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We present our recent progress on the relativistic modeling of electron-nucleus reactions and compare
our predictions with inclusive 12C (e, e0) experimental data in a wide kinematical region. The model,
originally based on the superscaling phenomenon shown by electron-nucleus scattering data, has recently
been improved through the inclusion of relativistic mean field theory effects that take into account the
enhancement of the quasielastic transverse scaling function compared with its longitudinal counterpart. In
this work, we extend the model to include the complete inelastic spectrum—resonant, nonresonant and
deep inelastic scattering. We also discuss the impact of meson-exchange currents through the analysis of
two-particle two-hole contributions to electromagnetic response functions evaluated within the framework
of the relativistic Fermi gas, considering for the first time not only the transverse but also the longitudinal
channel. The results show quite good agreement with data over the whole range of energy transfer,
including the dip region between the quasielastic peak and the Δ resonance.
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I. INTRODUCTION

One of the challenging goals of current neutrino oscillation
experiments is a proper and precise description of neutrino-
nucleus scattering at intermediate energies (from a few
hundred MeV to a few GeV). Particular emphasis is placed
on the evaluation of effects linked to the nuclear structure
involved in the analysis of experiments. In recent years,
several models, originally developed to study electron-
nucleus scattering, have been further extended to the descrip-
tion of neutrino-nucleus cross sections [1–8]. These models
are required to provide a precise enough description of
electron scattering data before they can be applied to neutrino
reactions. In some cases, such as the simple and commonly
used relativistic Fermi gas model (RFG), they fail to repro-
duce both inclusive electron scattering in the quasielastic
(QE) regime as well as recent measurements of QE neutrino
and antineutrino scattering cross sections. This is connected
with the approaches assumed by the specific nuclear models
and, more importantly, with the simplified description of the
reactionmechanism that, in most of the cases, is based on the
impulse approximation (IA) with additional nonrelativistic
reductions. Hence, a proper evaluation of the effects intro-
duced by final-state interactions (FSI) and mechanisms
beyond the IA, such as nuclear correlations and two-particle
two-hole excitations, are needed. In this context, a consistent

and complete description of the electron scattering cross
section that includes not only the QE regime but also regions
at higher energy transfer (nucleon resonances, inelastic
spectrum) is essential for the analysis of current neutrino
oscillation experiments. This provides a critical baseline for
the validation of theoretical neutrino-nucleus interaction
models.
In recent years, the scaling [9] and superscaling

properties [10,11] of electron-nucleus interactions have
been analyzed in detail and used to construct a
semi-phenomenological model for lepton-nucleus scatter-
ing [1]. This model, denoted as the superscaling approach
(SuSA) [10–12], assumes the existence of universal scaling
functions for electromagnetic and weak interactions. The
general procedure adopted in this analysis consists of
dividing the (e, e0) experimental cross section by an
appropriate single-nucleon one to obtain a reduced cross
section. When this is plotted as a function of the “scaling”
variable (ψ), itself a function of the energy (ω) and
momentum transfer (q), some particular properties emerge.
Specifically, analyses of inclusive (e, e0) data have shown
that at energy transfers below the QE peak, the reduced
cross section is largely independent of the momentum
transfer, which is called scaling of the first kind, and of the
nuclear target, which is defined as scaling of the second
kind. This simultaneous occurrence of scaling of both kinds
is denoted as superscaling. At higher energies, above the
QE peak, both kinds of scaling are shown to be violated as a
consequence of the contributions introduced by effects
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beyond the impulse approximation (IA), such as meson-
exchange currents (MEC) and inelastic scattering. An
extension of the scaling formalism, originally introduced
to describe the QE domain, to the region of theΔ resonance
and the complete inelastic spectrum—resonant, nonreso-
nant and deep inelastic scattering (DIS)—has also been
proposed in [13–15].
Recently, we have developed an improved version of the

superscaling model, called SuSAv2 [16], that incorporates
relativistic mean field (RMF) effects [17–19] in the longi-
tudinal and transverse nuclear responses, as well as in the
isovector and isoscalar channels independently. Note that the
RMFmodel leads to a natural enhancement of the transverse
response through RMF effects without resorting to inelastic
processes or two-particle emission via MEC. The RMF
works properly at low to intermediate values of the momen-
tum transfer, q. However, because of the strong energy-
independent scalar and vector potentials involved, the RMF
does lesswell at higher values ofq,where the relativistic plane
wave impulse approximation (RPWIA) gives better predic-
tions. Hence, both regimes are incorporated in SuSAv2 by
making use of a reasonable “blending” function [16].
While the original SuSAv2 was based exclusively on the

IA, and used to describe the QE domain, in this work the
model is extended to the inelastic spectrum. Following
previous studies on the inelastic RFG modeling [13], we
achieve this goal by employing phenomenological fits to
the single-nucleon inelastic structure functions.
Ingredients beyond the IA, namely, 2p-2h MEC effects,

have been shown to play an important role in the “dip”
region between the QE and the Δ peaks. In this work, the
SuSAv2 model also incorporates contributions in both
longitudinal and transverse reaction channels arising from
2p-2h states excited by the action of electromagnetic, purely
isovector meson-exchange currents within a fully relativistic
framework (see [20–23] for details). Therefore, the new
“SuSAv2-MEC” predictions can be compared with data for
very different kinematical situations, covering the entire
energy spectrum. The accordance between theory and data
gives us confidence in the extension of the model and its
validity when applied to recent neutrino oscillation experi-
ments where all the different kinematical regions may
contribute and, in particular, effects linked to 2p-2h MEC
have been claimed to be essential in order to reproduce the
neutrino-nucleus scattering cross sections [3,23,24].
This paper is organized as follows. In Sec. II, we briefly

introduce the formalism for QE and inelastic lepton-
nucleus reactions and describe how the MEC have been
computed. In Sec. III, we compare our predictions with
inclusive (e, e0) experimental data in a wide kinematical
region. The analysis is presented for the cross sections
paying a special attention to the relevance of the RMF and
RPWIA effects at different kinematics. Finally, in Sec. IV,
we show the conclusions of our analysis, including some
remarks related to studies of neutrino reactions with nuclei.

II. GENERAL FORMALISM: THE MODEL

A. SuSAv2 in the QE region

Following the Rosenbluth prescription [25], the double
differential (e, e0) inclusive cross section (differential with
respect to the electron scattering angle Ωe and the trans-
ferred energy ω) is given as the sum of two response
functions corresponding to the longitudinal, RL, and trans-
verse, RT , channels (L and T refer to the direction of the
transferred momentum, q),

d2σ
dΩedω

¼ σMottðvLRL þ vTRTÞ; ð1Þ

where σMott is the Mott cross section and the vs are
kinematical factors that involve leptonic variables (see
[9] for explicit expressions). Assuming charge symmetry,
these two channels can be decomposed as a sum of the
isoscalar (T ¼ 0) and isovector (T ¼ 1) contributions. In
terms of the scaling functions the nuclear responses are

RL;Tðq;ωÞ ¼
1

kF
½fT¼1

L;T ðψ 0ÞGT¼1
L;T ðq;ωÞ

þ fT¼0
L;T ðψ 0ÞGT¼0

L;T ðq;ωÞ�; ð2Þ

where kF is the Fermi momentum and the fs are the scaling
functions, that only depend on the scaling variable ψ 0. This
scaling variable depends on q, ω and on the energy shift,
Eshift, needed in order to have the corresponding scaling
function peak located at Ψ0 ¼ 0, as described in [16].
The functions GT¼0;1

L;T are defined as the isoscalar and
isovector responses of a moving nucleon and include
relativistic corrections arising from the presence of the
medium. Their explicit expressions, not reported here for
the sake of brevity, can be found in [9,16].
In Fig. 1, we present the scaling functions of relevance

for electron-nucleus reactions, based on results from [16].

-1 0 1 2 3
ψ’

0

0.2

0.4

0.6

0.8
f
L

T=1

f
L

T=0

f
T

T=1

f
L

RPWIA

f
T

RPWIA

FIG. 1. Reference scaling functions in the SuSAv2 model.
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Some basic conclusions emerge from the analysis of the
scaling functions in the RMF and RPWIAmodels. First, the
two models differ in the treatment of the final state.
Whereas the RPWIA describes the outgoing nucleon as
a relativistic plane wave, the RMF takes into account FSI
between the outgoing nucleon and the residual nucleus
using the same mean field as considered for the bound
nucleon. This leads to a violation of the so-called zeroth-
kind scaling; that is, the RMF transverse and longitudinal
scaling functions differ from each other, the former being
larger by an amount of the order of 20%. This is directly
linked to the distortion introduced by FSI in the lower
components of the outgoing nucleon Dirac wave functions.
Secondly, it is also noteworthy that the tail exhibited by the
scaling function at large values of ω is significantly higher
and more extended in the transverse channel. On the
contrary, the results obtained within the RPWIA show that
the two types of scaling functions are roughly the same,
having a shape that is much more symmetric, i.e., lacking
the long tail extending to large values of ω.
In spite of the merits of the RMF description, a particular

drawback of the RMF concerns its dependence upon the
momentum transfer q: indeed, the RMF peak position
keeps growing with q, calling into question the validity of
the model at very high q. In fact, the large kinetic energy of
the outgoing nucleon at very high q should make the FSI
effects negligible. Thus, it would be desirable that the RMF
scaling functions approach the RPWIA ones for increasing
momentum transfer [16]. This was a basic motivation in the
development of a new superscaling approach as a combi-
nation of RMF and RPWIA scaling functions where the
first dominates at low to intermediate q and the latter at
high q. This implies that the scaling functions in Eq. (2)
should be replaced by linear combinations of RMF-based
( ~fL;T) and RPWIA ( ~fRPWIA

L;T ) scaling functions:

F T¼0;1
L ≡ cos2χðqÞ ~fT¼0;1

L þ sin2χðqÞ ~fRPWIA
L

F T ≡ cos2χðqÞ ~fT þ sin2χðqÞ ~fRPWIA
T ; ð3Þ

where χðqÞ is a q-dependent angle given by

χðqÞ≡ π

2
ð1 − ½1þ eð

ðq−q0Þ
ω0

Þ�−1Þ; ð4Þ

and the transition between RMF and RPWIA behaviors
occurs at intermediate q values (q0) in a region of width ω0,
which is fixed at 200 MeV. Notice that the separation into
isoscalar (T ¼ 0) and isovector (T ¼ 1) contributions is
only taken into account for the RMF longitudinal function
as in the transverse component the isoscalar contribution is
negligible. In contrast, for the RPWIA longitudinal and
transverse scaling functions, the isovector and isoscalar
contributions collapse into a single curve.
The electromagnetic response functions are now

defined as

RLðq;ωÞ ¼
1

kF
½F T¼1

L ðψ 0ÞGT¼1
L ðq;ωÞ

þ F T¼0
L ðψ 0ÞGT¼0

L ðq;ωÞ� ð5Þ

RTðq;ωÞ ¼
1

kF
F T¼1

T ðψ 0Þ½GT¼1
T ðq;ωÞ þ GT¼0

T ðq;ωÞ�: ð6Þ

Thus, the transition between the two models depends on
the particular kinematics involved, namely, on the momen-
tum transfer q. Accordingly, the transition parameter, q0, is
expected to increase with q in such a way that the RMF
contribution will be dominant at low kinematics whereas
the RPWIA one starts to be relevant at higher energies.
Therefore we introduce a dependence of the parameter q0
on the momentum transfer q that determines the relative
RMF and RPWIA contributions at different kinematics.
The particular procedure to determine the q0 behavior

with q is in accordance to the best fit to a large amount of
(e, e0) experimental data, covering from low to high q
values (q: 239–3432 MeV=c). The method applied is based
on a reduced-χ2 analysis of the data sets. This analysis is
performed in conjunction with the inelastic one, taking into
account the 2p-2h MEC contributions as well, and will be
detailed in Sec. II D.

B. Inelastic electron-nucleus scattering
in the superscaling approach

The general formalism describing inclusive inelastic
electron-nucleus scattering in the superscaling approach
has been presented in previous work [13]. Here we consider
a more sophisticated description of the lepton-nucleus
reactions via RMF and RPWIA ingredients (SuSAv2
model). The hadronic tensor for inelastic processes can
be written in the form [13]

Wμν
inelðq;ωÞ ¼

3N
4πk3F

Z
F
dh

mN

Ēh
wμν
inelðH;Q;ωþ ĒhÞ; ð7Þ

with kF the Fermi momentum and H and Ēh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þm2

N

p
the 4-momentum and energy of the on-shell nucleon in
the nucleus attached to the virtual photon. The inelastic
longitudinal and transverse responses functions, given by
specific components of the hadronic tensor, RL

inel ¼ W00
inel

and RT
inel ¼ W11

inel þW22
inel, can be expressed as

RL;T
inelðq;ωÞ ¼

N
η3Fκ

ξF

Z
1þ2λ−εS

μthresh

dμXμXFL;Tðψ 0
XÞUL;T; ð8Þ

where we have introduced the dimensionless variables
κ ¼ q=2mN , ξF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðkF=mNÞ2

p
− 1 and εS ¼ ES=mN

with mN the nucleon mass and ES the separation energy
(see [13] for details). The parameter μX is the dimensionless
invariant mass and μthresh refers to the pion-production
threshold. The terms FL;T are the inelastic scaling
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functions which exhibit the same structure as in Eq. (3),
but using the inelastic scaling variable ψ 0

X. Finally, the
functions UL;T , first introduced in [13], depend on the
single-nucleon inelastic structure functions w1;2 which
are described in our case by using empirical fits of the
inelastic electron-proton and electron-deuteron cross
sections [26,27].
As already commented on for the QE case, the deter-

mination of the RMF=RPWIA transition parameter (q0)
in the inelastic regime also depends on the particular
kinematics involved and it will be discussed in detail in
Sec. II D.

C. Electromagnetic 2p-2h MEC contributions

The evaluation of the 2p-2h pionic MEC contributions is
performed within the RFG model in which a fully Lorentz
covariant calculation of the MEC can be performed (see
[20,21,23]). Although MEC clearly dominate in the trans-
verse channel, our present study also includes, for the first
time, MEC contributions in the longitudinal sector. In
Fig. 2, we present the separate 2p-2h MEC responses in
the two channels. As shown, the transverse sector clearly
dominates up to q ∼ 1800 MeV=c, while the L and T
contributions are of the same order for larger values of the
momentum transfer. However, note that the kinematics
where the MEC give the largest contribution to the cross
section corresponds to q≲ 1000–1500 MeV=c, as stated
in [23].
As discussed in previous work [20–22,28,29], relativity

is an essential ingredient in the analysis of 2p-2h processes
at momentum transfers above 500 MeV=c. At these q
values, the static approximation used for the Δ propagator
in the nonrelativistic calculations of 2p − 2h transverse
response function [30] fails to explain the “dip” region. A
fully relativistic calculation of the 2p-2h MEC response
functions in the RFG model requires one to compute the

spin-isospin traces of all the many-body MEC diagrams.
This involves the analytical calculation of more than
100,000 terms some of which involve subsequent numeri-
cal seven-dimensional integrations. This makes the com-
putation highly nontrivial. In order to reduce the
computational time as well as to ease the implementation
of the results in Monte Carlo generators used in the analysis
of neutrino experiments, where a wide range of kinematic
conditions—momentum and energy transfers—are
involved, we make use of a parametrization of the MEC
responses. The parametrization form employed for the
transverse electromagnetic response was analyzed in
[23]. In the present work, we follow a similar procedure
to get a description for the longitudinal one. As shown in
Fig. 3 the 2p-2h MEC longitudinal response function is
reproduced with a high accuracy, a result very similar to the
situation already presented in the transverse channel (see
[23]). Notice that no approximations are involved in the
present calculation. The MEC parametrization considered
here takes care of the complete relativistic calculation,
making it suitable to be applied at very high values of the
momentum and energy transfers.

D. Determination of q0 parameters

The procedure to determine the RMF=RPWIA transition
in the SuSAv2 model in both QE and inelastic regimes is
based on the analysis of the (e, e0) data in a wide
kinematical region. The transition parameter, q0 [see
Eq. (4)], must exhibit a dependence on the particular
kinematics involved in such a way that at higher energies,
which imply higher momentum transfers, the RPWIA
contribution is more relevant than the RMF one, whereas
the opposite occurs at lower energies. With these assump-
tions, we perform a χ2 analysis of the electron-nucleus
experimental data which is first focused on the QE region
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FIG. 2. Comparison between 2p-2h MEC RL and RT response
functions versus ω. The curves are displayed from left to right in
steps of q ¼ 200 MeV=c.
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(qQE0 ) and after that extended to the inelastic domain (qinel0 ).
In the whole analysis we take into account the SuSAv2
model for both QE and inelastic regimes as well as the
2p-2h MEC calculations. After analyzing the experimental
data set, we get the qQE0 and qinel0 parameters as functions
of q. Figure 4 illustrates the behavior of both parameters,

qQE0 (top and middle panels) and qinel0 (bottom). The data
points and their error bands represent the values of the
parameters that best fit the data at different kinematics
(within a ∼10% in the χ2 minimum). As shown, qQE0
increases moderately with q at low to intermediate values
whereas the slope goes up significantly at higher kinemat-
ics (q ≳ 700 MeV=c).
This suggests the following parametrization,

qQE0 ðqÞ ¼
�
Aþ Bq; q < q1
CþDq; q > q1

; ð9Þ

with q1 ¼ 700 MeV=c, A ¼ 377.629 MeV=c, B ¼ 0.407,
C ¼ −5.322 MeV=c and D ¼ 0.968. Imposing continuity
of the above function, we are left with three free param-
eters, A, B, C, in the fit.
A similar parametrization is found for qinel0 ðqÞ, but in this

case only one linear function is used for the whole region of
q explored,

qinel0 ðqÞ ¼ A0 þ B0q; ð10Þ

with A0 ¼ 494.439 MeV=c and B0 ¼ 0.706.
Finally, it is also worth mentioning that an even better

agreement with the (e, e0) data could be achieved by
employing a nonlinear fit of the q0 parameters as well as
including a dependence on the incident energy (Ei) or the
scattering angle (θe) in the transition parameters (q0, ω0);
however, the simpler assumptions made in this work are felt
to be adequate for our purposes.

III. RESULTS

In this section, we present our results for 12Cðe; e0Þ cross
sections. In the following, we adopt the Bosted and Christy
parametrization for the single-nucleon inelastic structure
functions [26,27] which describes DIS, resonant and
nonresonant regions. For the QE regime, we employ the
electromagnetic form factors of the extended Gari-
Krumpelmann (GKex) model [31–33]. The sensitivity of
the QE results to the different parametrizations has been
discussed in [34]. Additionally, for the Fermi momentum
we employ the values obtained in [12], namely kF ¼
228 MeV=c for 12C.

A. Differential cross sections

In this section, we present the double differential
inclusive 12Cðe; e0Þ cross section versus the energy trans-
ferred to the nucleus (ω), confronting our predictions with
the available experimental data [35,36]. Results are shown
in Figs. 5, 6 and 7: in each panel we show the three separate
contributions to the inclusive cross section, namely, QE,
2p-2h MEC and inelastic. The comparisons are carried out
for a very wide range of kinematics from low-intermediate
energies to the highly-inelastic regime. Each panel
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d2σ=dΩ=dω in nb=GeV=sr, whereas the one on the right represents the q value in GeV=c.
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FIG. 6. As for Fig. 5, but now for kinematics corresponding to higher qQE values.
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FIG. 7. As for Fig. 5, but now for kinematics corresponding to the highest qQE values considered.
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corresponds to fixed values of the incident electron
energy (Ei) and the scattering angle (θe): Ei∶
280–4045 MeV and θe∶ 12°–145°. To make it easier to
discuss the results to follow, the ordering of the panels has
been done according to the corresponding value for the
momentum transfer at the quasielastic peak, denoted as
qQE. This gives us the value of qwhere the maximum in the
QE peak appears. However, it is important to point out that
as ω varies, q also varies. This is important in order to
estimate the value of the RMF=RPWIA transition param-
eter q0 in both regimes, QE and inelastic. Hence, we also
include in each panel a curve that shows how the momen-
tum transfer changes with ω. Results illustrate that, at very
forward angles, the value of q increases with the energy
transfer, whereas this trend tends to reverse at backward
angles. Thus, for electrons scattered backwards, the q
values corresponding to the inelastic process are smaller
than those ascribed to the QE regime. However, notice that
in this situation the cross section is clearly dominated by the
QE peak. On the contrary, at very forward kinematics,
the inelastic process takes place at larger values of q. Thus,
the two regimes, QE and inelastic, overlap strongly, the
inelastic processes being the main ones responsible for the
large cross sections observed at increasing values of ω.
Finally, for intermediate scattering angles the behavior of q
exhibits a region where it decreases (QE-dominated proc-
ess), whereas for higherω (inelastic regime) the behavior of
q reverses and starts to go up. In these situations the QE
peak, although significantly overlapped with the inelastic
contributions, is clealy visible even for very high electron
energies.
The systematic analysis presented in Figs. 5, 6 and 7

demonstrates that the present SuSAv2-MEC model
provides a very successful description of the whole set
of (e, e0) data, validating the reliability of our predictions.
The positions, widths and heights of the QE peak are nicely
reproduced by the model taking into account not only the
QE domain but also the contributions given by the 2p-2h
MEC terms (around ∼10%–15%). Only at very particular
kinematics, i.e., θe ¼ 145° and E ¼ 320 (360) MeV
(Fig. 6) and 440 MeV (Fig. 7), does the model clearly
underpredict data at the QE peak as also observed in [37].
However, notice that the dip region is successfully repro-
duced by the theory. Moreover, the remaining kinematics
corresponding to very backward angles, E ¼ 560 MeV,
θe ¼ 145° (Fig. 7), is well described by the model with a
very high tail ascribed to the inelastic processes. Another
kinematical situation whose discussion can be of interest
concerns the scattering angle θe ¼ 37.5°. Four cases are
shown, one in Fig. 6 and three in Fig. 7. As noted, the
model does very well for the lower values of qQE starting to
depart from data as qQE goes up. Note that this is the case at
qQE ¼ 792 MeV=c and, particularly, at qQE ¼ 917 MeV=c
where the theoretical predictions overestimate data by 5%
and 10%, respectively, at the QE peak as well as in the dip

region where the QE and inelastic contributions overlap
and 2p-2h MEC are sizeable.
This overestimation of cross section occurs only for

the set of data of [38], while a good agreement is observed
at similar scattering angles, but for lower momentum
transfers, namely, qQE ¼ 402.5 MeV=c (Fig. 5) and
qQE ¼ 443 MeV=c (Fig. 6), which correspond to different
experimental setups.
Some comments concerning the “dip” region between

the QE and the Δ peaks are also in order. This is the region
where the QE and the inelastic contributions overlap the
most and where FSI effects that modify in a significant way
the tail of the QE curve at large ω values can introduce an
important impact. Moreover, the role of the 2p-2h MEC
effects is essential because its maximum contribution
occurs in this region. Thus, only a realistic calculation
of these ingredients beyond the IA can describe success-
fully the behavior of the cross section.
To conclude, the accordance between theory and data

in the inelastic regime, where a wide variety of effects are
taken into account, also gives us great confidence in the
reliability of our calculations. Note the excellent agreement
in some situations even being aware of the limitations
and particular difficulties in order to obtain phenomeno-
logical fits of the inelastic structure functions, and the
poorer quality of some experimental data sets at these
kinematics.

B. Sensitivity of the model

It is important to point out the novelties introduced in this
work compared with some previous (preliminary) studies.
With regards to the results shown in [14], that were based
only on the superscaling function extracted from the
analysis of the longitudinal (e, e0) data and assuming the
transverse function to be equal (scaling of the zeroth kind),
in the present paper the enhancement in the transverse
channel introduced by the RMF model is incorporated.
Moreover, the role of FSI is carefully examined by making
use of the evolution of the scaling funtion from the RMF
responses to the RPWIA ones as the momentum transfer
goes up. This explains why the present analysis provides a
much more accurate description of the data. Notice that the
new SuSAv2 makes both the QE and the inelastic results
higher. This outcome also can be observed in [16], where
the study was restricted to the QE region and a fixed value
of q0 that can be appropriate for the specific kinematics
considered was used. On the contrary, here the aim is to
provide a model capable of reproducing (e, e0) cross
sections for a very wide selection of kinematics and
including in each case the whole energy spectrum. This
is consistent with the q dependence shown by q0 in both
regimes, QE and inelastic. We have also tested the
sensitivity of our results to different choices in the values
of ω0, q0 and Eshift for two representative kinematical
situations (see Fig. 8). With regards to ω0, a variation of
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�100 MeV leads to negligible effects; hence, the value of
χ2 is basically the same (left panels in Fig. 8). In the case of
q0 and Eshift, variations of the order of�100 MeV=c (in q0)
and �5 MeV (Eshift) lead to differences within ∼20%
on χ2, but still provide a very good representation of the
data (see results presented in the middle and right
panels of Fig. 8). Note, however, that q0 is a dynamical
parameter running with q, whereas the value of Eshift is
determined by the right location of the maxima in the
scaling functions. Hence, a significant variation of these
three values does not imply a worsening in the agreement
with data.

C. Relevance of the RMF=RPWIA effects

The SuSAv2 model discussed in this work incorporates
ingredients coming from the RMF and RPWIA approaches.
Whereas the RMF provides an excellent description of
the experimental longitudinal scaling function extracted
from data taken at intermediate q values, producing the
required asymmetry and the enhancement of the transverse
response, the RPWIA approach yields much more suitable
results at higher values of the momentum transfer where
FSI effects are significantly reduced. In Fig. 9, we present
the cross sections for a set of kinematical situations
showing the isolated contributions emerging from the
two models in the case of the QE regime. The percentage
of the two contributions is given in each panel. As shown,

for those kinematics that correspond to the lower values of
qQE (top panels) the RMF response contributes the most.
As qQE increases, the RPWIA contribution becomes
relatively more important, approaching the RMF one
(see panels in the middle). Finally, for the higher qQE
values (bottom panels), the behavior reverses with the
RPWIA result being the main one responsible for the QE
response.
To make clearer how both RMF and RPWIA approaches

contribute within the SuSAv2 model, in Fig. 10 we
present the specific percentages ascribed to the two con-
tributions and how they vary with the value of qQE.
The main variation in the two cases is produced in the
region of intermediate qQE values, namely, 250≲ qQE≲
700 MeV=c. Here, the relative RMF contribution quickly
diminishes as qQE increases whereas the opposite occurs
for the RPWIA. Note that at qQE ∼ 700 MeV=c both
models produce basically the same answer (∼50%) cross-
ing each other, whereas for qQE ≲ 500 MeV=c RPWIA
gives a very minor contribution, that is, FSI are essential to
describe data at these kinematics. Finally, at higher qQE
the RPWIA increases slowly, whereas the RMF decreases,
although in both cases some kind of saturation seems to
emerge approaching the RPWIA percentage to ∼60%–70%
(∼30%–40% for the RMF). Although not presented here
for simplicity, similar comments can be drawn also for the
RMF and RPWIA contributions in the inelastic regime.
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IV. CONCLUSIONS

The SuSAv2 model was originally introduced in [16] and
applied to the analysis of electron and charged-current (CC)
neutrino scattering reactions within the QE domain; that is,
the model was based exclusively on the IA. Contrary to the
original SuSA model, based on the existence of a universal
scaling function extracted from the longitudinal (e, e0) data,
the SuSAv2 model incorporates several “reference” scaling
functions related to the predictions given by the RMF
approach. This leads to zeroth-kind scaling violations;
namely, the transverse scaling function is higher by
∼20% than the longitudinal one. Furthermore, the differ-
ence between isoscalar and isovector contributions in
electron and neutrino reactions, as well as the axial-axial
and the interference axial-vector terms in the latter, intro-
duce basic differences that are incorporated in the new
SuSAv2. All these ingredients have been taken into account
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in addition to the particular behavior shown by the scaling
functions versus the momentum/energy transfer in the
process. Whereas the RMF approach does well at low to
intermediate values of q, results in the high-q regime revert
to those of the RPWIA. Hence, SuSAv2 is constructed as a
“blend” between the properties of the RMF and RPWIA
approaches.
In this work, the SuSAv2 model is extended for the first

time to the whole energy spectrum, incorporating the
contributions coming from the QE, inelastic and two-body
meson exchange currents. Within this framework, a general
“blending” function is introduced to make the transition
between the RMF and RPWIA responses. This function is
constructed in terms of a parametrization of the optimized
blending region given by q0, and it has been applied to the
QE as well as to the inelastic regimes. Although the use of
more free parameters, as ω0 and/or the shift energy, leads to
an even better agreement with data in some particular cases,
the specific parametrization assumed is not critical and,
indeed, the present model is capable of reproducing very
successfully the whole energy spectrum of (e, e0) data at
very different kinematics. This gives us great confidence in
the reliability of the model when extended to the descrip-
tion of neutrino-nucleus scattering. In this case, not only do
the new responses contribute, but the wide neutrino energy
band implied by the typical accelerator-based neutrino
fluxes makes it difficult to reconstruct the neutrino energy.
Thus, ingredients beyond the ones usually assumed within
the IA can have a significant impact on the analysis of data.
Work along these lines is presently in progress.
A basic feature of our present study, apart from the

SuSAv2 model applied to the QE and inelastic regions,
concerns the evaluation of the two-body meson exchange
currents. This is based on a fully relativistic model that can
be thus applied to very high energies/momenta. This is
crucial in order to analyze neutrino oscillation experiments.
In the present study, we have used a fixed parameterization

of the 2p-2h MEC response functions that allows us to
avoid the computationally demanding microscopic calcu-
lation for the entire set of kinematics for the experimental
data presented here, including for the first time both the
transverse and longitudinal two-body currents.
In future work, we will present a similar parametrization

of the 2p-2h MEC responses for use in CC neutrino
scattering (see [39]). This can be easily incorporated into
the Monte Carlo neutrino event generators, and this should
be of great interest for analyses of neutrino oscillation
experiments.
To conclude, we emphasize the importance of scaling

arguments and the need to describe properly electron
scattering data before the model can be extended to
neutrino reactions. The analysis presented in this work,
restricted to electrons, includes a complete relativistic
calculation of the MEC-2p2h contributions in addition to
the global scaling analysis applied not only to the QE
regime but also to the inelastic one. These ingredients are of
crucial importance for the analysis of neutrino reactions.
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