td>0.018</td>
<td><.014</td>
</tr>
<tr>
<td>C15:0 iso</td>
<td>0.10</td>
<td>0.11</td>
<td>0.13</td>
<td>0.09</td>
<td>0.006</td>
<td>.237</td>
</tr>
<tr>
<td>C15:0 also</td>
<td>0.10ab</td>
<td>0.11a</td>
<td>0.09bc</td>
<td>0.08e</td>
<td>0.003</td>
<td>.019</td>
</tr>
<tr>
<td>C16:0 iso</td>
<td>0.32</td>
<td>0.31</td>
<td>0.30</td>
<td>0.29</td>
<td>0.006</td>
<td>.366</td>
</tr>
<tr>
<td>C17:0 iso</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
<td>0.09</td>
<td>0.005</td>
<td>.916</td>
</tr>
<tr>
<td>C17:0 also</td>
<td>0.40a</td>
<td>0.38b</td>
<td>0.34c</td>
<td>0.31d</td>
<td>0.007</td>
<td><.001</td>
</tr>
<tr>
<td>Σ MUFA</td>
<td>32.94a</td>
<td>30.42b</td>
<td>29.73c</td>
<td>27.72d</td>
<td>0.470</td>
<td>.001</td>
</tr>
<tr>
<td>C16:1 C9</td>
<td>5.66a</td>
<td>4.54b</td>
<td>4.36c</td>
<td>3.96d</td>
<td>0.187</td>
<td>.008</td>
</tr>
<tr>
<td>C17:1 C9</td>
<td>0.41a</td>
<td>0.37b</td>
<td>0.34c</td>
<td>0.31d</td>
<td>0.007</td>
<td><.001</td>
</tr>
<tr>
<td>C18:1 mt-11</td>
<td>0.42</td>
<td>0.34</td>
<td>0.33</td>
<td>0.31</td>
<td>0.016</td>
<td>.078</td>
</tr>
<tr>
<td>C18:1 f-12:14</td>
<td>0.07b</td>
<td>0.09ab</td>
<td>0.11c</td>
<td>0.12d</td>
<td>0.007</td>
<td>.042</td>
</tr>
<tr>
<td>C18:1 C9</td>
<td>24.56a</td>
<td>23.47b</td>
<td>23.05c</td>
<td>21.52d</td>
<td>0.366</td>
<td>.028</td>
</tr>
<tr>
<td>C18:1 C11</td>
<td>1.46a</td>
<td>1.20b</td>
<td>1.14bc</td>
<td>1.06e</td>
<td>0.029</td>
<td><.001</td>
</tr>
<tr>
<td>C18:1 C12</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
<td>0.12</td>
<td>0.004</td>
<td>.114</td>
</tr>
<tr>
<td>C18:1 C14 (+c13+c15)</td>
<td>0.09c</td>
<td>0.15b</td>
<td>0.17c</td>
<td>0.15b</td>
<td>0.005</td>
<td><.001</td>
</tr>
<tr>
<td>C20:1 C11</td>
<td>0.18</td>
<td>0.16</td>
<td>0.14</td>
<td>0.14</td>
<td>0.007</td>
<td>.060</td>
</tr>
<tr>
<td>Σ PUFAs</td>
<td>21.27c</td>
<td>28.32b</td>
<td>29.63b</td>
<td>34.55a</td>
<td>0.773</td>
<td><.001</td>
</tr>
<tr>
<td>C18:2 n-6</td>
<td>17.44c</td>
<td>21.62b</td>
<td>21.43b</td>
<td>23.65a</td>
<td>0.418</td>
<td><.001</td>
</tr>
<tr>
<td>C18:2 C9t11 (CLA)</td>
<td>0.08b</td>
<td>0.11b</td>
<td>0.11c</td>
<td>0.14a</td>
<td>0.004</td>
<td>.121</td>
</tr>
<tr>
<td>C18:3 n-3</td>
<td>2.15d</td>
<td>4.77c</td>
<td>6.36b</td>
<td>9.19c</td>
<td>0.383</td>
<td><.001</td>
</tr>
<tr>
<td>C20:3 n-6</td>
<td>0.11c</td>
<td>0.12b</td>
<td>0.09b</td>
<td>0.09b</td>
<td>0.005</td>
<td>.009</td>
</tr>
<tr>
<td>C20:4 n-6</td>
<td>0.68</td>
<td>0.87</td>
<td>0.74</td>
<td>0.75</td>
<td>0.033</td>
<td>.219</td>
</tr>
<tr>
<td>Σ n-3 FA</td>
<td>2.15d</td>
<td>4.77c</td>
<td>6.36b</td>
<td>9.19c</td>
<td>0.383</td>
<td><.001</td>
</tr>
<tr>
<td>Σ n-6 FA</td>
<td>18.23c</td>
<td>22.61b</td>
<td>22.68c</td>
<td>24.48d</td>
<td>0.433</td>
<td><.001</td>
</tr>
<tr>
<td>Σ n-6 FA/Σn-3 FA</td>
<td>8.55a</td>
<td>4.81b</td>
<td>3.55c</td>
<td>2.60d</td>
<td>0.329</td>
<td><.001</td>
</tr>
<tr>
<td>Σ PUFAs/Σ SFA</td>
<td>0.46c</td>
<td>0.69b</td>
<td>0.73b</td>
<td>0.92b</td>
<td>0.026</td>
<td><.001</td>
</tr>
<tr>
<td>PL†</td>
<td>26.33c</td>
<td>36.47b</td>
<td>38.94b</td>
<td>46.66a</td>
<td>1.16c</td>
<td><.001</td>
</tr>
<tr>
<td>∆5- plus ∆6-desaturase‡</td>
<td>3.34a</td>
<td>3.20b</td>
<td>2.61bc</td>
<td>2.21d</td>
<td>0.120</td>
<td>.001</td>
</tr>
<tr>
<td>Ap†</td>
<td>0.85a</td>
<td>0.69b</td>
<td>0.66c</td>
<td>0.58c</td>
<td>0.016</td>
<td><.001</td>
</tr>
<tr>
<td>TP‡</td>
<td>1.32c</td>
<td>0.93a</td>
<td>0.83c</td>
<td>0.65c</td>
<td>0.007</td>
<td><.001</td>
</tr>
<tr>
<td>H/H‡</td>
<td>1.26c</td>
<td>1.63c</td>
<td>1.69c</td>
<td>1.99c</td>
<td>0.044</td>
<td><.001</td>
</tr>
<tr>
<td>TFA, mg/100 g FM</td>
<td>1935.15</td>
<td>2169.02</td>
<td>2318.83</td>
<td>2591.99</td>
<td>113.38</td>
<td>.233</td>
</tr>
</tbody>
</table>

FA: fatty acids; SFA: saturated fatty acids; BCFA: branched-chain fatty acids; MUFA: monounsaturated fatty acids; c, cis; t, trans; PUFAs: polyunsaturated fatty acids; CLA: conjugated linoleic acid; PI: peroxidability index; AI: atherogenicity index; TI: thrombogenicity index; HH: hypocholesterolemic/hypercholesterolemic fatty acids; TFA: total fatty acids; FM: fresh matter.

* Differences superscripts within a row indicate significant differences.

†Sum of octadecadienoic isomers (9t12, 9c13, 10c12, 10t12, 10c13, 9c12, 11t12, 11c12).

‡Calculated as reported by Dal Bosco et al. (2014a).

§Calculated as reported by Dal Bosco et al. (2014b).

At this regard, further studies will be needed to ascertain dietary factors able to affect caecotrophy activity and related muscle BCFA contents in rabbits.

Significantly higher PUFAs and both total n-3 and total n-6 FA contents (p < .001) were observed in the hind leg meat of the rabbits fed the BP diets compared to the rabbits fed the control diet. As already reported for α-tocopherol (Dal Bosco et al. 2004), the antioxidants contained in BP may have inhibited the peroxidation of FA with higher (PUFA) rather than low (MUFA) degree of unsaturation, with consequent proportional increasing contents of PUFA.
vented the oxidation of unsaturated lipids, such antioxidant activity of BP effectively pre-

longissimus thoracis et lumborum in the

Dabbou et al. (2017), BP is a nutrient-rich agro-indus-

reviving rabbit meat market. However, as shown by

consideration by the producers with the purpose of

sages or balls) that are nowadays gaining

lems, particularly in processed products (such as sau-

are more susceptible to oxidation. This may arise prob-

unsaturated FA, mainly polyunsaturated ones, which

in the groups fed the BP5, BP10 and BP15 diets if compared to the rab-

bits fed the control diet.

Regarding the nutritional and human helath-related
indexes, the $\Sigma n-6/\Sigma n-3$ ratio and the atherogenicity
(AI) and thrombogenicity indexes (TI) were significantly
lower in the rabbits fed the BP diets compared to the
rabbits fed the control diet. Particularly, the $\Sigma n-6/\Sigma n-
3$ ratio in the meat was consistently improved (8.55 vs.
4.81 vs. 3.55 vs. 2.68 for C, BP5, BP10 and BP15 group,
respectively). These results are very promising consid-
ering that in ordinary dietary conditions, the $\Sigma n-6/\Sigma n-
3$ ratio in rabbit meat is set at around 10 (Dalle Zotte 2002).

Decreasing the $\Sigma n-6/\Sigma n-3$ ratio is a useful goal to
improve the nutritional value of rabbit meat for
human consumption and, at this regard, the BP10 and
BP15 diets allowed hind leg meat having this ratio
fallen within optimal values (Simopoulos 2011).

The hypocholesterolemic/hypercholesterolemic fatty
acids (HH) index is also used to estimate the nutritive
attributes of food, being more specifically related to
cholesterol metabolism (Herranz et al. 2008); greater
HH values indicate better nutritional quality of food
(Testi et al. 2006). The HH ratio in the hind leg meat
from rabbits fed the BP diets was higher than that of
hind leg meat from rabbits fed the control diet
($p<.001$). Such result suggests that the BP diets tend
to favour hypocholesterolemic properties of the hind
leg meat of growing rabbits.

The peroxidability index (PI) was noticeably higher
in the groups fed the BP5, BP10 and BP15 diets if
compared to control, due to the higher percentage of
unsaturated FA, mainly polyunsaturated ones, which
are more susceptible to oxidation. This may arise prob-
lems, particularly in processed products (such as sau-
sages or balls) that are nowadays gaining
consideration by the producers with the purpose of
reviving rabbit meat market. However, as shown by
Dabbou et al. (2017), BP is a nutrient-rich agro-indus-
trial by-product characterised by high-antioxidant
activity due to its noticeable content of total phenols
and tannins. Dabbou et al. (2017) demonstrated that
in the longissimus thoracis et lumborum muscle of rab-
bits, such antioxidant activity of BP effectively pre-
vented the oxidation of unsaturated lipids, contributing to the preservation of the dietetic-nutri-
tional value and the shelf-life of the meat.

Conclusions
Till now there is no real market for bilberry pomace and therefore this by-product does not have its own
price. The inclusion of bilberry pomace in diets des-
tined to livestock animals could be of interest for both the by-product producers, who can save the money
usually spent for waste discharge, and the farmers,
who can save money by replacing other more expen-
sive feed ingredients with this by-product.

Specifically, regarding rabbit nutrition, the obtained
results demonstrate that the inclusion of bilberry pomace in diets for growing rabbits can be considered as
an effective feeding strategy to ameliorate the nutri-
tional attributes of rabbit meat. Particularly, bilberry
pomace can be successfully used to produce favourable changes in the meat fatty acid composition. Our
results show that bilberry pomace is able to signifi-
cantly increase the PUFA and n-3 FA contents, and
contemporarily decrease the $\Sigma n-6/\Sigma n-3$ FA ratio and
the AI, TI and HH indexes in the meat, which may pro-
vide nutritional benefits to consumers. Undesirable
increases in the ether extract content of the meat
should, however, be taken into consideration when
formulating rabbit diets which include bilberry pomace
as feed ingredient.

Acknowledgements
The authors would like to thank Dr. Gabriella Garino (Arc en
ciel Soc. Agric. Coop.- Cafasse (TO), Italy) for providing the
bilberry pomace, Mrs. Vanda Maria Malfatto for her technical
support, Dr. Camilla Ragazzoni, Dr. Paolo Montersino, Mr.
Dario Sola, and Mr. Mario Colombano for rabbit care.

Disclosure statement
The authors report no conflicts of interest. The authors alone
are responsible for the content and writing of this article.

Funding
This research was supported by a ‘University of Torino (ex
60%’) grant (Financial yr. 2015–2016).

ORCID
Sihem Dabbou http://orcid.org/0000-0002-3525-1614
Manuela Renna http://orcid.org/0000-0003-4296-7589
Carola Lussiana http://orcid.org/0000-0002-0641-5966
Francesco Gai http://orcid.org/0000-0003-1037-9483
Luca Rotolo http://orcid.org/0000-0002-9643-9303
References

