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SUMMARY	21 

• Strigolactones	(SL)	contribute	to	drought	acclimatization	in	shoots,	since	SL-depleted	plants	22 

are	 hypersensitive	 to	 drought	 due	 to	 stomatal	 hyposensitivity	 to	 abscisic	 acid	 (ABA).	23 

However,	under	drought,	SL	biosynthesis	is	repressed	in	roots,	suggesting	organ	specificity	24 

in	their	metabolism	and	role.	Since	SL	can	be	transported	acropetally,	such	drop	may	also	25 

affect	shoots,	as	a	systemic	indication	of	stress.	26 

• We	 investigated	 this	 hypothesis	 by	 analysing	molecularly	 and	 physiologically	WT	 tomato	27 

scions	grafted	onto	SL-depleted	rootstocks,	compared	to	self-grafted	WT	and	SL-depleted	28 

genotypes,	during	a	drought	time-course.	29 

• Shoots	receiving	few	SL	from	the	roots	behaved	as	under	mild	stress	even	if	irrigated.	Their	30 

stomata	were	hypersensitive	to	ABA	(likely	via	a	localized	enhancement	of	SL	synthesis	in	31 

shoots).	Exogenous	SL	also	enhanced	stomata	sensitivity	to	ABA.	32 

• As	 the	 partial	 shift	 of	 SL	 synthesis	 from	 roots	 to	 shoots	 mimics	 what	 happens	 under	33 

drought,	a	reduction	of	root-produced	SL	might	represent	a	systemic	signal	unlinked	from	34 

shootward	ABA	translocation	and	sufficient	to	prime	the	plant	for	better	stress	avoidance.	35 

	36 
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INTRODUCTION	40 

Drought	stress	counts	among	the	most	recurrent	and	limiting	environmental	conditions	for	plant	41 

development	and	full	productivity;	under	water	scarcity,	phytohormones	cooperatively	interact	to	42 

allow	resource	optimization	(Christmann	et	al.,	2006).	Abscisic	acid	(ABA)	biosynthesis	is	strongly	43 

and	rapidly	increased	by	drought,	and	prevents	water	loss	mainly	by	driving	stomata	closure,	thus	44 

controlling	 transpiration.	Also,	 root-synthesized	ABA	 is,	 in	 some	plants,	 a	 systemic	 stress	 signal,	45 

travelling	 shootward	 to	prevent,	 among	others	effects,	 the	negative	 consequences	of	 soil	water	46 

deficit	 (Comstock,	 2002).	However,	 in	plants	 such	as	Arabidopsis	 thaliana	and	 tomato	 (Solanum	47 

lycopersicum	 L.),	 ABA	 produced	 by	 roots	 under	 water	 deprivation	 is	 unnecessary	 for	 shoot	48 

responses,	 leaving	 uncertainty	 on	 the	 chemical	 nature	 of	 the	 systemic	 drought	 stress	 signal	49 

(Holbrook	 et	 al.,	 2002;	 Christmann	 et	 al.,	 2007).	 Additionally,	 it	was	 shown	 in	 tomato	 that	ABA	50 

travels	 from	 shoots	 to	 roots	 under	 long-term	 drought,	 thus	 inverting	 the	 original	 hypothesis	51 

(Manzi	 et	 al.,	 2015).	 Other	 signals,	 such	 as	 hydraulic,	 electrical	 and	 chemical	 signals,	 including	52 

other	 phytohormones	 and	 changes	 in	 xylem	 sap	 pH,	 are	 therefore	 also	 thought	 to	 contribute	53 

[reviewed	by	(Huber	&	Bauerle,	2016)].	 It	 is	argued	however	that	positive	chemical	signals	alone	54 

cannot	 account	 for	 the	 initial	 stomatal	 responses	 to	 root	 drying,	 because	 of	 the	 relatively	 low	55 

xylem	transport	velocity	(Huber	&	Bauerle,	2016).	56 

Recently,	 the	 hormones	 strigolactones	 (SL)	 have	 been	 also	 proposed	 as	 signal	mediators	 under	57 

environmental	stress.	SL	have	pervasive	roles	in	development,	from	germination	and	reproduction	58 

to	root	and	shoot	architecture;	at	various	levels,	they	also	promote	the	interaction	with	beneficial	59 

root	 symbionts	 as	 well	 as	 with	 detrimental	 (micro)organisms	 [reviewed	 by	 (Ruyter-Spira	 et	 al.,	60 

2013)].	 SL	 and	ABA	 share	 their	 biosynthetic	precursor,	 both	being	 carotenoid-derived	 terpenoid	61 

lactones	(Matusova	et	al.,	2005).	Several	enzymes	act	sequentially	 in	SL	biosynthesis:	DWARF	27	62 

(D27)	is	a	β-carotene	isomerase,	CCD7	and	CCD8	are	Carotenoid-Cleavage	Dioxygenases	(CCD)	and	63 

MORE	AXYLLARY	GROWTH	1	(MAX1)	is	a	class	III	cytochrome	P450	that,	with	its	orthologues	and	64 

paralogues	and	the	recently	characterized	LATERAL	BRANCHING	OXIDOREDUCTASE	(LBO)	(Brewer	65 

et	al.,	2016),	 is	 thought	to	contribute	to	the	oxidation	of	 the	SL	precursor	carlactone	and	to	the	66 

chemical	diversification	of	SL	family	members	[reviewed	by	(Al-Babili	&	Bouwmeester,	2015)].	The	67 

core	enzyme	set	is	mostly	active	in	roots;	root-produced	SL	are	then	exported	out	of	the	producing	68 

cell	by	ABCG	transporter	protein(s)	such	as	PhPDR1	(Kretzschmar	et	al.,	2012;	Sasse	et	al.,	2015),	69 

both	to	be	exuded	in	soil	and	to	travel	shootward,	as	shown	in	Arabidopsis	and	tomato	(Kohlen	et	70 

al.,	2011).	Although	transcripts	of	SL-related	genes,	and	final	metabolites,	are	mostly	not	or	barely	71 



detectable	 in	shoots,	biosynthesis	 in	above-ground	tissues	 is	known	to	occur,	possibly	at	specific	72 

spots.	In	fact,	wild-type	(WT)	shoots	grafted	onto	SL-depleted	rootstocks	do	not	display	the	typical	73 

morphological	phenotype	of	SL-depleted	plants	(Foo	et	al.,	2001;	Sorefan	et	al.,	2003).	74 

Recently,	SL	metabolism	and	physiological	effects	 in	plants	under	osmotic	stress	conditions	have	75 

been	analysed.	SL-depleted	A.	thaliana	and	Lotus	japonicus	(Liu	et	al.,	2013)	are	hypersensitive	to	76 

drought	at	the	shoot	level,	a	feature	linked	to	the	hyposensitivity	of	their	stomata	to	endogenous	77 

and	exogenous	ABA.	This	finding	supports	a	positive	role	for	SL	in	the	acclimatization	to	drought	in	78 

above-ground	organs	(Ha	et	al.,	2014;	Liu	et	al.,	2015).	Consistent	with	this	idea,	the	transcript	of	79 

SL	 biosynthetic	 genes	 is	 increased	 by	 drought	 in	 Arabidopsis	 leaves	 (Ha	 et	 al.,	 2014).	 However,	80 

transcription	 of	 biosynthetic	 and	 SL	 transporter-encoding	 genes	 is	 repressed	 along	 with	 the	81 

accumulation	 of	 SL	 in	 non-mycorrhizal	 L.	 japonicus	and	 tomato	 roots	 under	 drought	 (Liu	 et	 al.,	82 

2015;	Ruiz-Lozano	et	al.,	2016).	This	is	surprising	per	se,	since	roots	are	the	main	SL	production	site	83 

under	 normal	 conditions;	 and	 suggests	 different	 dynamics	 for	 shoot-	 and	 root-derived	 SL.	 A	84 

negative	correlation	between	ABA	and	SL	levels	was	observed	in	non-mycorrhizal,	water-stressed	85 

roots	of	L.	japonicus	and	tomato	(Liu	et	al.,	2015;	Ruiz-Lozano	et	al.,	2016).	Since	drought	stress-86 

triggered	 ABA	 accumulation	 is	 hampered	 by	 exogenous	 SL	 in	 L.	 japonicus	 roots,	 the	 drop	 in	 SL	87 

biosynthesis	 in	 roots	 under	 drought	might	 have	 the	 role	 to	 allow	 an	 increase	 of	 local	 ABA	 and	88 

possibly,	also	of	its	levels	in	the	xylem	sap,	leading	to	systemic	responses	to	a	dropping	root	water	89 

potential	 in	 plants	 that	 rely	 also	 on	 ABA	 for	 chemical	 signalling	 of	 drought	 (Liu	 et	 al.,	 2015).	90 

However,	 the	 possibility	 exists	 that	 such	 drop	 has	 also	 a	 direct	 physiological	 effect	 on	 shoots,	91 

namely	 as	 a	 systemic	 indication	 of	 stress	 at	 the	 root	 level,	 since	 root-produced	 SL	 can	 also	 be	92 

transported	to	the	whole	plant	(Kohlen	et	al.,	2011).	This,	and	the	fact	that	SL	are	needed	locally	in	93 

stressed	shoots	for	efficient	control	of	water	loss	by	transpiration	(Ha	et	al.,	2014;	Liu	et	al.,	2015),	94 

led	 us	 to	 hypothesize	 that	 WT	 scions	 grafted	 onto	 SL-depleted	 rootstocks	 may	 behave	 as	 if	95 

stressed	 even	 in	 the	 absence	 of	 stress,	 at	 least	 under	 some	 respects,	 and	 perform	 differently	96 

under	stress	than	if	grafted	onto	WT	rootstocks.	97 

In	this	work,	we	investigated	the	possible	systemic	significance	of	the	SL	decrease	in	roots	under	98 

drought,	by	analysing	molecularly	and	physiologically	WT	scions	grafted	over	SL-depleted	(CCD7-99 

silenced)	tomato	rootstocks,	compared	to	self-grafted	WT	and	SL-depleted	genotypes,	both	under	100 

normal	and	stress	conditions.	The	results	proved	that	 indeed	stomata	of	shoots	receiving	 less	SL	101 

from	 the	 roots	 are	 hypersensitive	 to	 ABA	 also	 in	 the	 absence	 of	 stress,	 possibly	 through	 an	102 

enhancement	of	local	SL	synthesis.	This	is	likely	to	mimic	what	normally	happens	under	drought,	103 



and	suggests	that	root-derived	SL	-	or	better,	a	reduction	thereof	-	might	be	a	component	of	the	104 

systemic	signal	of	stress	in	tomato.	105 

	106 

MATERIALS	AND	METHODS	107 

Plant	material	and	growth	conditions	108 

The	tomato	(Solanum	lycopersicum	L.)	SlCCD7-silenced	line	6936,	hereafter	called	SL-,	and	its	WT	109 

genotype	M82	were	a	kind	gift	by	Dr.	H.	J.	Klee	(University	of	Florida).	Seeds	were	sterilized	in	4%	110 

(v:v)	sodium	hypochlorite	containing	0.02%	(v:v)	Tween	20,	rinsed	thoroughly	with	sterile	water,	111 

and	then	germinated	for	48	h	on	moisten	filter	paper	at	25°C	in	darkness.	Subsequently,	seedlings	112 

were	 grown	 in	 inert	 substrate	 (sand:vermiculite;	 1:1,	 v:v)	 and	 the	 pots	watered	with	 Hoagland	113 

solution	twice	per	week.	The	three	grafted	lines	were	produced	by	the	clamp	grafting	technique	114 

on	 plants	 at	 the	 2/4-leaf	 stage	 and	 with	 stem	 diameter	 of	 about	 1.5-2	 mm.	Water	 stress	 was	115 

applied	to	plants	four	weeks	after	grafting	by	withholding	water	starting	at	day	zero	(T0);	shoots	116 

and	 roots	 were	 collected	 0,	 1,	 3	 and	 5	 days	 after	 the	 beginning	 of	 the	 stress	 (T0	 through	 T5,	117 

respectively;	 3	 plants	 per	 line	 and	 sampling	 point)	 and	 stored	 to	 -80°C.	 At	 T5,	 3	 plants	 per	 line	118 

were	watered	and	collected	after	2	additional	days	to	give	the	rehydrated	(recovery)	samples.	The	119 

experiment	was	repeated	twice.	Supporting	Information	Fig.	S1	shows	how	relative	water	content	120 

and	soil	water	potential	were	dropping	during	the	course	of	one	drought	experiment.	Relative	soil	121 

water	 content	 was	 gravimetrically	 determined	 by	 collecting	 daily	 ~10	 ml	 of	 soil	 from	 three	122 

different	points	and	depths	in	each	pot	(at	5,	10	and	15-cm	depth	with	120°	of	angular	separation	123 

between	each	of	the	respective	sample	points).	The	soil	was	weighed,	oven-dried	at	100°C	for	24	h	124 

and	then	re-weighed	to	assess	water	content.	At	the	same	time,	the	soil	water	retention	curve	was	125 

assessed	with	pressure	plate	measurements	of	the	potting	substrate	according	to	(Tramontini	et	126 

al.,	2014).	127 

	128 

Gene	transcript	quantification		129 

Total	RNA	from	tomato	roots	and	shoots	was	extracted	as	described	(Gambino	et	al.,	2008)	and	130 

treated	with	DNase	I	(ThermoScientific)	at	37°C	for	30	min	to	remove	residual	genomic	DNA.	First-131 

strand	 cDNA	 was	 synthesized	 from	 3	 μg	 of	 purified	 total	 RNA	 using	 the	 High-Capacity	 cDNA	132 

Reverse	Transcription	Kit	 (Applied	Biosystems)	according	 to	 the	manufacturer’s	 instructions.	 For	133 

transcript	quantification	of	SlCCD7,	SlCCD8	and	SlNCED1	by	quantitative	reverse-transcription	PCR	134 

(qRT-PCR),	the	StepOne	system	(Applied	Biosystems)	was	used,	with	transcript	of	the	Elongation	135 



factor	1α	 (SlEF1α	 gene)	 as	 a	 reference;	primers	used	are	 reported	as	 Supporting	 information	 in	136 

Supplementary	Table	S1.	Three	independent	biological	replicates	were	analysed	and	each	qRT-PCR	137 

reaction	was	run	in	technical	triplicates.	Transcripts	of	the	target	genes	were	quantified	by	the	2-138 
ΔΔCt	method.	139 

	140 

Physiological	measurements	141 

Leaf	 water	 potential,	 stomatal	 conductance	 and	 net	 carbon	 assimilation	 were	 measured	 daily	142 

between	 10:00	 and	 12:00	 am	 on	 at	 least	 three	 plants	 per	 grafted	 line	 and	 independent	143 

experiment,	 as	 reported	 by	 Liu	 et	 al.	 (2015).	 Briefly,	 stomatal	 conductance	 and	 net	 carbon	144 

assimilation	 rate	were	measured	with	 a	 portable	 gas	 exchange	 system	 (GFS-3000,	Walz	 GmbH,	145 

Effeltrich,	 Germany)	 by	 clamping	 the	most	 apical	 leaves	 of	 a	 shoot	 in	 the	 leaf	 chamber,	where	146 

photosynthetically	 active	 radiation	 (1200	 µmol	 photons	 m-2	 s-1),	 air	 flow	 (750	 µmol	 s-1)	 and	147 

temperature	 (25°C)	were	kept	constant.	Environmental	conditions	of	CO2	 (450	ppm)	and	vapour	148 

pressure	 deficit	 (2.3	 kPa)	were	 stable	 during	 the	 10-day	 experiments.	 Leaf	water	 potential	was	149 

measured	with	a	pressure	chamber	 (Scholander	et	al.,	1965)	on	one	 leaf	per	plant,	 immediately	150 

after	 gas	 exchange	 quantification.	 For	 the	 quantification	 of	 responses	 to	 ABA,	 stomatal	151 

conductance	was	measured	as	above	at	30-s	intervals	before	and	during	ABA	treatment.	This	was	152 

accomplished	by	cutting	leafy	twigs	while	submerged	in	filtered	water	(one	leaf	each,	from	three	153 

plants	per	grafted	line,	treatment	and	experiment),	by	letting	stomatal	conductance	stabilize	with	154 

the	 twig	 dipped	 in	water	 and	 then	by	 adding	ABA	 to	 5,	 20	or	 50	μM	 final	 concentration,	while	155 

continuously	recording	every	30	s	both	stomatal	conductance	and	transpiration	rates	as	detailed	156 

above.	For	treatment	with	exogenous	SL,	WT	plants	were	sprayed	with	a	5	µM	solution	of	racGR24	157 

(StrigoLab	 SrL,	 Turin,	 IT)	 24	 h	 before	 treatment	 with	 ABA	 5	 µM	 and	 stomatal	 conductance	158 

recording	as	above.	159 

	160 

Extraction	and	quantification	of	SL	and	ABA	161 

Solanacol,	orobanchol	and	didehydro-orobanchol	were	quantified	in	the	roots	of	the	three	grafted	162 

lines,	while	ABA	was	quantified	in	both	roots	and	shoots.	For	SL	extractions,	3	plants	per	line	and	163 

time-point	were	pooled,	while	two	independent	biological	assays	were	run.	For	SL	quantification,	164 

samples	(0.5	g	each)	were	manually	ground	in	liquid	nitrogen	and	extracted	with	2	ml	of	cold	ethyl	165 

acetate	containing	D6-epi-5	deoxystrigol	as	internal	standard	(0.05	nmol	ml–1)	in	10-ml	glass	vials.	166 

Standards	 for	 didehydro-oronbanchol	 isomers	were	not	 available,	 so	quantities	 for	 this	 SL	were	167 



expressed	as	percentage	ratio	with	respect	 to	WT	root	 tissues	 in	 the	absence	of	stress	 (T0);	 the	168 

isomer	reported	in	Fig.	S2C	is	the	one	with	retention	time	of	4’	6’’	in	our	conditions.	The	extraction	169 

and	quantification	procedures	 for	 SL	were	performed	as	 previously	 reported	 (Lopez-Raez	 et	 al.,	170 

2010).	For	ABA	extraction,	2	biological	 replicates	of	2	pooled	plants	each	were	sampled	per	 line	171 

and	time-point,	while	two	independent	biological	assays	were	run.	For	ABA	quantification,	labelled	172 

internal	standard	was	added	([2H]6-ABA,	20	pmol)	to	each	sample	(20–25	mg	homogenized	in	1	ml	173 

of	cold	10%	MeOH	in	H2O,	v/v)	and	subsequently	extracted	and	analysed	as	detailed	(Flokova	et	174 

al.,	2014).	175 

	176 

RESULTS	177 

WT	shoots	transpire	and	dehydrate	less	when	grafted	onto	SL-depleted	roots	178 

In	 order	 to	 investigate	 the	 systemic	 meaning	 of	 SL	 decrease	 in	 stressed	 roots,	 we	 sought	 to	179 

reproduce	such	condition	in	the	absence	of	stress.	To	this	purpose,	rootstocks	of	the	SL-depleted	180 

line	SL-	(6936)	(Vogel	et	al.,	2010)	were	joined	to	shoots	of	the	corresponding	WT	(M82)	to	give	181 

WT/SL-	hetero-grafts.	Two	sets	of	control	plants	were	also	generated,	i.e.	self-grafts	of	SL-	and	WT	182 

rootstocks	 and	 scions	 (SL-/SL-	 and	WT/WT,	 respectively).	 The	 physiological,	 transcriptional	 and	183 

metabolic	responses	to	water	stress	were	examined	at	different	time	points	for	these	three	sets	of	184 

individuals.	As	a	preliminary	check,	SL	content	 in	roots	was	quantified,	confirming	that	the	6936	185 

genotype	was	indeed	defective	in	SL	production	(about	20-fold	less	orobanchol,	solanacol	and	one	186 

of	 the	 didehydro-orobanchol	 isomers	 under	 unstressed	 conditions).	 The	 three	 SL	 metabolites	187 

decreased	 under	 stress,	 already	 one	 day	 after	 water	 withdrawal,	 both	 in	 WT	 and	 SL-	 roots,	188 

irrespectively	of	the	scion	genotype	(Supporting	Information	Fig.	S2a-c),	confirming	what	observed	189 

in	PEG-treated	L.	japonicus	roots	(Liu	et	al.,	2015).	190 

Measuring	 stomatal	 conductance	 and	 leaf	 water	 potential	 confirmed	 that	 in	 tomato,	 as	 in	191 

Arabidopsis	 and	 Lotus,	whole-plant	 SL	 depletion	 increases	 stomatal	 conductance	 and	 decreases	192 

leaf	water	potential	 in	 the	absence	of	 stress;	under	 the	same	conditions,	WT/SL-	plants	showed	193 

instead	 significantly	 lower	 stomatal	 conductance	 than	 WT/WT	 (Fig.	 1a	 and	 T0	 in	 Supporting	194 

Information	Fig.	 S3a).	Accordingly,	 leaf	water	potential	 values	were	 significantly	 less	negative	 in	195 

WT	leaves	grafted	onto	SL-	than	WT	roots	(Supporting	Information	Fig.	S3b).	Photosynthesis	of	WT	196 

scions	grafted	over	SL-	rootstocks	was	only	slightly	and	non-significantly	affected	by	the	reduced	197 

gas	 exchange	 of	 hetero-grafts	 compared	 to	 self-grafted	 WT	 plants,	 while	 both	 displayed	198 

significantly	lower	values	than	SL-	shoots	(Fig.	1b	and	Supporting	Information	Fig.	S3c).	199 



Under	 stress,	 the	 three	 grafted	 lines	 followed	 a	 similar	 trend	 of	 stomatal	 conductance	 and	 net	200 

carbon	 assimilation	 decrease,	 although	 starting	 from	 different	 values	 (Fig.	 1a,	 b).	 Under	 severe	201 

stress,	 gas	 exchange	 in	 leaves	 of	WT/SL-	 plants	 was	 comparable	 to	 the	WT,	 even	 if	 leaf	 water	202 

potential	 was	 less	 negative	 than	 in	 the	 latter;	 WT/SL-	 leaves	 also	 performed	 photosynthesis	203 

significantly	better	than	WT/WT	(Supporting	Information	Fig.	S3a-c).	SL-/SL-	plants	confirmed	their	204 

hypersensitivity	to	drought	for	all	parameters	tested.	These	data	indicated	that	SL	depletion	at	the	205 

root	 level	 reduces	 stomatal	 conductance	and	attenuates	 the	drop	 in	 leaf	water	potential	 in	WT	206 

shoots	 under	 drought,	 whereas	 SL	 depletion	 in	 shoots	 has	 opposite	 effects.	 After	 rehydration	207 

(Recovery,	 full	 symbols	 in	 Fig.	 1a-b,	 R	 in	 Supporting	 Information	 Fig.	 S3a-c),	 the	 physiological	208 

parameters	of	all	three	lines	returned	to	levels	similar	to	those	observed	in	the	absence	of	stress.	209 

	210 

Both	drought	and	depletion	of	SL	in	the	roots	induce	transcript	accumulation	for	SL	biosynthetic	211 

genes	in	the	shoots	212 

To	 assess	 whether	 the	 change	 in	 metabolite	 abundance	 is	 regulated	 at	 the	 gene	 transcription	213 

level,	two	SL	biosynthetic	genes	(SlCCD7	and	SlCCD8)	were	profiled	by	qRT-PCR	in	roots	and	shoots	214 

of	the	three	grafted	lines	under	irrigated	and	drought	stress	conditions,	in	the	same	plant	material	215 

used	for	SL	quantification.	216 

The	 analysis	 confirmed	 that	 in	 roots,	 transcript	 amount	of	 both	 genes	 inversely	 correlated	with	217 

stress	severity	for	all	grafted	lines	(Fig.	2a,	b	and	Supporting	Information	Fig.	S4a,	b).	In	the	shoots	218 

of	the	same	sets	of	plants	however,	 transcripts	of	both	biosynthetic	genes	followed	an	opposite	219 

trend	compared	to	 roots	and	accumulated	under	drought,	as	 reported	previously	 in	Arabidopsis	220 

and	postulated	in	Lotus	(Ha	et	al.,	2014;	Liu	et	al.,	2015)	(Fig.	2c,	d	and	Supporting	Information	Fig.	221 

S4d,	e).	It	must	be	noted	however	that	in	terms	of	relative	transcript	abundance,	values	in	shoots	222 

remained	much	lower	(about	one	hundredth;	not	obvious	in	the	normalized	data	of	Fig.	2)	of	root	223 

values	at	T0,	even	in	samples	collected	under	very	severe	stress	at	T5.	This	justifies	the	fact	that	224 

we	 were	 unable	 to	 detect	 the	 final	 metabolites	 in	 these	 shoot	 samples	 (data	 not	 shown).	225 

Relevantly	here,	expression	of	both	biosynthetic	genes	in	WT	shoots	was	significantly	higher	when	226 

the	mutant	was	used	as	rootstock	(WT/WT	vs	WT/SL-,	Fig.	2c,	d	and	Supporting	Information	Fig.	227 

S4c,	 d).	 This	 is	 a	 known	 pattern	 (Johnson	 et	 al.,	 2006)	 consistent	 with	 the	 idea	 of	 a	 general	228 

negative	feedback	by	the	final	metabolites	on	the	SL	biosynthetic	pathway	and	supported	by	the	229 

repressive	effect	of	exogenous	SL	on	the	same	genes	[see	for	example	(Liu	et	al.,	2015)].	Overall,	230 

data	on	transcript	of	SL-biosynthetic	genes	indicated	that	the	response	of	shoots	to	SL	deficiency	231 



in	roots	overlaps	with	the	response	to	osmotic	stress.	In	fact,	both	drought	stress	and	depletion	of	232 

SL	in	the	roots	in	the	absence	of	stress	induced	transcript	accumulation	of	SL	biosynthetic	genes	in	233 

tomato	shoots.	234 

As	an	additional	observation,	SlCCD7	transcripts	in	unstressed	SL-	(CCD7-silenced)	rootstocks	were	235 

more	abundant	in	grafts	bearing	a	WT	instead	of	a	SL-	shoot	(WT/SL-	vs	SL-/SL-;	T0	of	Fig.	2a).	This	236 

correlated	with	a	very	slight	increase	of	SL	metabolites,	especially	orobanchol	(see	T0,	Fig.	S2a-c)	237 

and	 suggested	 that	 a	 SL-dependent,	 shoot-to-root	 signal	 feeding	 back	 on	 the	238 

transcription/transcript	stability	of	this	gene	exists	in	tomato	as	in	Arabidopsis	and	pea	(Foo	et	al.,	239 

2005;	 Johnson	 et	 al.,	 2006),	 where	 it	 was	 shown	 to	 depend	 on	 the	 RMS2	 locus.	 Also,	 SlCCD8	240 

transcripts	were	more	abundant	in	SL-	than	WT	roots	(as	expected,	given	the	already	mentioned	241 

negative	feedback	of	SL	on	the	transcription	of	their	biosynthetic	genes;	Fig.	2b);	and	in	SL-	roots,	242 

SlCCD8	transcripts	were	more	concentrated	in	the	presence	of	a	SL-	than	of	a	WT	scion	(Fig.	2b).	In	243 

this	 sense,	 expression	 of	 SlCCD7	 and	 SlCCD8	 in	 the	 root	 seemed	 influenced	 oppositely	 by	 the	244 

ability	of	 the	shoot	 to	produce	SL.	We	may	hypothesize	 that	not	only	 locally-produced,	but	also	245 

shoot-synthesized	 SL	may	participate	 (directly	 or	 indirectly)	 in	 the	negative	 feedback	on	 SlCCD8	246 

expression	 in	 the	 root,	 and	 thus	 that	 in	 SL-	 roots,	 the	presence	of	 a	WT	 scion	may	 lead	 to	 less	247 

pronounced	overexpression	of	SlCCD8	than	in	the	presence	of	a	SL-	scion.	Finally,	it	is	noteworthy	248 

that	the	concentration	of	SlCCD8	transcript	in	WT	shoots	grafted	onto	SL-	roots	was	as	high	as	in	249 

SL-	shoots	in	the	absence	of	stress	(T0,	Fig.	2d)	but	remained	stable	along	the	time-course	in	the	250 

former	while	 it	was	 further	 induced	 in	 the	 latter	 (Supporting	 Information	Fig.	S4d).	We	have	no	251 

easy	explanation	for	this	pattern,	which	might	however	be	due	to	the	fact	that	 leaves	of	WT/SL-	252 

plants	dehydrate	 less	 and	produce	 less	ABA	 (see	 further	on)	 along	 the	 time-course,	 than	either	253 

self-grafted	control	line.	254 

	255 

The	low-transpiration	phenotype	of	hetero-grafted,	WT/SL-	plants	is	not	due	to	increased	total	256 

free	ABA	257 

To	 determine	 whether	 the	 effects	 of	 SL	 depletion	 on	 WT	 shoots	 may	 be	 due	 to	 altered	 ABA	258 

metabolism,	we	 set	 to	quantify	 this	hormone	 in	 roots	and	 shoots	of	plants	 in	 the	 three	grafted	259 

sets.	Previous	data	in	Arabidopsis	and	tomato	leaves,	and	in	Lotus	roots	and	shoots,	indicated	no	260 

changes	or	slight	decreases	of	ABA	correlated	with	SL	depletion	in	shoots,	especially	under	stress	261 

(Ha	et	al.,	2014;	Liu	et	al.,	2015);	ABA	content	was	reported	to	be	 lower	than	 in	WT	under	non-262 

stressful	conditions	only	in	CCD8-silenced	tomato	shoots	(Torres-Vera	et	al.,	2014).		263 



Results	 showed	 that	 under	 normal	 conditions,	 WT	 roots	 contain	 less	 free	 ABA	 than	 SL-	 ones	264 

(WT/WT	vs	 SL-/SL-	 and	WT/SL-	 plants,	 T0	 in	 Supporting	 Information	 Fig.	 S5a)	 per	 gram	of	 fresh	265 

tissue	weight.	As	stress	increased,	ABA	started	accumulating	in	roots	of	SL-/SL-	and	WT/WT	plants	266 

more	quickly	than	in	roots	of	WT/SL-	plants,	where	ABA	was	significantly	less	concentrated	than	in	267 

the	 roots	of	 the	other	 grafts	 (Supporting	 Information	 Fig.	 S5a).	 Correlation	 curves	 to	 leaf	water	268 

potential	values	were	however	substantially	superimposable	(Fig.	3a).	Transcript	quantification	for	269 

SlNCED1,	a	key	biosynthetic	gene	for	stress-induced	ABA	in	tomato	(Munoz-Espinoza	et	al.,	2015),	270 

showed	good	correlation	with	 free	ABA	content	but	 for	 a	 few	points	 and	grafting	 combinations	271 

(Fig.	 3b	 and	 Supporting	 Information	 Fig.	 S5b).	 These	 discrepancies	 between	 SlNCED1	 transcript	272 

amounts	 and	 ABA	 concentration	 may	 be	 due	 to	 post-transcriptional	 regulation	 of	 biosynthetic	273 

enzymes,	and/or	to	the	activity	of	catabolic	genes,	for	example,	or	to	the	release/sequestration	of	274 

free	ABA	from/in	conjugated	forms	[reviewed	by	(Xiong	&	Zhu,	2003)].	275 

While	in	the	absence	of	stress	SL-	shoots	contained	more	ABA	per	gram	of	fresh	weight	than	WT	276 

ones,	 as	 stress	 proceeded	 and	 leaf	water	 potential	 started	 becoming	more	 negative	ABA	 levels	277 

increased	faster	 in	WT	than	in	SL-	scions;	at	the	moment	of	maximum	stress,	ABA	concentration	278 

was	minimum	in	WT	scions	grafted	onto	SL-	rootstocks,	and	intermediate	in	SL-	shoots	(Fig.	3c	and	279 

T5	in	Supporting	Information	S5c).	The	same	trend	is	seen	for	transcripts	of	SlNCED1,	which	again	280 

showed	a	good	correlation	with	free	ABA	content	but	for	a	few	points	and	grafting	combinations	281 

(Fig.	3d	and	Supporting	Information	Fig.	S5d).	These	results	confirmed	that	especially	under	stress,	282 

SL	 depletion	 in	 the	 shoot	 partially	 compromises	 the	 ability	 to	 synthesize	 ABA.	 Furthermore,	283 

coupled	 to	 the	 physiological	 data	 in	 Fig.	 1,	 they	 strongly	 suggested	 that	 the	 low-gas	 exchange	284 

phenotype	of	hetero-grafted	WT/SL-	plants	was	not	due	to	increased	free	ABA	content,	given	the	285 

comparatively	low	ABA	concentration	in	their	tissues.	286 

	287 

WT	scions	are	hypersensitive	to	ABA	if	grafted	onto	SL-depleted	rootstocks	288 

To	 explore	 whether	 altered	 sensitivity	 to	 ABA	 might	 rather	 underlie	 the	 physiological	 and	289 

metabolic	results	described	above,	shoot	sensitivity	to	exogenous	ABA	in	dependence	of	the	rate	290 

of	SL	production	in	the	roots	was	investigated.	ABA	at	different	concentrations	was	applied	to	and	291 

absorbed	by	excised	petioles	of	composite	leaves	of	the	three	grafted	lines,	while	measuring	the	292 

time	required	 for	 the	stomata	 to	start	 closing.	This	assay	on	 the	one	hand	confirmed	 in	 tomato	293 

what	was	already	known	in	Arabidopsis	and	Lotus,	i.e.	that	SL-depleted	scions	are	hyposensitive	to	294 

ABA	(at	all	three	-	but	more	convincingly	at	the	lower	-	concentrations	tested),	with	respect	to	WT	295 



(SL-/SL-	vs	WT/WT;	Fig.	4).	On	the	other	hand,	the	same	analysis	proved	also	that	WT	scions	are	296 

indeed	hypersensitive	to	ABA	if	grafted	onto	SL-	instead	of	WT	rootstocks	(WT/SL-	vs	WT/WT,	Fig.	297 

4),	 as	 hypothesized	 on	 the	 basis	 of	 the	 stomatal	 conductance	 and	 shoot	 ABA	 quantification	298 

experiments	 reported	 above	 (Fig.	 1a	 and	 3c	 vs	 Supporting	 Information	 S3a	 and	 S5c).	 We	 also	299 

tested	(at	5	µM	ABA,	the	concentration	for	which	differences	among	our	lines	were	more	evident)	300 

if	 a	pre-treatment	with	 the	 synthetic	 SL	 analogue	 racGR24	 could	by	 itself	 increase	 sensitivity	 to	301 

ABA,	 in	 a	 complementary	way	 to	 SL	 depletion	 decreasing	 it.	 This	was	 indeed	 the	 case	 (WT/WT	302 

plants,	GR24-treated	vs	untreated,	Fig.	4).	303 

These	data	confirmed	that	the	physiological	phenotype	displayed	by	the	WT/SL-	plants	both	under	304 

irrigated	and	drought	conditions	was	more	 likely	due	to	a	higher	sensitivity	to	endogenous	ABA,	305 

rather	 than	 to	 its	 absolute	 levels.	 This	effect	 could	be	 linked	 to	a	 local	 increase	of	 SL	 synthesis,	306 

given	the	higher	transcript	concentration	for	SL	biosynthetic	genes	under	these	conditions,	and	–	307 

as	 a	 more	 indirect	 indication	 -	 the	 fact	 that	 ABA	 sensitivity	 increased	 in	 stomata	 treated	 with	308 

exogenous	SL.	309 

	310 

DISCUSSION	311 

Low	SL	in	the	roots	prime	shoots	for	drought	stress	avoidance	in	tomato	312 

In	 this	 study,	 we	 investigated	 in	 tomato	 the	 possible	 systemic	 implications	 of	 the	 drop	 in	 SL	313 

synthesis	happening	in	roots	under	osmotic	stress.	A	parsimonious	starting	hypothesis	was	that	SL	314 

depletion	in	roots	could	directly	or	indirectly	act	as	a	signal	of	stress	for	the	shoots.	On	this	basis,	315 

hetero-grafted	plants	with	WT	scions	and	SL-depleted	rootstocks	were	to	behave	as	at	least	mildly	316 

stressed,	even	in	the	absence	of	stress.	Our	physiological	data	are	in	agreement	with	this	theory:	317 

stomatal	 conductance	values	of	WT	 shoots	 grafted	onto	SL-depleted	 rootstocks	are	 significantly	318 

lower	 than	 those	of	WT	 shoots	 self-grafted	onto	WT	 rootstocks	 in	 irrigated	 conditions,	 and	 are	319 

accompanied	by	less	negative	leaf	water	potential	values	and,	as	expected,	higher	intrinsic	water	320 

use	efficiency	 (defined	as	 the	 ratio	between	net	 carbon	assimilation	and	 stomatal	 conductance;	321 

Supporting	 Information	 Fig.	 S3d).	 These	 data	 support	 the	 idea	 that	 SL	 depletion	 in	 root	 tissues	322 

affects	 (directly	 or	 indirectly)	 the	 physiological	 response	 in	 the	 shoot	 and	 leading	 to	 better	323 

acclimatization	 to	drought.	 The	 ability	 of	 shoots	 to	produce	 SL	 is	 needed	 for	 this	 to	happen,	 as	324 

stomatal	 conductance	 is	 increased	 instead	 when	 the	 whole	 plant	 (and	 not	 only	 the	 roots)	 are	325 

CCD7-silenced;	 indeed,	this	 latter	condition	rather	 leads	to	drought	hypersensitivity,	as	shown	in	326 



SL-depleted	 Arabidopsis,	 Lotus	 and	 now,	 tomato	 plants	 [(Ha	 et	 al.,	 2014;	 Liu	 et	 al.,	 2015);	 this	327 

work].	328 

	329 

Low	SL	in	the	roots	and	(high)	SL	in	the	shoot	render	stomata	hypersensitive	to	ABA	330 

To	determine	whether	the	effects	of	root	SL	depletion	on	WT	shoots	may	be	due	to	altered	ABA	331 

levels,	 this	 hormone	was	 quantified	 in	 roots	 and	 shoots	 of	 plants	 in	 the	 three	 grafted	 sets.	 SL-332 

depleted	roots	and	especially	shoots	contain	significantly	more	ABA	per	gram	of	fresh	weight	than	333 

the	 WT	 ones	 in	 the	 absence	 of	 stress.	 Our	 results	 in	 unstressed	 shoots	 are	 in	 apparent	334 

contradiction	to	the	ones	reported	on	CCD8-silenced	tomato	plants,	where	shoots	of	SL-depleted	335 

lines	had	lower	ABA	content	(Torres-Vera	et	al.,	2014);	the	most	likely	explanation	is	that	our	data	336 

were	normalized	over	fresh	and	not	dry	weight	as	in	Torres-Vera	et	al.	In	any	case	during	severe	337 

stress,	 free	 ABA	 increases	 less	 in	 tissues	 of	 self-grafted	 SL-	 than	 WT	 plants,	 a	 trend	 already	338 

observed	in	Lotus	(Liu	et	al.,	2015);	such	situation,	coupled	to	the	hyposensitivity	to	the	hormone,	339 

will	certainly	exacerbate	the	drought	sensitivity	of	SL-depleted	shoots.	Instead,	the	slower	and	less	340 

pronounced	ABA	increase	in	roots	and	shoots	of	WT/SL-	plants	compared	to	the	other	lines	is	 in	341 

agreement	with	the	physiological	conditions	of	these	plants	(which	being	primed	for	better	stress	342 

resilience,	perform	better	thus	needing	less	ABA).	It	is	of	course	possible	that	ABA	levels	in	guard	343 

cells	may	not	be	reflected	by	the	total	levels	of	free	ABA	in	the	whole	leaf	tissue,	given	the	strong	344 

compartmentalization	of	the	hormone	in	different	cell	types	and	compartments	(Hartung	&	Slovik,	345 

1991);	and	thus,	that	WT/SL-	plants	had	lower	gs	because	of	locally	enhanced	ABA	accumulation.	346 

However,	 the	 results	 of	 the	ABA-feeding	experiment	 rather	 supported	 the	hypothesis	 that	 such	347 

phenotype	was	(at	least	partly)	due	to	stomatal	hypersensitivity	to	the	hormone.	Finally,	the	same	348 

experiments	 also	 highlighted	 that	 SL	 in	 the	 shoot	 are	 not	 only	 needed	 but	 also	 sufficient	 to	349 

increase	stomatal	sensitivity	to	ABA.	350 

	351 

Hormonal	cross-talk	and	systemic	signalling	under	drought:	fitting	SL	in	the	picture	352 

Since	 our	 experimental	 set-up	mimics	what	 normally	 happens	 during	 drought,	we	propose	 that	353 

these	 findings	 are	 relevant	 to	 stress	 resistance,	 at	 least	 in	plants	 such	as	 Lotus	 and	 tomato,	 for	354 

which	a	drop	in	SL	synthesis	is	recorded	in	roots	experiencing	osmotic	stress	or	drought.	Such	drop	355 

might	promote	a	pre-alerted	(primed)	status	in	the	shoots,	which	become	more	sensitive	to	ABA	356 

at	 the	 guard	 cell	 level.	 This	 message	 may	 be	 conveyed	 directly	 (see	 below)	 or	 indirectly,	 i.e.	357 

through	a	second	messenger	that	ought	to	be,	at	 least	 in	tomato,	different	than	ABA.	 It	 is	to	be	358 



noted	 here	 that	 SL	were	 proven	 to	 cross-talk	with	 other	 hormones,	 such	 as	 auxins,	 cytokinins,	359 

brassinosteroids	and	ethylene,	in	processes	different	than	drought	responses	and	stomatal	closure	360 

(Cheng	 et	 al.,	 2013);	 and	 that	 each	 of	 these	 hormones	was	 shown	 to	 affect	 stomatal	 aperture	361 

locally	(Daszkowska-Golec	&	Szarejko,	2013).	Root-synthesized	cytokinins	were	even	proposed	to	362 

act	as	a	systemic	signal	promoting	stomatal	opening,	in	a	similar	way	to	SL	(Davies	&	Zhang,	1991);	363 

however	SL-	mutants	display	reduced	cytokinin	levels	in	the	shoot,	which	is	the	opposite	of	what	364 

one	would	 expect	 from	a	mediator	 of	 SL	 effect	 (because	 cytokinins	 promote	 stomata	 aperture,	365 

and	 SL-	 shoots	 transpire	more	 than	WT)	 (Foo	 et	 al.,	 2007).	Additionally,	 shoots	were	proven	 to	366 

possess	powerful	homeostatic	mechanisms	for	the	regulation	of	cytokinin	 levels,	that	are	 largely	367 

unlinked	 from	their	concentration	 in	xylem	sap	 (Foo	et	al.,	2007).	Resuming,	we	cannot	exclude	368 

that	 the	effect	of	SL	on	stomatal	closure	may	be	at	 least	partly	 indirect,	 i.e.	mediated	by	any	of	369 

these	hormones,	or	by	other	signals	yet	(and	indeed,	sensitivity	to	ABA	does	play	a	role).	It	would	370 

be	indeed	interesting	to	quantify	other	hormones	in	leaves	of	our	lines,	or	even	better	to	visualize	371 

their	 activity	 in	 guard	 cells;	 and	 to	measure	whether,	 for	example,	 the	 xylem	sap	pH	 in	hetero-372 

grafted	plants	is	different	than	in	self-grafted	[possibly,	more	basic	as	in	droughted	tomato	plants	373 

(Wilkinson	 et	al.,	1998)].	 It	 remains	clear	 that	plant	hormones,	 if	 capable	of	 travelling	over	 long	374 

distances,	have	a	slow	propagation	velocity	in	comparison	with	hydraulic	and/or	electrical	signals.	375 

However,	 the	 fact	 itself	 that	 in	 our	model,	 stomatal	 closure	 is	 rather	 induced	by	 the	 lack	of	 an	376 

inhibitor	in	the	shootward	flow	is	attracting,	because	its	decrease	might	be	perceived	faster	than	377 

flow	speed	would	predict	 for	a	positive	modulator.	 In	 fact,	 the	flow	 is	slowed	down	by	drought,	378 

thus	adding	to	the	decrease	of	the	 inhibitor	 itself;	additionally,	given	that	SL	are	degraded	upon	379 

perception	(Hamiaux	et	al.,	2012),	they	should	be	quickly	depleted	locally	unless	de	novo	synthesis	380 

or	 translocation	 occurs.	 Finally,	 expression	 pattern	 and	 intracellular	 location	 of	 the	 SL	381 

transporter(s)	might	add	another	regulation	level,	for	mobility	through	living	tissues.	382 

As	regards	the	activity	of	SL	biosynthetic	genes,	shoots	of	irrigated,	hetero-grafted	WT/SL-	plants	383 

behave	as	if	under	drought,	i.e.	show	increased	transcripts	of	CCD7	and	CCD8.	These	increases	in	384 

gene	 activity	 might	 be	 due	 to	 the	 relief	 of	 direct	 repression	 of	 SL	 synthesis	 in	 the	 shoots	 by	385 

translocated,	 root-synthesized	SL;	a	known	pattern	 [e.g.	 (Johnson	 et	al.,	2006;	 Liu	 et	al.,	2013)],	386 

which	might	 itself	 trigger	SL	accumulation	at	 specific	 spots	 in	 the	shoot	 (undetectable	 in	whole-387 

tissue	analyses).	Even	if	it	is	at	present	impossible	to	overcome	the	technical	limitations	that	make	388 

the	quantification	of	SL	unfeasible	in	shoots,	we	propose	that	hypersensitivity	to	ABA	in	stomata	389 

of	WT/SL-	plants	might	be	causally	linked	to	higher	production	of	SL	in	(limited	tissue	zones	of)	the	390 



shoot,	since	 i)	 transcription	of	SL-biosynthetic	genes	 is	activated	 in	WT	shoots	during	stress,	but	391 

also	under	non-stressful	conditions	if	WT	shoots	are	grafted	onto	SL-	rootstocks;	ii);	sensitivity	to	392 

ABA	converts	from	higher	to	lower	than	normal,	if	not	only	roots	but	also	shoots	are	SL-depleted,	393 

proving	that	SL	synthesis	in	the	shoots	is	needed	for	the	effects	on	ABA	sensitivity;	iii)	exogenous	394 

GR24	 treatment	 is	 sufficient	 to	 induce	 stomatal	 hypersensitivity	 to	 ABA.	 This	 latter	 effect	 is	395 

opposite	 to	 the	 one	 caused	 by	 genetically-due	 SL	 depletion,	 and	would	 explain	 GR24	 ability	 to	396 

confer	drought	resistance	in	WT	Arabidopsis	(Ha	et	al.,	2014).	The	importance	of	SL	produced	in	397 

the	shoot	has	been	proposed	also	in	branching,	because	micro-grafting	of	WT	Arabidopsis	scions	398 

on	SL-defective	rootstocks	does	not	 lead	to	an	increased	branching	phenotype,	as	expected	if	SL	399 

synthesis	 is	 compromised	 in	 the	 whole	 plant	 (Foo	 et	 al.,	 2001;	 Sorefan	 et	 al.,	 2003).	Whether	400 

osmotic/drought	stress	in	the	absence	of	such	decrease	in	root-synthesized	SL	is	able	to	stimulate	401 

a	 similar	 shoot	 response,	 is	 still	 to	 be	 determined.	 A	 schematic	 drawing	 of	 our	 model	 is	402 

represented	in	Fig.	5.	This	model	obviously	implies	that	the	shoot	is	able	to	discriminate	between	403 

root-	 and	 shoot-produced	 SL;	 this	 ability	 needs	 to	 be	 proven	 experimentally,	 but	 could	 rely	 on	404 

differential	 loading	 in	 the	 upstream	 flow,	 and/or	 organ-specific	 production	 of	 the	 structurally	405 

different	 SL	 molecules,	 which	 make	 up	 species-specific	 SL	 blends	 and	 whose	 ecological	 and	406 

physiological	meanings	remain	largely	unexplored	(Kohlen	et	al.,	2011;	Kohlen	et	al.,	2012;	Bharti	407 

et	 al.,	 2015;	 Brewer	 et	 al.,	 2016).	 Alternatively,	 or	 in	 parallel,	 the	 uneven/non-overlapping	408 

distribution	of	the	receptor	protein	D14	and/or	of	SL	transporter(s)	in	the	plant	might	account	for	409 

discrimination	between	locally	and	distally	produced	SL	(Chevalier	et	al.,	2014;	Sasse	et	al.,	2015).	410 

From	a	practical	point	of	view,	it	remains	to	be	assessed	how	such	graft	combinations	will	perform	411 

under	other	or	combined	stress.	It	is	important	to	note	on	this	regard	that	they	will	undoubtedly	412 

be	advantageous	 in	 soil	 infested	by	parasitic	weeds;	 that	not	all	 SL-depleted	genotypes	are	also	413 

significantly	 compromised	 in	 mycorrhization	 (a	 possible	 detrimental	 side-effect);	 and	 that	 with	414 

respect	to	SL	synthesis,	drought	overrules	P	deficiency	under	combined	stress	(Kohlen	et	al.,	2012;	415 

Liu	 et	 al.,	 2015).	 Nonetheless,	 our	 results	 highlight	 once	more	 the	 importance	 of	 rootstocks	 in	416 

influencing	 shoot	 traits,	 and	 how	 they	 could	 be	 exploited	 to	 improve	 crop	 performances	 under	417 

stress	(Albacete	et	al.,	2015;	Cantero-Navarro	et	al.,	2016).	418 
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	571 

FIGURE	LEGENDS	572 

Figure	1.	Physiological	performances	of	the	grafted	lines	in	the	absence	and	presence	of	stress.	573 

Stomatal	 conductance	 (a),	 and	 mean	 carbon	 assimilation	 rate	 (b)	 as	 a	 function	 on	 leaf	 water	574 

potential	(Ψleaf)	of	grafted	tomato	plants	(WT/WT,	SL-/SL-	and	WT/SL-)	along	a	water-deprivation	575 

time-course.	 Full	 symbols	 in	 each	 series	 indicate	 rehydrated	 samples	 (recovery).	Data	 represent	576 

the	mean	and	SEM	of	n	=	6	biological	replicates	from	2	independent	experiments.	577 

	578 

Figure	 2.	 Effect	 of	 drought	 on	 the	 transcript	 amounts	 of	 SL	 biosynthetic	 genes	 (SlCCD7	 and	579 

SlCCD8)	 of	 roots	 (a-b)	 and	 shoots	 (c-d)	 of	 grafted	 tomato	 plants	 (WT/WT,	 SL-/SL-	 and	WT/SL-)	580 

during	a	time-course	(0,	1,	3	and	5	days	from	water	withdrawal	for	T0	through	T5).	R	indicates	the	581 

rehydrated	samples	 (recovery).	Gene	transcript	abundance	was	normalized	to	endogenous	EF1α	582 

and	presented	as	 fold-change	value	over	WT/WT	at	T0,	which	was	 set	 to	1.	Data	 represent	 the	583 

mean	 and	 SEM	of	n	 =	 6	 biological	 replicates	 from	2	 independent	 experiments.	Different	 letters	584 

indicate	significant	differences	between	plant	 lines	 for	 the	same	time	point,	as	determined	by	a	585 

two-way	ANOVA	test	(P<	0.05).	n.d.	=	not	detectable.	586 

	587 

Figure	 3.	 Effect	 of	 drought	 on	 free	 ABA	 as	 a	 function	 on	 leaf	 water	 potential	 (Ψleaf)	 and	 on	588 

transcript	 amounts	 of	 the	 ABA	 biosynthetic	 gene	 SlNCED1	 in	 roots	 (a-b)	 and	 shoots	 (c-d)	 of	589 

grafted	tomato	plants	(WT/WT,	SL-/SL-	and	WT/SL-)	during	a	time-course	(0,	1,	3	and	5	days	from	590 

water	withdrawal	for	T0	through	T5).	Full	symbols	(a,	c)	or	R	(b,	d)	indicate	the	rehydrated	samples	591 

(recovery).	 Gene	 transcript	 abundance	 was	 normalized	 to	 endogenous	 EF1α	 and	 presented	 as	592 

fold-change	value	over	WT/WT	at	T0,	which	was	set	to	1.	Data	on	ABA	represent	the	mean	and	593 

SEM	 of	 n	 =	 4	 biological	 replicates	 (each	 replicate	 a	 pool	 of	 2	 plants)	 from	 2	 independent	594 

experiments.	Data	on	SlNCED1	represent	the	mean	and	SEM	of	n	=	6	biological	replicates	from	2	595 



independent	experiments.	Different	letters	in	(b)	and	(d)	indicate	significant	differences	between	596 

plant	lines	for	the	same	time	point,	as	determined	by	a	two-way	ANOVA	test	(P<	0.05).	597 

	598 

Figure	4.	Dose-response	of	leaves	to	treatment	with	exogenous	ABA	at	different	concentrations.	599 

Stomatal	 conductance	 was	 measured	 at	 30-s	 intervals	 before	 and	 during	 ABA	 treatments	600 

performed	on	detached	composite	 leaves	from	grafted	tomato	plants	(WT/WT,	SL-/SL-,	WT/SL-).	601 

WT/WT	plant	 pre-treated	with	 5	 μM	 racGR24	were	 analysed	only	 for	 the	 5	 μM	ABA	 treatment	602 

(black	 bar).	 Values	 represent	 the	 mean	 and	 SEM	 of	 at	 least	 n	 =	 6	 biological	 replicates	 from	 2	603 

independent	experiments,	 and	 refer	 to	 the	 time	 (seconds)	needed	 for	 the	decrease	of	 stomatal	604 

conductance	 to	 start,	 from	 the	 time	 of	 ABA	 addition	 to	 the	 dipping	 solution.	 Different	 letters	605 

indicate	 significant	differences	between	plant	 lines	 for	 the	 same	 treatment,	 as	determined	by	a	606 

two-way	ANOVA	test	(P<	0.05).	607 

	608 

Figure	5.	Schematic	drawing	of	the	main	connections	between	SL	and	ABA	in	roots	and	shoots	of	609 

tomato	under	drought	stress.	In	the	model,	the	effects	of	SL	on	ABA	levels	may	be	negative	in	the	610 

roots,	as	proven	by	racGR24	treatment	 in	L.	 japonicus	 (Liu	et	al.,	2015).	Thereby,	 the	drop	 in	SL	611 

synthesis	 in	 this	 organ	 under	 osmotic	 (PEG-infused)	 stress	 may	 be	 needed	 but	 not	 necessarily	612 

sufficient	 to	 let	ABA	 levels	 rise	 (results	untested	 in	other	plant	 species	 so	 far;	1).	 SL	 synthesis	 is	613 

inhibited	 in	 roots	under	osmotic/drought	 stress,	 so	 shootward	SL	 flow	decreases	 (2);	 in	 tomato,	614 

root-produced	 ABA	 is	 not	 translocated	 nor	 needed	 for	 appropriate	 shoot	 responses	 to	 stress	615 

(Holbrook	 et	 al.,	 2002).	 The	 effects	 of	 shoot-produced	 or	 exogenous	 SL	 on	 ABA	 sensitivity	 of	616 

stomata	 are	 in	 turn	 positive	 (3)	 [(Ha	 et	 al.,	 2014;	 Liu	 et	 al.,	 2015)	 and	 this	 work].	 SL	 flowing	617 

shootward	inhibit	the	transcription	of	SL	biosynthetic	genes	(thicker	line,	4),	as	reduced	quantities	618 

in	 the	 upstream	 flow	 (or	 possibly,	 a	 second	messenger	 –	 different	 than	 ABA	 -	 produced	 in	 the	619 

roots	 in	 response	 to	 low	 SL)	 are	 sufficient	 to	 let	 transcripts	 of	 SL	 biosynthetic	 genes	 increase	620 

(thinner	line;	5)	and	as	a	likely	consequence,	also	sensitivity	to	ABA	(6).	Whether	osmotic/drought	621 

stress	can	increase	SL	gene	transcription	and	ABA	sensitivity	 in	the	shoots	even	if	SL	synthesis	 in	622 

the	 root	 is	 not	 decreased	 is	 not	 known	 (question	 mark).	 Although	 SL	 remain	 undetectable	 in	623 

whole-shoot	analyses	of	stressed	tomato,	 localized	accumulation	may	occur,	as	proposed	(Liu	et	624 

al.,	 2015)	 and	 suggested	by	 transcript	 quantification	of	 biosynthetic	 genes	 (Ha	et	 al.,	 2015;	 this	625 

work).	 Alternatively,	 steady-state	 SL	 levels	 may	 be	 needed	 and	 sufficient	 to	 ensure	 wild-type	626 



sensitivity	to	ABA	in	stressed	shoot	tissues;	or	other,	yet	unidentified	SL(-like)	molecules	may	be	627 

induced.	628 

	629 
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Fig.	S1	Relative	water	content	(RWC)	and	water	potential	of	soil	(Ψsoil)	during	the	course	of	a	

drought	 experiment.	 Soil	 RWC	 was	 gravimetrically	 determined	 by	 collecting	 daily	 soil	 from	

three	different	points	and	depths	in	each	pot,	to	assess	water	content	after	oven	drying.	At	the	

same	time,	the	soil	water	retention	curve	was	assessed	with	pressure	plate	measurements	of	

the	 potting	 substrate	 (Tramontini	 S,	 Doering	 J,	 Vitali	M,	 Ferrandino	 A,	 Stoll	M,	 Lovisolo	 C.	

2014.	 Soil	 water-holding	 capacity	mediates	 hydraulic	 and	 hormonal	 signals	 of	 near-isohydric	

and	 near-anisohydric	Vitis	 cultivars	 in	 potted	 grapevines.	 Functional	 Plant	 Biology	41(10-11):	

1119-1128).	For	both	datasets	values	represent	the	mean	and	SEM	of	n	=	6	samples	from	two	

independent	experiments.	

	

	

	

	

	

	

	

	

	

	

	

	

	 	



 

Fig.	S2	Effect	of	drought	on	SL	biosynthesis	in	tomato	roots:	solanacol	(a),	orobanchol	(b)	and	

the	 didehydro-orobanchol	 isomer	 with	 retention	 time	 4’6’’	 (c)	 were	 quantified	 in	 roots	 of	

grafted	plants	 (WT/WT,	SL-/SL-	and	WT/SL-)	along	a	time-course	 (0,	1,	3	and	5	days	 from	the	

beginning	 of	 stress	 for	 T0	 through	 T5).	 R	 indicates	 the	 rehydrated	 (Recovery)	 samples.	 Data	

represent	the	mean	and	SEM	of	n	=	2	samples	derived	from	the	pool	of	3	plants	each,	 in	two	

independent	experiments.	While	solanacol	and	orobanchol	are	expressed	as	absolute	amounts	

per	g	of	fresh	tissue	weight,	the	didehydro	isomer	of	orobanchol	is	expressed	as	a	percentage	

ratio	 of	MS/MS	peak	 area	 normalized	 over	 values	 for	WT	 tissues	 at	 T0,	 due	 to	 the	 lack	 of	 a	

standard.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	



 

Fig.	S3.	Physiological	performances	of	the	grafted	lines	in	the	absence	and	presence	of	stress	

as	a	function	of	time.	Stomatal	conductance	(a),	leaf	water	potential	(b)	and	mean	carbon	

assimilation	rate	(c),	and	intrinsic	water	use	efficiency	(WUE)	(d)	of	grafted	tomato	plants	

(WT/WT,	SL-/SL-	and	WT/SL-)	along	a	water-deprivation	time-course	(0,	1,	3	and	5	days	from	

the	beginning	of	stress	for	T0	through	T5).	R	indicates	rehydrated	samples	(recovery).	Data	

represent	the	mean	and	SEM	of	n	=	6	biological	replicates	from	2	independent	experiments.	

Different	letters	indicate	significant	differences	within	the	same	time	point	as	determined	by	a	

two-way	ANOVA	test	(P<	0.05).	n.d.	=	not	detectable.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	



 

Fig.	S4.	Transcript	amounts	of	key	SL	biosynthetic	genes	(SlCCD7	and	SlCCD8)	in	roots	(a-b)	and	

shoots	(c-d)	of	grafted	tomato	plants	(WT/WT,	SL-/SL-	and	WT/SL-)	as	a	function	of	leaf	water	

potential	during	a	drought	time-course	(0,	1,	3	and	5	days	from	water	withdrawal).	Full	symbols	

in	 each	 series	 indicate	 the	 rehydrated	 samples	 (recovery).	 Gene	 transcript	 abundance	 was	

normalized	to	endogenous	EF1α	and	presented	as	fold-change	value	over	WT/WT	at	T0,	which	

was	 set	 to	 1.	 Data	 represent	 the	 mean	 and	 SEM	 of	 n	 =	 6	 biological	 replicates	 from	 2	

independent	experiments.	SlCCD7	transcripts	were	undetectable	in	silenced	(SL-)	shoots.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	



 

Fig.	S5.	Effect	of	drought	on	free	ABA	and	on	transcript	amounts	of	the	ABA	biosynthetic	gene	

SlNCED1	as	a	function	on	leaf	water	potential	in	roots	(a-b)	and	shoots	(c-d)	of	grafted	tomato	

plants	 (WT/WT,	 SL-/SL-	 and	 WT/SL-)	 during	 a	 time-course	 (0,	 1,	 3	 and	 5	 days	 from	 water	

withdrawal	 for	T0	through	T5).	Full	symbols	 (a,	c)	or	R	 (b,	d)	 indicate	the	rehydrated	samples	

(recovery).	Gene	transcript	abundance	was	normalized	to	endogenous	EF1α	and	presented	as	

fold-change	value	over	WT/WT	at	T0,	which	was	set	to	1.	Data	on	ABA	represent	the	mean	and	

SEM	 of	 n	 =	 4	 biological	 replicates	 (each	 replicate	 a	 pool	 of	 2	 plants)	 from	 2	 independent	

experiments.	Data	on	SlNCED1	represent	the	mean	and	SEM	of	n	=	6	biological	replicates	from	2	

independent	 experiments.	 Different	 letters	 in	 (a)	 and	 (c)	 indicate	 significant	 differences	

between	 plant	 lines	 for	 the	 same	 time	 point,	 as	 determined	 by	 a	 two-way	 ANOVA	 test	 (P<	

0.05).	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	



 

Table	S1	Primer	pairs	for	transcript	quantification	via	qRT-PCR.	
Kohlen	W,	Charnikhova	T,	 Lammers	M,	Pollina	 T,	 Toth	P,	Haider	 I,	 Pozo	MJ,	 de	Maagd	RA,	

Ruyter-Spira	 C,	 Bouwmeester	 HJ,	 et	 al.	 2012.	 The	 tomato	 CAROTENOID	 CLEAVAGE	
DIOXYGENASE8	 (SlCCD8)	 regulates	 rhizosphere	 signaling,	 plant	 architecture	 and	 affects	
reproductive	development	through	strigolactone	biosynthesis.	New	Phytologist	196(2):	535-
547.	

Lopez-Raez	 JA,	Kohlen	W,	Charnikhova	T,	Mulder	P,	Undas	AK,	 Sergeant	MJ,	Verstappen	F,	
Bugg	TD,	Thompson	AJ,	Ruyter-Spira	C,	et	al.	2010.	Does	abscisic	acid	affect	strigolactone	
biosynthesis?	New	Phytologist	187(2):	343-354.	

Gene	ID	 Forward	primer	 Reverse	primer	 Reference	

SLCCD7	 GTTGCTCTTACCAATGGTTCAATTT	 TACATTCATCATGGAAGGATCAAAGTT	 (Kohlen	et	al.,	2012)	

SlCCD8	 CCAATTGCCTGTAATAGTTCC	 GCCTTCAACGACGAGTTCTC	 (Kohlen	et	al.,	2012)	

SlNCED1	 ACCCACGAGTCCAGATTTC	 GGTTCAAAAAGAGGGTTAG	 (Lopez-Raez	et	al.,	2010)	

SlEF1α	 GATTGGTGGTATTGGAACTGTC	 AGCTTCGTGGTGCATCTC	 (Kohlen	et	al.,	2012)	

	

	

	

	

	

	

	



Supplementary Table S1 
Gene ID Forward primer Reverse primer Reference 
SLCCD7 GTTGCTCTTACCAATGGTTCAATTT TACATTCATCATGGAAGGATCAAAGTT (Kohlen et 

al., 2012) 
SlCCD8 CCAATTGCCTGTAATAGTTCC GCCTTCAACGACGAGTTCTC (Kohlen et 

al., 2012) 
SlNCED1 ACCCACGAGTCCAGATTTC GGTTCAAAAAGAGGGTTAG (Lopez-Raez 

et al., 2010) 
SlEF1α GATTGGTGGTATTGGAACTGTC AGCTTCGTGGTGCATCTC (Kohlen et 

al., 2012) 
Primer pairs for transcript quantification via qRT-PCR 

 


