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Using 1310.6 × 106 J=ψ and 447.9 × 106 ψð3686Þ events collected with the BESIII detector at the
BEPCII eþe− collider, the branching fractions and the angular distributions of J=ψ and ψð3686Þ decays to
ΛΛ̄ and Σ0Σ̄0 final states are measured. The branching fractions are determined, with much improved
precision, to be 19.43� 0.03� 0.33, 11.64� 0.04� 0.23, 3.97� 0.02� 0.12 and 2.44� 0.03� 0.11
for J=ψ → ΛΛ̄, J=ψ → Σ0Σ̄0, ψð3686Þ → ΛΛ̄ and ψð3686Þ → Σ0Σ̄0, respectively. The polar angular
distributions of ψð3686Þ decays are measured for the first time, while those of J=ψ decays are measured

with much improved precision. In addition, the ratios of branching fractions Bðψð3686Þ→ΛΛ̄Þ
BðJ=ψ→ΛΛ̄Þ

and Bðψð3686Þ→Σ0Σ̄0Þ
BðJ=ψ→Σ0Σ̄0Þ are determined to test the “12% rule.”

DOI: 10.1103/PhysRevD.95.052003

I. INTRODUCTION

Two-body baryonic decays of ψ mesons [ψ denotes both
the J=ψ and ψð3686Þ charmonium states throughout the
text] take place through annihilation of the constituent cc̄
quark pair into either a virtual photon or three gluons, and
they provide a good laboratory for testing quantum
chromodynamics (QCD) in the perturbative energy regime
and studying the properties of baryons [1]. Perturbative
QCD (pQCD) predicts that the ratio of branching fractions
between the J=ψ and ψð3686Þ decaying into a given
hadronic final states follows the “12% rule” [2]

Q ¼ Bψð3686Þ→h

BJ=ψ→h
¼ Bψð3686Þ→lþl−

BJ=ψ→lþl−
≈ ð12.4� 0.4Þ%: ð1Þ

The violation of this rule was first observed in the decay of
ψ into the final state ρπ, which is well known as the “ρπ

puzzle” [3], and the rule has been subsequently further
tested in a wide variety of experimental measurements.
Reviews of the theoretical and experimental results [4]
conclude that the current theoretical understanding, espe-
cially for the ψ decays into baryon-antibaryon pair final
states, is not mature. The branching fractions of ψ decays
into BB̄ (BB̄ refers to both ΛΛ̄ and Σ0Σ̄0 throughout the
text) final states from different experiments [5–14] and the
Particle Data Group (PDG) [15] averages are summarized
in Table I. Obvious differences between the different
experiments are observed, and the uncertainties are rela-
tively large. Hence, higher precision measurements of the ψ
decays into BB̄ pairs are desirable to help in understanding
the dynamics of ψ decay.
The angular distribution of the decays eþe− → ψ → BB̄

can be expressed in the form [1]

dN
d cos θ

∝ 1þ α cos2 θ; ð2Þ

where θ is the angle between the outgoing baryon and the
beam direction in the eþe− center-of-mass (c.m.) system
and α is a constant that is related to the decay properties.
The equation is derived from the general helicity formalism
[1], taking into account the gluon spin, the quark distri-
bution amplitudes in eþe− → ψ → BB̄ and hadron helicity
conservation. The α values in the decays J=ψ → BB̄ have
been calculated with pQCD to first order [16]. It is believed
that the masses of the baryon and quark must be taken into
consideration in the α calculation since a large violation of
helicity conservation is observed in ψ decays [16,17].
Table II summarizes the theoretical predictions and exper-
imental α values for the decays J=ψ → BB̄. To date, the
experimental α values for the decays J=ψ → BB̄ have poor
precision [5,6,10], and the α values in the decay
ψð3686Þ → BB̄ have not yet been measured. It is worth
noting that there is an indication that the α value in the
decay J=ψ → Σ0Σ̄0 is negative in Ref. [10].
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In this paper, we report precise measurements of the
branching fractions and α values for the decays ψ → BB̄,
based on the data samples of ð1310.6� 7.0Þ × 106 J=ψ
[18] and ð447.9� 2.9Þ × 106 ψð3686Þ [19,20] events col-
lected with the BESIII detector at the BEPCII collider.

II. BESIII DETECTOR AND DATA SET

The BESIII detector [21] at the double-ring Beijing
Electron-Positron Collider (BEPCII) [22] is designed for
studies of physics in the τ-charm energy region [23]. The
peak luminosity of BEPCII is 1033 cm−2 s−1 at a beam
current of 0.93 A. The BESIII detector has a geometrical
acceptance of 93% of 4π solid angle and consists of the
following main components: (1) A small-celled, helium-
based (40% CO2 and 60% C3H8) main drift chamber with
43 layers, which has an average single-wire resolution of
135 μm, a momentum resolution for 1 GeV=c charged
particles in a 1 T magnetic field of 0.5%,1 and a specific
energy loss (dE=dx) resolution of better than 6%. (2) An
electromagnetic calorimeter (EMC), which consists of
6240 CsI (Tl) crystals arranged in a cylindrical shape
(barrel) plus two end caps. For 1.0 GeV photons, the energy
resolution is 2.5% (5%) in the barrel (end caps), and the
position resolution is 6 mm (9 mm) for the barrel (end
caps). (3) A time-of-flight (TOF) system, which is used for
particle identification. It is composed of a barrel made of
two layers, each consisting of 88 pieces of 5-cm-thick and
2.4-m-long plastic scintillators, as well as two end caps

each with 96 fan-shaped 5-cm-thick plastic scintillators.
The time resolution is 80 ps (110 ps) in the barrel (end
caps), providing a K=π separation of more than 2σ for
momenta up to 1.0 GeV=c. (4) A muon chamber system,
which is made of resistive plate chamber arranged in 9
layers (8 layers) in the barrel (end caps) with ∼2 cm
position resolution. It is incorporated into the return iron
yoke of the superconducting magnet.
The optimization of the event selection and the estimations

of the signal detection efficiency and background are
determined using Monte Carlo (MC) simulations. The
GEANT4-based [24] simulation software BOOST [25],
which includes the geometric and material description of
the BESIII detector, the detector response and digitization
models, as well as the tracking of the detector running
conditions and performance, is used to generateMC samples.
The analysis is performed in the framework of the BESIII off-
line software system [26] which takes care of the detector
calibration, event reconstruction and data storage.
Generic inclusive MC samples, which include 1225 ×

106 J=ψ and 460 × 106 ψð3686Þ events, are used to study
the potential backgrounds. The ψ are produced via eþe− →
ψ processes by the generator KKMC [27], which includes
the beam energy spread according to the measurement of
BEPCII and the effect of initial state radiation. The known
decay modes are generated with BESEVTGEN [28] accord-
ing to world average branching fraction values [15]; the
remaining unknown decay modes are simulated using the
LundCharm model [29]. To determine the detection effi-
ciencies, large ψ → BB̄ signal MC samples are generated
for each process, where the angular distributions of the
baryons use α values obtained in this analysis. The Λ and
Σ0 particles are simulated in the Λ → pπ− and Σ0 → γΛ
decay modes.

III. EVENT SELECTION

In this analysis, the four decay modes ψ → BB̄ are
studied by fully reconstructing both B and B̄, where the
ΛðΛ̄Þ and Σ0ðΣ̄0Þ candidates are reconstructed with the
pπ−ðp̄πþÞ and γΛðγΛ̄Þ decay modes, respectively.
Therefore, the decays ψ → ΛΛ̄ and ψ → Σ0Σ̄0 have the
final states pp̄πþπ− and pp̄πþπ−γγ, respectively.

TABLE I. Experimental measurements and PDG averages for the branching fractions of the decay ψ → BB̄ ð×10−4Þ.
J=ψ → ΛΛ̄ ψð3686Þ → ΛΛ̄ J=ψ → Σ0Σ̄0 ψð3686Þ → Σ0Σ̄0

MARKII Collaboration [5] 15.8� 0.8� 1.9 � � � 15.8� 1.6� 2.5 � � �
DM2 Collaboration [6] 13.8� 0.5� 2.0 � � � 10.6� 0.4� 2.3 � � �
BES Collaboration [7,8] 10.8� 0.6� 2.4 1.8� 0.2� 0.3 � � � 1.2� 0.4� 0.4
CLEO Collaboration [9] � � � 3.3� 0.3� 0.3 � � � 2.6� 0.4� 0.4
BESII Collaboration [10,11] 20.3� 0.3� 1.5 3.4� 0.2� 0.4 13.3� 0.4� 1.1 2.4� 0.4� 0.4
BABAR Collaboration [12] 19.3� 2.1� 0.5 6.4� 1.8� 0.1 11.5� 2.4� 0.3 � � �
Dobbs et al. [13] � � � 3.8� 0.1� 0.3 � � � 2.3� 0.2� 0.2
PDG [15] 16.1� 1.5 3.6� 0.2 12.9� 0.9 2.3� 0.2

TABLE II. Theoretical predictions and experimental measure-
ments of α for J=ψ → BB̄.

αJ=ψ→ΛΛ̄ αJ=ψ→Σ0Σ̄0

Theory
0.32 0.31 [16]
0.51 0.43 [17]

Experiment
0.72� 0.36 0.70� 1.10 [5]
0.62� 0.22 0.22� 0.31 [6]
0.65� 0.14 −0.22� 0.19 [10]

1For the J=ψ data sample collected in 2012, the magnetic field
was 0.9 T.
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Events with at least four charged tracks with total charge
zero are selected. Each charged track is required to have
j cos θj < 0.93, where θ is the polar angle of the track.
Photons are reconstructed from isolated showers in the
EMC which are at least 30 degrees away from the
antiproton and 10 degrees from other charged tracks.
The energy deposited in the nearby TOF counters is
included to improve the photon reconstruction efficiency
and energy resolution. Photon candidates are required to be
within the barrel region (j cos θj < 0.8) of the EMC with
deposited energy of at least 25 MeV, or within the end cap
regions (0.86 < j cos θj < 0.92) with at least 50 MeV,
where θ is the polar angle of the photon. In order to
suppress electronic noise and energy deposits unrelated to
the event, the timing information t from the EMC for the
photon candidate must be in coincidence with the collision
event (0 ≤ t ≤ 700 ns). At least two photons are required in
the analysis of ψ → Σ0Σ̄0 decays.
MC studies indicate that the proton and pion from Λ

decay are well separated kinematically since the proton
carries most of the energy. A charged track with momentum
p > 0.5 GeV=c is assumed to be a proton, while that with
p < 0.5 GeV=c is assumed to be a pion. The Λ (Λ̄)
candidate is reconstructed with any pπ− (p̄πþ) combina-
tion satisfying a secondary vertex fit [30] and having a
decay length larger than 0.2 cm to suppress the non-Λ (non-
Λ̄) decays. The decay length is the distance between its
primary vertex and decay point to pπ− (p̄πþ), where the
primary vertex is approximated by the interaction point
averaged over many events. If more than one Λ (Λ̄)
candidate is found, the one with the largest decay length
is retained for further analysis.
In the study of ψ → Σ0Σ̄0 decay, a variable Δm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðMΛγ1 −MΣ0Þ2 þ ðMΛ̄γ2 −MΣ̄0Þ2
q

is defined. All pos-

sible photon pairs are combined with the selected Λ and
Λ̄ candidates, and the γ1 and γ2 candidates, which yield the
smallest Δm, are taken as the photons from the Σ0 and Σ̄0

decays, respectively.
To suppress backgrounds, the ΛΛ̄ invariant mass,

MΛΛ̄, is required to be within [3.05, 3.15], [2.82, 3.02],
[3.63, 3.75] and ½3.34; 3.61� GeV=c2 for the J=ψ → ΛΛ̄,
J=ψ → Σ0Σ̄0, ψð3686Þ → ΛΛ̄ and ψð3686Þ → Σ0Σ̄0

decays, respectively. Here the mass window requirements
for the individual decay modes are determined by MC
studies. In the decays ψ → ΛΛ̄, the Λ̄ candidate is required
to have mass satisfying jMp̄πþ −MΛ̄j < 3σMΛ̄

, where
MΛ̄ is the Λ̄ nominal mass, and σMΛ̄

is the corresponding
mass resolution, which is 2.3 MeV=c2 (4.0 MeV=c2)
for the J=ψ [ψð3686Þ] decay. In the decays ψ → Σ0Σ̄0,
the Σ̄0 candidate is required to have mass satisfying
jMp̄πþγ −MΣ̄0 j < 3σMΣ̄0

, where MΣ̄0 is the Σ̄0 nominal
mass, σMΣ̄0

is the corresponding mass resolution, which

is 4.3 MeV=c2 (6.0 MeV=c2) for the J=ψ [ψð3686Þ]. The

candidates are further required to satisfy θΣ0Σ̄0 > 178° and
θΣ0Σ̄0 > 178.5° for the J=ψ and ψð3686Þ decays, respec-
tively, where θΣ0Σ̄0 is the opening angle between the
reconstructed Σ0 and Σ̄0 candidates in the c.m. system.

IV. BACKGROUND ESTIMATION

To study the backgrounds, the same selection criteria are
applied to the generic inclusive ψ MC samples. For the
decay J=ψ → ΛΛ̄, the dominant backgrounds are found
to be J=ψ → ΛΣ̄0 þ c:c:, J=ψ → γKsKs and J=ψ → γηc
with the subsequent decay ηc → ΛΛ̄. For the decay
J=ψ → Σ0Σ̄0, the main backgrounds are from J=ψ →
ΛΣ̄0 þ c:c:, J=ψ → γηc with the subsequent decay
ηc → ΛΛ̄;Σ0Σ̄0;ΛΣ̄0 þ c:c: and J=ψ → Σ0Σ̄�0 þ c:c:. For
ψð3686Þ → ΛΛ̄, the potential backgrounds are ψð3686Þ →
πþπ−J=ψ ; J=ψ → pp̄, ψð3686Þ → Σ0Σ̄0, and ψð3686Þ →
ΛΣ̄0 þ c:c:. For ψð3686Þ → Σ0Σ̄0, the dominant back-
grounds are from ψð3686Þ→ γχcJ;χcJ →ΛΛ̄ðJ¼ 0;1;2Þ
and ψð3686Þ → Ξ0Ξ̄0, Ξ0 → Λπ0, Ξ̄0 → Λ̄π0. All above
backgrounds can be classified into two categories, i.e.
backgrounds with or without ΛΛ̄ in the final state. The
former category backgrounds are expected to produce a
peak around the Λ=Σ0 signal region in the pπ−=pπ−γ
invariant mass distributions and can be estimated, with
the exclusive MC simulation samples using the decay
branching fractions set according to the PDG [15]. The
additional undetermined decays of ηc → Σ0Σ̄0;ΛΣ̄0 þ c:c:
and ψð3686Þ → ΛΣ̄0 þ c:c: are estimated using the results
from previous experiments for charmonium decaying to BB̄
states (reference decays) [10,11,31], to be 1 and 0.1 times
that for the decay ηc → ΛΛ̄ and 0.1 times that for
ψð3686Þ → ΛΛ̄, respectively. The contributions of other
decays to the peaking background are negligible. The latter
category of backgrounds are expected to be distributed
smoothly in the corresponding mass distributions.
The backgrounds from continuum QED processes, i.e.

eþe− → BB̄ decays, are estimated with the data samples
taken at the c.m. energies of 3.08 and 3.65 GeV, which have
integrated luminosities of 30 and 44 pb−1 [18,19], respec-
tively. By applying the same selection criteria, no event
survives in the selection of J=ψ → BB̄, while in the
selection of ψð3686Þ → BB̄, only a few events survive,
and no obvious peak is observed in the Λ=Σ0 mass region.
The contamination from the QCD continuum processes can
be treated as nonpeaking background when determining the
signal yields.

V. RESULTS

A. Branching fractions

With the above selection criteria, the distributions of
Mpπ−=Mpπ−γ in a range of �8 times the mass resolution
around the Λ=Σ0 nominal mass in the J=ψ and ψð3686Þ
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decays are shown in Fig. 1. Clear Λ=Σ0 peaks are observed
with low background. To determine the signal yields,
unbinned maximum likelihood fits are applied to
Mpπ−=Mpπ−γ with the mass of p̄πþ=p̄πþγ0 restricted to
�3 times of resolution of Λ̄=Σ̄0 nominal mass. In the fit, the
Λ=Σ0 signal shape is described by the simulated MC shape
convolved with a Gaussian function to account for the
difference in mass resolution between data and MC
simulation. The peaking backgrounds are described with
the shapes from exclusive MC simulations with fixed
magnitudes according to the branching fractions of back-
ground listed in the PDG [15], and the nonpeaking back-
grounds are described with second-order polynomial
functions with free parameters in the fit. The fit results
are illustrated in Fig. 1, and the corresponding signal yields
are summarized in Table III.
The branching fractions are calculated using

Bðψ → BB̄Þ ¼ Nobs

Nψ · ϵ · Bi
; ð3Þ

where Nobs is the number of signal events minus peaking
background, ϵ is the detection efficiency, which is esti-
mated with MC simulation incorporating the cos θ distri-
butions obtained in this analysis and the scale factors to
account for the difference in efficiency between data and
MC simulation as described below, Bi is the product of
branching fractions for the intermediate states in the
cascade decay from the PDG [15] and Nψ is the total
number of ψ events estimated by counting the inclusive
hadronic events [18,19]. The corresponding detection
efficiencies and the resultant branching fractions are also
summarized in Table III.

B. Angular distributions

The baryon cos θ distributions in the c.m. system
corrected by detection efficiency are shown in Fig. 2,
and the signal yields in each of the 20 bins are determined
with the same method as that in the branching fraction
measurements. The detection efficiencies in each bin are
estimated with the signal MC samples and scaled with
correction factors to compensate for the efficiency differ-
ence between data and MC simulation. The efficiency
corrected cos θ distributions are fitted with Eq. (2) with a
least-squares method, the corresponding fit results are
shown in Fig. 2 and the resultant α values are summarized
in Table III.
The correction factors used to correct for the efficiency

differences between data and MC simulation as a function
of cos θ are determined by studying various control
samples, where θ is the polar angle of the hyperon. The
efficiency differences are due to differences in the effi-
ciencies of charged particle tracking, photon detection and
hyperon reconstruction. For example, the efficiencies
related with charged particle tracking and Λ reconstruction
are studied with a special control sample of ψ → ΛΛ̄
events, where a Λ̄ tag has been reconstructed. Events with
two or more charged tracks, in which a p̄ and πþ have been
identified using particle identification, are selected. The Λ̄
tag candidate must satisfy a secondary vertex fit, have a
decay length greater than 0.2 cm and satisfy mass and
momentum requirements. The numbers of tagged Λ events,
Ntag, are obtained by fitting the Λ peak in the distribution of
invariant mass recoiling against the Λ̄ tag. The numbers of
Λ signal events, Nsig, are obtained by fitting the recoil mass
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FIG. 1. The Mpπ− distributions for the decays (a) J=ψ → ΛΛ̄
and (b) ψð3686Þ → ΛΛ̄, and the Mpπ−γ distributions for the
decays (c) J=ψ → Σ0Σ̄0 and (d) ψð3686Þ → Σ0Σ̄0, where the dots
with error bars are data, the red solid curves are the overall fit
results, the green dashed histograms are the backgrounds esti-
mated with the exclusive MC simulated samples and the blue
dotted line describes the remaining backgrounds.

TABLE III. The numbers of observed signal events Nobs, the corrected detection efficiency ϵ, the numbers of peaking backgrounds
Npk, the numbers of smooth backgrounds Nsm, the resultant α values for the angular distributions and the branching fractions B, where
the errors are statistical only.

Channel Nobs ϵ (%) Npk Nsm α B (×10−4)

J=ψ → ΛΛ̄ 440; 675� 670 42.37� 0.14 1,819 154� 166 0.469� 0.026 19.43� 0.03
J=ψ → Σ0Σ̄0 111; 026� 335 17.83� 0.06 820 131� 12 −0.449� 0.020 11.64� 0.04
ψð3686Þ → ΛΛ̄ 31; 119� 187 42.83� 0.34 252 352� 65 0.824� 0.074 3.97� 0.02
ψð3686Þ → Σ0Σ̄0 6; 612� 82 14.79� 0.12 89 17� 5 0.71� 0.11 2.44� 0.03
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distribution for events where, in addition, a Λ signal is
reconstructed on the recoil side, which requires two
oppositely charged tracks that satisfy a vertex fit and have
a decay length greater than 0.2 cm. The combined
efficiency of charged tracking (proton and pion) and Λ
reconstruction is then Nsig=Ntag. The ratios of the data and
MC simulation efficiencies as a function of cos θ are taken
as the correction factors. The Λ̄ correction factors are
determined in an analogous way using ψ → ΛΛ̄ events
with a Λ tag. The overall correction factor in the different
cos θ bins is the product of the Λ and Λ̄ correction factors.
In an analogous way, the combined efficiency of photon

detection and Σ0 reconstruction is studied with a control
sample of ψ → Σ0Σ̄0 events, which have a Σ̄0 tag and an
additional Λ. Events are selected that have a Λ and Λ̄ using
the same criteria as above and at least one additional
photon. The Λ̄ and photon must have an invariant mass
consistent with that of a Σ̄0. The numbers of tagged Σ0

events are obtained by fitting the Σ0 peak in the distribution
of mass recoiling against the Σ̄0 tag. We then search for
another photon and reconstruct the Σ0 by requiring the
invariant mass of the photon and tagged Λ be consistent
with the Σ0 mass. The number of events with a Σ0 signal
divided by the number of tagged Σ0 events is the combined
efficiency of photon detection and Σ0 reconstruction. The
ratios of detection efficiencies in the different cos θ
bins between data and MC simulation determine the
correction factors. The overall correction factor in the
different cos θ bins is the product of the Σ0, Σ̄0, Λ and
Λ̄ correction factors.

VI. SYSTEMATIC UNCERTAINTY

A. Branching fraction

Systematic uncertainties in the branching fraction mea-
surements are mainly due to the differences of detection
efficiency and resolution between data and MC simulation.
The sources of uncertainty related with the detection
efficiency include charged tracking, photon detection and
Λ=Σ0 reconstruction. The sources of uncertainty due to the
resolution difference include the MΛΛ̄ and MΛ̄=MΣ̄0 mass
requirements, and the opening angle θΣ0Σ̄0 requirement in
the decays ψ → Σ0Σ̄0. Additional uncertainty sources
including the model of the baryon polar angular distribu-
tion, the fit procedure, the decay branching fractions of
Λ=Σ0 states and the total number of ψ events are also
considered. All of the systematic uncertainties are studied
in detail as discussed in the following:
(1) As described above, the detection efficiencies re-

lated with the tracking, photon detection and Λ=Σ0

reconstruction are corrected bin by bin in cos θ to
decrease the difference between data and MC
simulation. The overall correction factors, which
are determined with control samples, are
0.9974� 0.0041, 0.9936� 0.0064, 0.980� 0.011
and 0.954� 0.022 for the decays J=ψ → ΛΛ̄,
J=ψ →Σ0Σ̄0, ψð3686Þ→ΛΛ̄ and ψð3686Þ→Σ0Σ̄0,
respectively. To estimate the corresponding uncer-
tainties, the correction factors are changed by �1
standard deviations, and the resultant changes in the
branching fractions are taken as the systematic
uncertainties.

(2) The uncertainties related with the MΛΛ̄ requirement
are estimated by varying the mass requirement edges
by �10 MeV=c2. The uncertainties related with the
Λ̄=Σ̄0 mass requirement are estimated by changing
the requirement by �1 times the mass resolution.
The uncertainties due to the requirement on the
opening angle θΣ0Σ̄0 in the decays ψ → Σ0Σ̄0 are
estimated by changing the requirement to be 175°.
The relative changes in the branching fractions are
individually taken as the systematic uncertainties.

(3) MC simulations indicate that the detection efficien-
cies depend on the distributions of baryon polar
angular cos θ. In the analysis, the measured α values
are used for the cos θ distributions in the MC
simulation. Alternative MC samples are generated
by changing the α values by �1 standard deviations
and are used to estimate the detection efficiencies.
The resultant changes in the detection efficiencies
with respect to their nominal values are taken as the
systematic uncertainties.

(4) The sources of systematic uncertainty associated
with the fit procedure include the fit range, the signal
shape and the modeling of backgrounds. The un-
certainties related with the fit range are estimated by
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FIG. 2. The distributions of efficiency corrected polar angle of
the baryon for the decays (a) J=ψ → ΛΛ̄, (b) ψð3686Þ → ΛΛ̄,
(c) J=ψ → Σ0Σ̄0 and (d) ψð3686Þ → Σ0Σ̄0, where the dots with
error bars are data and the red solid curves are the fit results.
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changing the range by �1 times the mass resolution
for the fits. The signal shapes are modeled with the
signal MC simulated shapes convolved with a
Gaussian function in the nominal fit. The corre-
sponding uncertainties are estimated with alternative
fits with different signal shapes, i.e. a Breit-Wigner
function convolved with a Gaussian function for Λ
and with a crystal ball function [32] for Σ0, where the
Gaussian function and crystal ball function represent
the corresponding mass resolutions. The uncertain-
ties related with the peaking backgrounds, which are
estimated with the exclusive MC samples in the
nominal fits, are studied by changing the branching
fractions of the individual background, or by chang-
ing the branching fractions for the reference decays
which the estimated branching fractions for the
undetermined backgrounds are based on, by �1
times their uncertainties from the PDG [15]. The
uncertainties associated with the nonpeaking back-
grounds are estimated with alternative fits by replac-
ing the second-order polynomial function with a
first-order polynomial function. The resultant
changes from the above changes in the signal yields
are taken individually as the systematic uncer-
tainties.

(5) The uncertainties related with the branching frac-
tions of baryon and antibaryon decays are taken
from the PDG [15]. The total numbers of ψ events
are obtained by studying the inclusive hadronic
events, and their uncertainties are 0.6% and 0.7%
for the J=ψ and ψð3686Þ data samples [18–20],
respectively.

The various systematic uncertainties in the branching
fraction measurements are summarized in Table IV. The
total systematic uncertainties are obtained by summing the
individual values in quadrature.

B. Angular distribution

The sources of systematic uncertainties in the baryon
polar angular measurements include the signal yields in
different cos θ intervals and the cos θ fit procedure. The MC
statistics and correction errors are already included in the
error referred to as “statistical.”
(1) In the polar angular measurements, the signal yield

in a given cos θ interval is obtained with the same fit
method as that used in the branching fraction
measurements. The uncertainties of the signal yield
in each cos θ bin are mainly from the fit range, the
signal shape and the background modeling. We
individually estimate the uncertainty of the signal
yield in each cos θ interval with the same methods as
those used in the branching fraction measurements
for the different uncertainty sources, and then repeat
the cos θ fit procedure with the changed signal
yields. The resultant changes in the α values with
respect to the nominal values are taken as systematic
uncertainties.

(2) The sources of systematic uncertainty related to the
cos θ fit procedure include the fit range and the
number of bins in the cos θ distribution. We repeat
the fit procedures with the alternative fit range
½−0.9; 0.9� and alternative number of bins (40).
The resultant changes of α values are taken as the
systematic uncertainties.

The individual absolute uncertainties in the polar angular
distribution measurements are summarized in Table V. The
total systematic uncertainties are obtained by summing the
individual values in quadrature.

VII. SUMMARY

In summary, using the data samples of 1310.6 ×
106 J=ψ events and 447.9 × 106 ψð3686Þ events collected
with the BESIII detector at the BEPCII collider, the J=ψ
and ψð3686Þ decaying into ΛΛ̄ and Σ0Σ̄0 pairs are studied.
The decay branching fractions and α values are measured,
and the results are summarized in Table VI. The branching
fractions for J=ψ decays are in good agreement with the

TABLE IV. Systematic uncertainties in the measurement of
branching fractions.

J=ψ ψð3686Þ
ΛΛ̄ (%) Σ0Σ̄0 (%) ΛΛ̄ (%) Σ0Σ̄0 (%)

Efficiency correction 0.5 0.7 1.2 2.3
MΛΛ̄ requirement 0.1 0.1 0.1 0.2
Λ̄=Σ̄0 mass requirement 0.1 0.3 0.3 0.2
θΣ0Σ̄0 requirement � � � 0.3 � � � 0.2
Baryon polar angle 0.8 0.9 2.0 3.1
Fit range 0.1 0.1 0.2 0.2
Signal shape 0.1 0.3 0.1 0.2
Peaking background 0.3 0.4 0.3 1.2
Nonpeaking background 0.1 0.1 0.3 0.2
Branching fractions 1.2 1.2 1.2 1.2
NJ=ψ=Nψð3686Þ 0.6 0.6 0.7 0.7
Total 1.7 1.9 2.8 4.3

TABLE V. Absolute systematic uncertainties in the measure-
ment of α.

J=ψ ψð3686Þ
ΛΛ̄ Σ0Σ̄0 ΛΛ̄ Σ0Σ̄0

Mass fit range 0.001 0.001 0.003 0.005
Signal shape 0.001 0.002 0.001 0.003
Peaking background 0.006 0.005 0.006 0.015
Nonpeaking background 0.002 0.001 0.004 0.002
α fit range 0.001 0.003 0.007 0.019
Number of bins 0.004 0.005 0.001 0.024
Total 0.008 0.008 0.011 0.035
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results of BESII [10] and BABAR [12] experiments, and
those for ψð3686Þ decays are in agreement with the results
of CLEO [9], BESII [11] and Dobbs et al. [13] with a
maximum of 2 times the standard deviations. The earlier
experimental results [5–8] have significant differences with
those of this analysis. The precisions of our branching
fraction results are much improved than those of previous
experiments listed in Table I. The α values in the decays
ψð3686Þ → ΛΛ̄ and ψð3686Þ → Σ0Σ̄0 are measured for the
first time, while those of J=ψ → ΛΛ̄ and J=ψ → Σ0Σ̄0

decays are of much improved precision compared to
previous measurements. It is worth noting that the α value
in the decay J=ψ → Σ0Σ̄0 is negative, which confirms the
results in Ref. [10].
To test the 12% rule, we also obtain the Q values to be

Bðψð3686Þ→ΛΛ̄Þ
BðJ=ψ→ΛΛ̄Þ ¼ð20.43�0.11�0.58Þ% and Bðψð3686Þ→Σ0Σ̄0Þ

BðJ=ψ→Σ0Σ̄0Þ ¼
ð20.96�0.27�0.92Þ%, where the common systematic
uncertainties between J=ψ and ψð3686Þ decays are can-
celed. The Q values are of high precision, and differ from
the expectation from pQCD by more than 3 standard
deviations.
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