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Abstract 

Alterations of endo/exocytic proteins have long been associated with 

malignant transformation and genes encoding membrane trafficking proteins 

have been identified as bona fide drivers of tumorigenesis. Focusing on the 

mechanisms underlying the impact of endo/exocytic proteins in cancer, a 

scenario emerges in which altered trafficking routes/networks appear to be 

preferentially involved in the acquisition of pro-metastatic traits. This 

involvement in metastasis frequently occurs through the integration of 

programs leading to migratory/invasive phenotypes, survival and resistance to 

environmental stresses, epithelial-to-mesenchymal transition, and the 

emergence of cancer stem cells. These findings might have important 

implications in the clinical setting for the development of metastasis-specific 

drugs and for patient stratification to optimize the use of available therapies. 
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Introduction 

The modern view of endocytic/exocytic membrane trafficking is that of a 

complex process embedded in virtually every aspect of cell regulation, 

including control of signaling at multiple levels [reviewed in (1)]. This view has 

led to the idea that subversion of the endomembrane traffic machinery could 

contribute to cancer, a concept that has received substantial experimental 

corroboration [reviewed in (1,2)]. However, the extent of the impact of “traffic” 

alterations in "real" cancers is still an open question. For the field to move out 

of the "proof of principle stage" and to acquire value in terms of the 

development of clinically relevant strategies, a number of issues need to be 

addressed: 

1. Although in vitro studies are critical for the elucidation of molecular 

mechanisms, more extensive analyses in real tumors are needed. Given the 

pervasive role of endo/exocytic traffic in cell physiology, one should not be too 

surprised that tampering with it might lead to a transformed phenotype in vitro 

that may, however, have little relevance in the clinical setting.  

2. In real tumors, while genetic alterations of membrane trafficking genes are 

not very common, alterations in expression levels are frequently reported. 

This situation raises questions on the suitability of whole-tissue analyses that 

are routinely performed on tumor specimens to assess expression levels. 

These analyses face several drawbacks: they overlook sample cellularity, cell 

of origin of the signal and intratumoral heterogeneity. Thus, to avoid 

misleading results, analyses at the single cell level are important. 

3. The correlation between level of expression of a gene-of-interest in a given 

tumor type and clinical-pathological parameters is often interpreted as a good 
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indicator of "some role in cancer". Frequently, however, only univariate 

analyses are reported in the literature. While this is not a disqualifying issue, 

one should bear in mind that only multivariable analysis provides proof of an 

"independent" predictor. The problem is not minor: in breast cancer, for 

instance, up to 25% of all genes and up to 90% of random multi-gene 

signatures are significant outcome predictors in univariate analysis (3).  

 With these issues in mind, we revisited the literature on endo/exocytosis 

and cancer, focusing on studies that provide: i) convincing evidence of 

endo/exocytic protein/network alterations in real tumors (i.e., genetic/driver 

alterations, analysis of over/underexpression in sufficiently sized cohorts, 

correlation with clinical parameters by multivariable analysis); and ii) extensive 

characterization of phenotypes and mechanisms (Table 1). The emerging 

scenario is that altered endo/exocytic routes and networks appear to be 

preferentially involved in the acquisition of pro-metastatic traits, frequently, 

through the integration of migratory/invasive programs with other aspects of 

cancer biology. Here, we will review selected examples to illustrate this 

concept. 

 

Induction of invasive phenotypes by endo/exocytic harnessing of 

cytoskeleton regulatory circuitries 

Cellular motility in physiological conditions and invasiveness in cancer require 

the enactment of programs involving polarized rearrangement of the actin and 

tubulin cytoskeleton (4). Critical to these programs is a subfamily of small 

GTPases, the Rho-like GTPases, to which Rac1 and Cdc42 belong. Rac1 

acts as a master regulator of cytoskeletal organization and polarized signaling 
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connected with cellular motility. Physiologically, trafficking processes are 

central to Rac1 regulation, ensuring its continuous relocalization to membrane 

sites where the execution of polarized functions take place (5). Accordingly, 

cancer-specific alterations of trafficking proteins hijack Rac1-based circuitries 

leading to aberrant migratory/invasive phenotypes. Some examples are 

provided below. 

 A major circuitry regulating Rac1 involves the Rab5A/Rab4 axis. These 

proteins belong to the family of Rab GTPases that behave as critical 

molecular switches in the regulation of membrane dynamics, including vesicle 

formation, movement, maturation, and connection with the actin and tubulin 

cytoskeleton (6). Rab5A is a master regulator of endosomal dynamics, while 

Rab4 is involved in recycling to the plasma membrane (PM) (6). Rab5A is 

overexpressed in breast cancers and is an independent predictor of 

unfavorable outcome (7). Phenotypically, Rab5A overexpression can be 

correlated with increased invasiveness in vitro and in vivo, extension of 

invadosomes (actin protrusions involved in the coupled processes of 

extracellular matrix degradation and cell motility), and - importantly - 

conversion of in situ carcinomas to invasive carcinomas in vivo (7). The 

molecular action of Rab5A in this context is two-fold. Firstly, it promotes the 

encounter on early endosomes of Rac1 with a specific activator, the guanine 

exchange factor (GEF) Tiam1, after which Rac1 is recycled to restricted 

regions of the PM where it controls polarized protrusion of lamellipodia and 

directed migration (5). Secondly, Rab5A controls the trafficking of 

metalloproteases and integrins (7). In this latter circuitry, Rab4, which is also 

overexpressed in breast cancer, acts downstream of Rab5A by recycling 
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metalloproteases and integrins to regions of the PM where invadosomes will 

form (7).  

 A different pathway relying on another Rac1-GEF - Vav1 - is subverted in 

pancreatic cancer. In this case, the protein involved is Dynamin 2 (Dyn2), 

whose major function is to control fission of endocytic vesicles [reviewed in 

(8)]. Dyn2 is overexpressed in pancreatic ductal carcinomas and its 

overexpression promotes a migratory/invasive phenotype in vitro and in vivo 

(9). Mechanistically, this phenotype is not due to the canonical role of Dyn2 in 

vesicle fission, but rather to its direct interaction with Vav1 (10). Dyn2 

stabilizes Vav1 by protecting it from proteasomal degradation, which 

presumably leads to Rac1 activation (10). Interestingly, Vav1 is also 

overexpressed in pancreatic cancer due to demethylation of its gene promoter 

and is an independent predictor of survival (11).  

 In addition to the upstream regulation of Rac1, endocytic proteins also 

participate in Rac1 effector function. This is the case of Synaptojanin2 

(SYNJ2), a phosphoinositide phosphatase, which binds to activated Rac1 and 

mediates effects of the latter on cell motility and endocytosis (12). The SYNJ2 

gene is part of the 6q25 breast cancer amplicon and its overexpression 

predicts poor prognosis in some breast cancer subtypes (13). Overexpression 

of SYNJ2 increases cell migratory/invasive phenotypes in vitro and in vivo, 

and its silencing leads to impairment of protrusive/invasive structures (13), 

compatible with its role as a Rac1 effector. 

 A final example of a cancer-altered endocytic protein functioning as a Rho-

subfamily GTPase effector is CIP4 (CDC42-Interacting Protein 4). CIP4 

belongs to the superfamily of BAR (Bin/Amphiphysin/Rvs) domain proteins 
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that couple curvature of the membrane with re-organization of the membrane-

associated actin cytoskeleton (14). CIP4 is an effector of Cdc42, another Rho-

like GTPase critical to actin dynamics, migration and endocytosis that is also 

frequently altered in cancer. CIP4 overexpression in breast cancer represents 

an independent predictor of disease outcome, being associated with poorer 

prognosis and metastasis (15,16). Mechanistically, this is due to increased E-

cadherin internalization leading to cell scattering and improved actomyosin 

contractility (16). 

 

Rab-centered circuitries selected in cancer integrate 

motility/invasiveness with survival/resistance to environmental stresses 

The ability to metastasize is linked to the acquisition of a number of 

characteristics, including increased motility and resistance to anoikis and 

environmental stresses, such as low nutrient availability. Cancer-detected 

alterations of Rab25- and Rab1A-dependent signaling exemplify how the 

acquisition of these characteristics might happen. 

 Rab25, belonging to the Rab11 subfamily of Rabs involved in endosomal 

recycling, is the driver gene of amplicon 1q22 in breast and ovarian cancers, 

and its overexpression has been linked to resistance to apoptosis and anoikis 

(17). Evidence that Rab25 is involved in cancer cell dissemination derives 

from its role in the trafficking of the adhesive receptor integrins. 

Overexpression of Rab25 stimulates an invasive mode of migration based on 

the formation of long pseudopods. At the tip of the pseudopods, Rab25-

positive vesicles promote α5β1 integrin treadmilling that, in turn, favors 

persistent and directed cell migration (18). Interestingly, Rab25 
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overexpression is not sufficient to transform immortalized/non-tumorigenic 

cells (17,19,20); rather it stimulates the acquisition of invasive properties in 

already transformed cells. 

 Rab25 integrates invasiveness with other pro-metastatic programs that 

help invasive cells elude environmental stresses. In low nutrient conditions, 

inhibition of mTORC1 results in the accumulation of  α5β1 integrin on late 

endosomes/lysosomes and, in tumors characterized by a potentiated Rab25-

circuitry, this might promote integrin recycling and cell invasion (21). Under 

similar conditions, Rab25 stimulates glucose uptake, through direct binding to 

and activation of AKT, resulting in higher glycogen synthesis and elevated 

ATP levels, thereby providing cancer cells with an alternative energy source 

(20).  

 Depending on the context, Rab25 might also behave as a tumor 

suppressor (19). In a cohort of human colorectal cancers, Rab25 levels 

decrease in a stage-dependent manner and correlate with reduced survival in 

univariate analysis (22). In addition, while, Rab25-KO mice do not exhibit 

spontaneous tumors, they display increased incidence of colonic neoplasia 

when crossed with an APCMin/+ genetic background. In these tumors, 

localization of β1 integrin to the lateral membrane of intestinal cells is severely 

reduced (22). As mislocalization of β1 causes intestinal hyperplasia (23), loss 

of Rab25-mediated β1 trafficking in intestinal epithelial cells might contribute 

to tumor development by affecting cell polarity (22).  

 Notably, downstream effectors of Rab25 are also altered in cancer and are 

associated with the acquisition of pro-metastatic phenotypes. This is the case 

of the Rab11-family effector – Rab coupling protein (RCP), CLIC3 and 
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Tensin1 (21,24,25) (Table 1). RCP is the driver of amplicon 8p11 in breast 

cancer and its overexpression predicts metastatic recurrence (26). In the 

recycling pathway, RCP acts as a scaffold for α5β1 integrin and EGFR, 

allowing their coordinated re-localization to the elongating pseudopods that 

characterize β1-dependent 3D invasive migration (25). Interestingly, RCP 

appears to represent a point of convergence of different cancer pathways, 

since mutant, gain-of-function, p53 proteins can drive cancer cell invasion by 

exploiting RCP (27). These mutant p53 proteins promote the binding of RCP 

to α5β1, by as yet unclear mechanisms, thus, stimulating the coordinated 

recycling/relocalization of EGFR and α5β1 integrin to the PM (27).  

 Rab1A-dependent signaling represents another example of how invasive 

phenotypes and sensitivity to nutrients can be coordinately derailed in cancer. 

Rab1A, a GTPase involved in endoplasmic reticulum (ER)-to-Golgi transport, 

is overexpressed in colon cancer and predicts poor outcome and cancer 

invasiveness (28). By sensing amino acid levels, Rab1A becomes activated 

and binds to mTORC1, thereby, promoting proliferation and cellular 

transformation. Interestingly, the circuitry requires a Rab1A-dependent 

physical association with the Golgi to be functional, confirming the link 

between endomembrane dynamics and nutrient sensing. It is tempting to 

speculate that the potentiation of the Rab1A/mTORC1 axis, observable in 

colon cancers, augments sensitivity to amino acids, thereby reducing the 

effective concentration of these nutrients needed to sustain cell proliferation. 

This advantage might however become an "Achilles’ heel" for the tumor, as it 

has been shown that colon cancer cell lines overexpressing Rab1A become 

addicted to amino acids (28). We will discuss this issue further below. 
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Membrane traffic, epithelial-to-mesenchymal transition and cancer stem 

cells 

Epithelial-to-mesenchymal transition (EMT) is a complex transcriptional 

program enacted by cells that undergo a switch from an epithelial to a 

mesenchymal/migratory state. In physiology, EMT is critical for embryonic 

development and tissue repair; however, its aberrant activation is linked to 

pathological conditions, first and foremost cancer (29). Recent work, 

pioneered in Weinberg's lab, has highlighted a major role of EMT in the 

emergence of cancer stem cells (CSC). These cells are not only the initiators 

of cancer, by definition, but also represent the subpopulation of cells most 

likely responsible for metastasis and resistance to therapy [reviewed in (30)]. 

While these findings blur the traditional boundaries between cancer initiation 

and progression, they offer an additional angle to rationalize the impact of 

endo/exocytosis in cancer. Trafficking networks are critical in regulating the 

activity of signaling pathways leading to EMT, such as those activated by 

TGFβ and WNT, or in modulating the dynamics of adhesion molecules 

involved in the maintenance of epithelial polarity, such as E-cadherin 

[reviewed in (31)]. Here following, we will analyze the case of Numb and of 

Rab2A.  

 Numb sits at the intersection of multiple functions including cell fate 

decisions, maintenance of stem cell (SC) compartments, regulation of cell 

polarity, adhesion and migration [reviewed in (32)]. At the molecular level, 

Numb is involved in formation of endocytic vesicles and in their recycling to 

the PM (32). In breast cancer, Numb is a tumor suppressor whose under-
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expression represents an independent predictor of unfavorable prognosis 

(33). Loss of Numb expression leads to EMT and to the emergence of CSCs 

(34); effects that can be mechanistically linked to at least three "points of 

action". First, by controlling endocytosis/recycling of E-cadherin and the 

proper localization of the Par3 complex, Numb regulates epithelial polarity, 

adherens junctions and tight junctions (35). Second, Numb antagonizes the 

signaling receptor Notch by controlling its endocytosis and trafficking (36). 

Loss-of-Numb leads to unchecked Notch activity, which in cooperation with 

other pathways, may lead to EMT [reviewed in (37)]. Finally, Numb stabilizes 

p53 (33). This latter activity is particularly interesting: Numb binds to and 

inhibits the ubiquitin ligase Mdm2, which, in turn, is responsible for p53 

ubiquitination and proteasomal degradation. Thus, loss-of-Numb results in 

decreased levels and activity of p53 (33). This effect of Numb on p53 stability 

is likely to be highly relevant to cancer, since p53 ablation in in vivo model 

systems leads to expansion of the mammary SC compartment accompanied 

with the emergence of CSCs (38). Indeed, the effects of loss-of-Numb on 

CSCs and EMT are mediated by loss of p53 protein (34). It is, however, 

unclear whether the control of Numb over p53 is linked to its function in 

membrane trafficking: a possibility that warrants investigation especially in 

light of the connection between p53 subversion and the RCP-mediated 

endocytic/trafficking pathways in cancer. 

 Rab2A is amplified and overexpressed in breast cancer (39,40) and it 

represents an independent predictor of metastasis (40). Rab2A controls ER-

to-Golgi transport (41); however, it is also present on late endosomes where it 

interacts with VSP39 (40,42), a component of the homotypic fusion and 
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vacuole protein sorting complex (HOPS) that is responsible for fusion of late 

endosomes with lysosomes (43). Not surprisingly, therefore, hyper-activation 

of Rab2A in breast cancer cells affects more than one trafficking step. On late 

endosomes, it stimulates VSP39-dependent post-endocytic recycling of the 

metalloprotease MT1-MMP to the PM, promoting matrix degradation. At the 

Golgi, it delays E-cadherin trafficking to the cell surface reducing junctional 

stability and cell compaction. The resulting combined effect is increased 

cellular invasiveness (40). The acquisition of an invasive phenotype by Rab2A 

overexpressing cells might be, however, part of a more complex program, 

connected with EMT. Indeed, increased Rab2A expression leads to the 

acquisition of EMT traits and to the expansion of the CSC compartment in 

mammary model systems (39). This function is mediated by prolongation of 

signaling by ERK1/2, to which Rab2A binds and protects from deactivation, 

and is controlled by the prolyl isomerase Pin1 that increases the transcription 

of Rab2 through yet unknown mechanisms. Interestingly, Pin1 is itself 

overexpressed in breast cancer and controls the normal and neoplastic SC 

compartment (44). Finally, Numb- and Rab2A-controlled pathways might 

converge in the fine-tuning of cellular responses leading to EMT, since it has 

been shown that Pin1 and Notch are involved in a feed forward loop that 

potentiates the level and activity of both proteins (45). 

 

Outlook: an endo/exocytosis centered strategy towards a metastasis-

specific therapy 

In this review, we focused on trafficking proteins and pathways altered with 

reasonable frequency and with a reasonable degree of confidence in human 
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tumors. The goal was to distill from a vast amount of literature paradigmatic 

examples of clinical interest, especially in the perspective of targeted 

therapies.  

 At the biological level, as discussed, cancer-altered endo/exocytic proteins 

seem to be preferentially associated with pro-metastatic phenotypes, most 

notably increased migration/aggressiveness, rather than with "canonical" 

hyperproliferative phenotypes. Mechanistically, the pro-metastatic phenotypes 

are mainly caused by alterations in the delivery of critical effectors to the PM, 

including adhesion molecules (integrins and cadherins), metalloproteases, 

and regulators of actin dynamics (such as Rac1). These observations uphold 

the emerging concept of endocytosis/exocytosis cycles (EECs) acting to 

maintain homeostatic levels of PM proteins and, when needed, to rapidly 

deliver cargoes to regions of the PM where polarized functions must occur (1). 

At the same time, the appearance of invasive properties is frequently 

accompanied by other phenotypes related to survival and resistance to 

environmental stresses, which can also be considered part of the "metastatic 

toolkit”.  

 One important question is whether endo/exocytic proteins represent viable 

targets for the development of molecular therapies. This possibility could be 

actualized through two major strategies. On the one hand, endo/exocytic 

proteins directly involved in cancer might be targetable in themselves as 

suggested by the successful identification of specific inhibitors of the 5'-

phosphatase activity of SYNJ2 that prevent in vitro cell invasion (13). On the 

other hand, the trafficking "signature" of some cancers could be used to 

stratify patients and optimize therapies based on the unique characteristics 
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conferred by endo/exocytic alterations to cancer cells. The proof-of-principle 

of this approach is represented by the drug responsiveness of colorectal 

cancer cells (CRCs) overexpressing Rab1A. As discussed, these cells are 

addicted to amino acid-induced mTORC1 activity (28). As a result, xenografts 

established from Rab1A-high CRCs were highly sensitive to the mTORC1 

inhibitor rapamycin, while Rab1A-low CRCs were not (28). 

 Finally, the emerging connection between alteration of endo/exocytosis and 

induction of EMT/emergence of CSCs also harbors therapeutic implications. 

In recent years, considerable effort has been directed towards high-

throughput profiling of human tumors. One of the most unexpected findings 

that emerged from these studies is that some tumors are metastatically 

“imprinted” ab initio (46); an idea that contrasted the “canonical” view of tumor 

progression in which the emergence of metastatic subpopulations represents 

a late event in the natural history of the tumor. Nevertheless, these results 

received substantial molecular confirmation from studies showing how EMT 

can give rise to CSCs, which fuel both tumor growth (due to their self-renewal 

ability) and metastasis (due to their migratory/invasive ability) (30). An 

intimate link between migration and tumor growth was proposed recently on 

the basis of theoretical modeling showing that cellular dispersal and turnover 

can account for potent selective advantages within a tumor mass (47). The 

combined analysis of these findings argue for a paramount role of migration in 

the natural history of the tumor, both in its primary location and in its 

metastatic ramifications. In this framework, endo/exocytic proteins, because of 

their ability to network circuitries controlling migration, polarity, proliferation 

and survival, appear to be uniquely posited to represent interesting targets for 
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anti-CSC and anti-metastatic therapies. 
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Table 1. Examples of trafficking proteins altered in cancer 
 

GENE FUNCTION ALTERATION TUMOR TYPE 

RAB5A Rab GTPase O Breast 
DYN2 
(Dynamin 2) 

GTPase 
(fission) 

O Pancreas 

SYNJ2 
(Synaptojanin 2) 

Phospoinositid
e phosphatase 

A Breast 

CIP4 Cdc42 effector O Breast, Lung 
RAB25 Rab GTPase A Breast, Ovary 
RCP/RAB11FIP1 Rab Effector A Breast 
CLIC3 Rab25 effector O Ovary 
RAB1A Rab GTPase O Colon 
RAB2A Rab GTPase A Breast 
NUMB Adapter U Breast, Lung 
SH3GL1 
(Endophilin A2) 

Adapter O, M(T) Breast, Leukemia 

RAB35 Rab GTPase M Lymphoma, Lung, 
Uterus 

GOLPH3 Golgi protein A Multiple 
CBL E3 ligase M Leukemia 
CAV1 (caveolin) Coat protein U,M,O Multiple 
DAB2 Adapter U Multiple 
HIP1 Adapter O, M(T) Multiple 
NDRG1 Rab4 effector U Prostate, Breast, Lung 
Clathrin Coat protein M(T) Lymphomas, Kidney 
 
The Table displays examples of endocytic/exocytic proteins altered in human 
cancers. Proteins reviewed in details are shaded. The list is not 
comprehensive and additional hits (and detailed referencing to the proteins 
not covered in this review) can be found in (1), (2) and (48). 
Alteration: A, amplified; O, overexpressed (in the absence of reported gene 
amplification); U, underexpressed; M, mutated (point mutations); M(T), 
mutated (translocation). 
  



 18 

Bibliography 

1. Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. 
Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. 
Physiol Rev 2012;92:273-366 

2. Mellman I, Yarden Y. Endocytosis and cancer. Cold Spring Harb 
Perspect Biol 2013;5:a016949 

3. Venet D, Dumont JE, Detours V. Most random gene expression 
signatures are significantly associated with breast cancer outcome. 
PLoS Comput Biol 2011;7:e1002240 

4. Paul CD, Mistriotis P, Konstantopoulos K. Cancer cell motility: lessons 
from migration in confined spaces. Nat Rev Cancer 2016 

5. Palamidessi A, Frittoli E, Garre M, Faretta M, Mione M, Testa I, et al. 
Endocytic trafficking of Rac is required for the spatial restriction of 
signaling in cell migration. Cell 2008;134:135-47 

6. Wandinger-Ness A, Zerial M. Rab proteins and the 
compartmentalization of the endosomal system. Cold Spring Harb 
Perspect Biol 2014;6:a022616 

7. Frittoli E, Palamidessi A, Marighetti P, Confalonieri S, Bianchi F, 
Malinverno C, et al. A RAB5/RAB4 recycling circuitry induces a 
proteolytic invasive program and promotes tumor dissemination. J Cell 
Biol 2014;206:307-28 

8. Ferguson SM, De Camilli P. Dynamin, a membrane-remodelling 
GTPase. Nat Rev Mol Cell Biol 2012;13:75-88 

9. Eppinga RD, Krueger EW, Weller SG, Zhang L, Cao H, McNiven MA. 
Increased expression of the large GTPase dynamin 2 potentiates 
metastatic migration and invasion of pancreatic ductal carcinoma. 
Oncogene 2012;31:1228-41 

10. Razidlo GL, Wang Y, Chen J, Krueger EW, Billadeau DD, McNiven 
MA. Dynamin 2 potentiates invasive migration of pancreatic tumor cells 
through stabilization of the Rac1 GEF Vav1. Dev Cell 2013;24:573-85 

11. Fernandez-Zapico ME, Gonzalez-Paz NC, Weiss E, Savoy DN, Molina 
JR, Fonseca R, et al. Ectopic expression of VAV1 reveals an 
unexpected role in pancreatic cancer tumorigenesis. Cancer Cell 
2005;7:39-49 

12. Chuang YY, Tran NL, Rusk N, Nakada M, Berens ME, Symons M. 
Role of synaptojanin 2 in glioma cell migration and invasion. Cancer 
Res 2004;64:8271-5 

13. Ben-Chetrit N, Chetrit D, Russell R, Körner C, Mancini M, Abdul-Hai A, 
et al. Synaptojanin 2 is a druggable mediator of metastasis and the 
gene is overexpressed and amplified in breast cancer. Sci Signal 
2015;8:ra7 

14. Frost A, Unger VM, De Camilli P. The BAR domain superfamily: 
membrane-molding macromolecules. Cell 2009;137:191-6 

15. Chander H, Truesdell P, Meens J, Craig AW. Transducer of Cdc42-
dependent actin assembly promotes breast cancer invasion and 
metastasis. Oncogene 2013;32:3080-90 

16. Rolland Y, Marighetti P, Malinverno C, Confalonieri S, Luise C, Ducano 
N, et al. The CDC42-interacting protein 4 controls epithelial cell 
cohesion and tumor dissemination. Dev Cell 2014;30:553-68 



 19 

17. Cheng KW, Lahad JP, Kuo WL, Lapuk A, Yamada K, Auersperg N, et 
al. The RAB25 small GTPase determines aggressiveness of ovarian 
and breast cancers. Nat Med 2004;10:1251-6 

18. Caswell PT, Spence HJ, Parsons M, White DP, Clark K, Cheng KW, et 
al. Rab25 associates with alpha5beta1 integrin to promote invasive 
migration in 3D microenvironments. Dev Cell 2007;13:496-510 

19. Mitra S, Cheng KW, Mills GB. Rab25 in cancer: a brief update. 
Biochem Soc Trans 2012;40:1404-8 

20. Cheng KW, Agarwal R, Mitra S, Lee JS, Carey M, Gray JW, et al. 
Rab25 increases cellular ATP and glycogen stores protecting cancer 
cells from bioenergetic stress. EMBO Mol Med 2012;4:125-41 

21. Rainero E, Howe JD, Caswell PT, Jamieson NB, Anderson K, Critchley 
DR, et al. Ligand-Occupied Integrin Internalization Links Nutrient 
Signaling to Invasive Migration. Cell Rep 2015;10:398-413 

22. Nam KT, Lee HJ, Smith JJ, Lapierre LA, Kamath VP, Chen X, et al. 
Loss of Rab25 promotes the development of intestinal neoplasia in 
mice and is associated with human colorectal adenocarcinomas. J Clin 
Invest 2010;120:840-9 

23. Jones RG, Li X, Gray PD, Kuang J, Clayton F, Samowitz WS, et al. 
Conditional deletion of beta1 integrins in the intestinal epithelium 
causes a loss of Hedgehog expression, intestinal hyperplasia, and 
early postnatal lethality. J Cell Biol 2006;175:505-14 

24. Dozynkiewicz MA, Jamieson NB, Macpherson I, Grindlay J, van den 
Berghe PV, von Thun A, et al. Rab25 and CLIC3 collaborate to 
promote integrin recycling from late endosomes/lysosomes and drive 
cancer progression. Dev Cell 2012;22:131-45 

25. Caswell PT, Chan M, Lindsay AJ, McCaffrey MW, Boettiger D, Norman 
JC. Rab-coupling protein coordinates recycling of alpha5beta1 integrin 
and EGFR1 to promote cell migration in 3D microenvironments. J Cell 
Biol 2008;183:143-55 

26. Zhang J, Liu X, Datta A, Govindarajan K, Tam WL, Han J, et al. RCP is 
a human breast cancer-promoting gene with Ras-activating function. J 
Clin Invest 2009;119:2171-83 

27. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, et al. 
Mutant p53 drives invasion by promoting integrin recycling. Cell 
2009;139:1327-41 

28. Thomas JD, Zhang YJ, Wei YH, Cho JH, Morris LE, Wang HY, et al. 
Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer 
Cell 2014;26:754-69 

29. Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell 
2016;166:21-45 

30. Chaffer CL, San Juan BP, Lim E, Weinberg RA. EMT, cell plasticity 
and metastasis. Cancer Metastasis Rev 2016 

31. Corallino S, Malabarba MG, Zobel M, Di Fiore PP, Scita G. Epithelial-
to-Mesenchymal Plasticity Harnesses Endocytic Circuitries. Front 
Oncol 2015;5:45 

32. Pece S, Confalonieri S, R Romano P, Di Fiore PP. NUMB-ing down 
cancer by more than just a NOTCH. Biochim Biophys Acta 
2011;1815:26-43 



 20 

33. Colaluca IN, Tosoni D, Nuciforo P, Senic-Matuglia F, Galimberti V, 
Viale G, et al. NUMB controls p53 tumour suppressor activity. Nature 
2008;451:76-80 

34. Tosoni D, Zecchini S, Coazzoli M, Colaluca I, Mazzarol G, Rubio A, et 
al. The Numb/p53 circuitry couples replicative self-renewal and tumor 
suppression in mammary epithelial cells. J Cell Biol 2015;211:845-62 

35. Wang Z, Sandiford S, Wu C, Li SS. Numb regulates cell-cell adhesion 
and polarity in response to tyrosine kinase signalling. EMBO J 
2009;28:2360-73 

36. Kandachar V, Roegiers F. Endocytosis and control of Notch signaling. 
Curr Opin Cell Biol 2012;24:534-40 

37. Kotiyal S, Bhattacharya S. Breast cancer stem cells, EMT and 
therapeutic targets. Biochem Biophys Res Commun 2014;453:112-6 

38. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B, et al. 
The tumor suppressor p53 regulates polarity of self-renewing divisions 
in mammary stem cells. Cell 2009;138:1083-95 

39. Luo ML, Gong C, Chen CH, Hu H, Huang P, Zheng M, et al. The 
Rab2A GTPase promotes breast cancer stem cells and tumorigenesis 
via Erk signaling activation. Cell Rep 2015;11:111-24 

40. Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, et al. 
RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi 
trafficking to promote invasive breast cancer programs. EMBO Rep 
2016;17:1061-80 

41. Tisdale EJ, Bourne JR, Khosravi-Far R, Der CJ, Balch WE. GTP-
binding mutants of rab1 and rab2 are potent inhibitors of vesicular 
transport from the endoplasmic reticulum to the Golgi complex. J Cell 
Biol 1992;119:749-61 

42. Gillingham AK, Sinka R, Torres IL, Lilley KS, Munro S. Toward a 
comprehensive map of the effectors of rab GTPases. Dev Cell 
2014;31:358-73 

43. Spang A. Membrane Tethering Complexes in the Endosomal System. 
Front Cell Dev Biol 2016;4:35 

44. Luo ML, Gong C, Chen CH, Lee DY, Hu H, Huang P, et al. Prolyl 
isomerase Pin1 acts downstream of miR200c to promote cancer stem-
like cell traits in breast cancer. Cancer Res 2014;74:3603-16 

45. Rustighi A, Zannini A, Tiberi L, Sommaggio R, Piazza S, Sorrentino G, 
et al. Prolyl-isomerase Pin1 controls normal and cancer stem cells of 
the breast. EMBO Mol Med 2014;6:99-119 

46. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. 
Gene expression profiling predicts clinical outcome of breast cancer. 
Nature 2002;415:530-6 

47. Waclaw B, Bozic I, Pittman ME, Hruban RH, Vogelstein B, Nowak MA. 
A spatial model predicts that dispersal and cell turnover limit 
intratumour heterogeneity. Nature 2015;525:261-4 

48. Mills GB, Jurisica I, Yarden Y, Norman JC. Genomic amplicons target 
vesicle recycling in breast cancer. J Clin Invest 2009;119:2123-7 

 
 

 


