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We present the first study of the process J/ψ → γηπ0 using (223.7 ± 1.4) × 106 J/ψ events
accumulated with the BESIII detector at the BEPCII facility. The branching fraction for J/ψ →

γηπ0 is measured to be B(J/ψ → γηπ0) = (2.14± 0.18(stat)± 0.25(syst))× 10−5. With a Bayesian
approach, the upper limits of the branching fractions B(J/ψ → γa0(980), a0(980) → ηπ0) and
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B(J/ψ → γa2(1320), a2(1320) → ηπ0) are determined to be 2.5 × 10−6 and 6.6 × 10−6 at the 95%
confidence level, respectively. All of these measurements are given for the first time.

PACS numbers: 11.30.Er, 13.20.Gd, 12.38.Qk

I. INTRODUCTION

The nature of the lightest scalar meson nonet has been
a hot topic in hadron physics for many years [1]. In par-
ticular, the nature of the isovector a0(980) is still not un-
derstood. It is interpreted by theorists to be a qq̄ state
with a possible admixture of a KK̄ bound-state com-
ponent due to the proximity to the KK̄ threshold [1–
3]. The a0(980) mass is known to be about 980 MeV
and the dominant decay mode is a0(980) → ηπ. The
radiative decay of the J/ψ to the enigmatic scalar me-
son a0(980) will provide useful information on the na-
ture of a0(980) state [4, 5]. Especially, in Ref. [5], the
predicted branching fraction is B(J/ψ → γa0(980)) =
(3.1 ± 1.5) × 10−3 based on the factorization of mixing
and effective coupling constants. Therefore, search for
production of the neutral a0(980) in the isospin-violating
decay J/ψ → γηπ0 will discriminate between different
models [4, 5].
The radiative J/ψ decays with the total isospin of the

hadronic final state I = 0, such as J/ψ → γππ or J/ψ →
γηη, have been studied by previous experiments [6–10],
while only a few processes with isotriplet hadronic final
states, such as J/ψ → γπ0 and J/ψ → γπ0π0π0, have
been measured [11, 12]. It is therefore of interest to study
the isospin violating decay J/ψ → γηπ0, which can be
used to test charmonium decay dynamics [5].
In this paper, we present the first study of the de-

cay J/ψ → γηπ0 based on a sample of (223.7 ±
1.4) × 106 J/ψ events [13], collected by the Beijing
Spectrometer (BESIII) located at the Beijing Electron
Positron Collider (BEPCII).

II. BESIII DETECTOR AND DATA SAMPLES

The accelerator BEPCII and the BESIII detector [14]
are major upgrades of the BESII experiment at the
BEPC accelerator [15, 16] for studies of hadron spec-
troscopy, charmonium physics, and τ -charm physics [17].
The BESIII detector with a geometrical acceptance of
93% of 4π consists of the following main components:
(1) a small-cell main drift chamber (MDC) with 43 lay-
ers used to track charged particles. The average single-
wire resolution is 135 µm, and the momentum resolution
for 1 GeV/c charged particles in a 1 T magnetic field is
0.5%. (2) a time-of-flight system (TOF) used for par-
ticle identification. It is composed of a barrel made of
two layers, each consisting of 88 pieces of 5 cm thick and
2.4 m long plastic scintillators, as well as two end caps
with 96 fan-shaped, 5 cm thick, plastic scintillators in
each end cap. The time resolution is 80 ps in the barrel
and 110 ps in the end caps, providing a K/π separation

of more than 2σ for momenta up to about 1.0 GeV/c.
(3) an electro-magnetic calorimeter (EMC) used to mea-
sure photon energies. The EMC is made of 6240 CsI (Tl)
crystals arranged in a cylindrical shape (barrel) plus two
end caps. For 1.0 GeV photons, the energy resolution
is 2.5% in the barrel and 5% in the end caps, and the
position resolution is 6 mm in the barrel and 9 mm in
the end caps. (4) a muon counter made of resistive plate
chambers arranged in 9 layers in the barrel and 8 layers
in the end caps, which is incorporated into the iron flux
return yoke of the superconducting magnet. The position
resolution is about 2 cm.
The event selection optimization, efficiency estima-

tion, and background evaluation are performed are per-
formed through Monte Carlo (MC) simulations, for
which the GEANT4-based [18] MC simulation pack-
age BOOST [19] is used. The BOOST software in-
corporates the geometric and material description of
the BESIII detector components, the detector response
and digitization models, and detector running condi-
tions and performance. The production of the J/ψ
resonance is simulated with the MC event generator
KKMC [20, 21], while known decay modes are gen-
erated with EVTGEN [22, 23], with branching frac-
tions set to world average values from the Particle Data
Group (PDG) [1]. The LUNDCHARM [24] model
is used for the remaining, unknown decays. A sam-
ple of 200×106 generic J/ψ decay events (named in-
clusive MC sample thereafter) is used to study poten-
tial backgrounds. A sample of 105 exclusive MC sig-
nal events J/ψ → γηπ0 → 5γ is generated uniform-
ly in phase space. For additional signal studies, sam-
ples of 105 exclusive J/ψ → γa0(980), a0(980) → ηπ0

and J/ψ → γa2(1320), a2(1320) → ηπ0 MC events are
generated with angular dependence in the η and π0 dis-
tributions based on experimental information [22, 23].
For further background studies, we use 105 exclusive
MC events for each of the following processes: J/ψ →
ηω(η → γγ, ω → γπ0), J/ψ → ηφ(η → γγ, φ → γπ0),
J/ψ → γη′(η′ → 2π0η or η′ → γω). All exclusive sam-
ples listed previously are generated without consideration
of angular dependence in phase space.

III. EVENT SELECTION

The J/ψ → γηπ0 decays, with subsequent decays
η → γγ and π0 → γγ, have a topology of five photons
in the final state. To select signal candidates, we require
at least five photons and no reconstructed charged parti-
cles in an event. The photon candidates are required to
have at least 25 MeV deposited energy in barrel region
(| cos θ| < 0.8) of the EMC, while 50 MeV are required
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in the end cap regions (0.86 < | cos θ| < 0.92), where θ
is the polar angle of the electromagnetic shower. Timing
information of the EMC is used to suppress electronic
noise and energy depositions that are unrelated to the
event. Photon candidates within 50 ns relative to the
most energetic shower are selected.
A four-constraint (4C) kinematic fit imposing energy-

momentum conservation under the hypothesis e+e− →
5γ is performed, and χ2

4C < 30 is required. All
further selections are based on the four-momenta
updated by the 4C fit. The variable ∆ =
√

(Mγ1γ2 −mη)2 + (Mγ3γ4 −mπ0)2 is used to identify
which photons originate from the decays of η and π0,
respectively; here, Mγiγj is the invariant mass of two

photons and mη (mπ0) is the mass of η (π0) listed in
PDG [1]. We try all possible combinations of the five
selected photons, and the one with the minimum ∆ is
selected. To suppress backgrounds with two π0 in the
final state (e.g., J/ψ → γπ0π0), we define the vari-

able ∆π0 =
√

(Mγ1γ2 −mπ0)2 + (Mγ3γ4 −mπ0)2. An
event is rejected if any combination of photons satis-
fies ∆π0 < 0.05 GeV/c2. The invariant mass spectra
of the photon pairs from the η and π0 decays are shown
in Fig. 1. We fit a Gaussian function plus a third order
polynomial background to the mass spectra to obtain the
mass resolution, which is determined to be 8 MeV/c2 for
the η meson and 5 MeV/c2 for the π0. The η signal region
is defined as |Mγ1γ2 −mη| < 0.024 GeV/c2. The π0 sig-
nal region is defined as |Mγ3γ4 −mπ0 | < 0.015 GeV/c2,
and the π0 sidebands are defined as 0.030 GeV/c2 <
|Mγ3γ4 −mπ0 | < 0.045 GeV/c2.
The scatter plot of the invariant mass of the η candi-

date versus that of γπ0, obtained after applying above
selection criteria, is shown in Fig. 2(a). A strong peak,
which is associated with the background process from the
production of ω mesons with the ω → γπ0 final state, is
visible in Fig. 2(b). The signature of the ω → γπ0 decay
is more evident from the invariant mass spectrum shown
in Fig. 2(b), obtained after additionally selecting the η
and π0 candidates. To reject ω backgrounds, we require
|Mγπ0 −mω| > 0.07 GeV/c2, where mω is the nominal ω
mass [1].

IV. BRANCHING FRACTION AND YIELD

MEASUREMENTS

After all selection criteria discussed in the previous
section are applied, we obtain event candidates for the
decay J/ψ → γηπ0. The potential background con-
tribution is studied using both data and MC samples.
The background events from the data are selected using
the π0 sidebands, defined in Sec. III. In addition, the
background events are studied with the inclusive J/ψ
MC sample; the background events with the same final
state are found to be from the J/ψ → ωη(ω → γπ0)
and J/ψ → φη(φ → γπ0) decays. Apart from these
two background channels, other background contribu-

)2 (GeV/c
2

γ
1

γM
0.45 0.5 0.55 0.6 0.65

)2
E

ve
nt

s/
(0

.0
02

G
eV

/c

0

200

400

600

800

)2 (GeV/c
2

γ
1

γM
0.45 0.5 0.55 0.6 0.65

)2
E

ve
nt

s/
(0

.0
02

G
eV

/c

0

200

400

600

800
(a)

)2 (GeV/c
4

γ
3

γM
0.1 0.15 0.2

)2
E

ve
nt

s/
(0

.0
02

G
eV

/c

0

200

400

600

800

)2 (GeV/c
4

γ
3

γM
0.1 0.15 0.2

)2
E

ve
nt

s/
(0

.0
02

G
eV

/c

0

200

400

600

800 (b)

Figure 1. Distributions of the γγ invariant mass from the η
(a) and π0 (b) candidate decays. The arrows with dotted lines
indicate the signal region, and the solid arrows indicate the
sidebands.

tions are found to be represented by the π0 sidebands.

To scale the background events from the π0 sideband
regions to the signal region, a normalization factor f is
defined as the ratio of the number of background events
in the π0 signal region and in the π0 sideband regions. To
obtain f , we fit to the π0 mass spectrum a combination
of the π0 signal shape, obtained from the exclusive signal
MC, combined with a third order Chebychev polynomial
to represent the background distribution. The polynomi-
al background is integrated in the signal region (s1) and
in the sideband regions (s2) and the normalization factor
is found to be f = s1

s2
= 1.09.

To obtain the number of γηπ0 events, an unbinned
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Figure 2. (a) Scatter plot of γ1γ2 versus γπ0 masses after
selecting event candidates with χ2

4C < 30 and ∆π0 > 0.05
GeV/c2. (b) The γπ0 invariant mass spectrum after addition-
al selection criteria are applied for photon-pair candidates in
the η and π0 signal regions.

maximum likelihood fit is performed to the mass spec-
trum of the η candidates, in the π0 signal and sideband
regions separately. The η signals are parametrized by
the shape obtained from the signal MC. The background
shape is described by a third order Chebychev polyno-
mial. The fit is shown in Fig. 3. The number of η can-
didates obtained from the fit in the π0 signal region is
N = 746±34, while in the π0 sideband regions the corre-
sponding number is Nsideband = 138±16. The number of
signal events is estimated to be Nsig = N−f ·Nsideband =
596± 38.

The number of peaking background events from
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Figure 3. (color online) Result of the fit to the η mass dis-
tributions in the π0 signal (a) and sideband (b) regions. The
circular dots with error bars show the distribution. The sol-
id curve represents the fit result, while the short-dashed and
dot-dashed curves represent the η signals and backgrounds,
respectively.

J/ψ → ωη(ω → γπ0) and J/ψ → φη(φ → γπ0) is ob-
tained from exclusive MC samples, and the correspond-
ing background yields are given as NJ/ψ→ωη = 122 ± 4
and NJ/ψ→φη = 16.5± 0.1. The errors given here are the
statistic errors from MC samples.
The J/ψ → γηπ0 branching fraction is calculated using

the following expression:

B(J/ψ → γηπ0) =
Nsig −NJ/ψ→ωη −NJ/ψ→φη

NJ/ψ × Bη × Bπ0 × εrec
, (1)

where NJ/ψ is the total number of J/ψ events [13], and
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Bη and Bπ0 are the branching fractions of the η and π0

decays to two photons, respectively [1]. The detection
efficiency, εrec = (24.5 ± 0.2) %, is obtained from the
simulated signal events. The resulting branching fraction
is calculated to be B(J/ψ → γηπ0) = (2.14±0.18)×10−5.

We also investigate the intermediate resonant process
J/ψ → γX → γηπ0, where X stands for a0(980) or
a2(1320). The ηπ0 invariant mass spectrum in the η
and π0 signal regions is shown in Fig. 4. We perform
an unbinned maximum likelihood fit to determine the
branching fractions of the radiative J/ψ decays into these
two mesons. For the a0(980) signal shape, we use the
Flatté formula [25] with the parameters from the KK̄
model [26], while the a2(1320) signal shape is described
by a Breit-Wigner (BW) function with the mass and
width taken from PDG [1]. The a0(980) and a2(1320)
signal shapes are convoluted with corresponding resolu-
tion functions, and multiplied by the efficiency distribu-
tion. The resolution and efficiency as functions of the ηπ0

invariant mass are obtained using the signal MC sam-
ple. The resolution function is modeled by a sum of two
Gaussians, with central values, widths and ratios fixed
to the values obtained by analyzing the mass resolutions
of the a0(980) and a2(1320) resonances. The background
shape consists of a third order Chebychev polynomial
and two functions obtained from MC study for the back-
ground channels J/ψ → γη′, η′ → 2π0η and J/ψ → γη′,
η′ → γω .
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Figure 4. Invariant ηπ0 mass spectrum after final events se-
lection and η and π0 mass cuts (points with error bars). The
solid curve shows the phase space of J/ψ → γηπ0.

The spectrum in Fig. 5 is obtained from the fit to the
first region, [0.8, 2.0] GeV/c2. The event yields are 5
for a0(980) and 57 for a2(1320). The statistical signifi-
cance is 0.5σ for a0(980) and 2.9σ for a2(1320). Using a
Bayesian method [1], we determine the upper limits for

the a0(980) and a2(1320) production, at the 95% confi-
dence level (C.L.), by finding the value NUL

sig such that

∫ NUL
sig

0
LdNsig

∫

∞

0 LdNsig

= 0.95,

where Nsig is the number of signal events, and L is the
value of the likelihood function of Nsig obtained in the fit.
We find the upper limits at the 95% C.L. on the number
of the a0(980) and a2(1320) to be NUL

a0(980)
= 26.0 and

NUL
a2(1320)

= 92.1.
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Figure 5. (color online). Fit to the ηπ0 mass spectrum in
the [0.8, 2.0] GeV/c2 region. The points with error bars are
data; the solid curve shows the overall fit projection; the
short-dashed curve represents the a0(980) signal; the dot-
ted curve represent the a2(1320) signal; the dot-dashed curve
corresponds to the two background channels J/ψ → γη′,
η′ → 2π0η and J/ψ → γη′, η′ → γω; and the long-dashed
curve shows the remaining non-resonant ηπ0 events.

We study the upper limits under different assumptions
for the shapes of the a0(980) and a2(1320) signal and
non-resonant ηπ0 processes. For the non-resonant ηπ0

process, we replace the third-order Chebychev polyno-
mial with a fourth-order Chebychev polynomial or the
ηπ0 distribution from the signal MC. We also fit the sig-
nals of a0(980) and a2(1320) together with background
described above. All these variations are applied in
three different mass regions: [0.8, 2.0] GeV/c2, [0.8, 1.92]
GeV/c2 and [0.8, 2.08] GeV/c2. In addition, the fractions
of the background channels are varied within one stan-
dard deviation due to the MC statistics and the used
branching fractions. The signal shapes are varied by
using different parameters of the a0(980) and a2(1320)
functions. In the Flatté formula for the a0(980), the pa-
rameters from the KK̄ model are substituted by the qq̄
model and qq̄g model parameters [26, 27]. In the case of
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the a2(1320), the mass and width of the BW function are
varied within the uncertainties of the quoted values [1].
We take the largest upper-limit number of signal events
among different models as a conservative estimate, where
we have the upper limits NUL

a0(980)
= 33.8 corresponding

to the qq̄g model, while NUL
a2(1320)

= 107.9 corresponding

to a 1σ variation in the width for the a2(1320).
The upper limit on the product of branching fractions

is determined by

B(J/ψ → γX,X → ηπ0)

<
NUL
X

NJ/ψ × (1− σsys.)× Bη × Bπ0 × ε
, (2)

where NUL
X is corresponding number of signal events.

The efficiency is 16.7% (20.1%) for the a0(980)
(a2(1320)), obtained from the J/ψ → γa0(980) (J/ψ →
γa2(1320)) MC sample. σsys. is the total systemat-
ic uncertainty of the quantities in the denominator in
Eq. (2). The upper limits on the branching fractions
are B(J/ψ → γa0(980) → γηπ0) < 2.5 × 10−6 and
B(J/ψ → γa2(1320) → γηπ0) < 6.6 × 10−6 at the 95%
C.L.

V. SYSTEMATIC UNCERTAINTIES

To estimate systematic uncertainties in our measure-
ment of the branching fractions, we consider the fol-
lowing effects: photon detection efficiency, photon ener-
gy scale, photon energy resolution, photon position re-
construction, the kinematic fit, and the fitting proce-
dures. Uncertainties associated with our fitting proce-
dures stem from the background shape, MC modeling of
angular distributions, fitting region, background subtrac-
tion. External factors include the total number of J/ψ
events, branching fractions of the intermediate states and
uncertainties in the branching fractions of the two back-
ground channels J/ψ → ωη and J/ψ → φη.
The systematic uncertainty from the photon detection

is studied by comparing the photon detection efficiency
between MC simulation and a control sample consisting
of the J/ψ → ρπ decays. The relative efficiency differ-
ence is about 1% for each photon [28]. In this paper,
5% is taken as the systematic error for the efficiency of
detecting five photons in the final state.
The uncertainty in the photon energy scale is deter-

mined to be 0.4% [29]. After varying photon energy ac-
cording to this factor, we obtain the difference in the
branching fraction of 1.9%.
To estimate the uncertainty associated with the pho-

ton energy resolution, the photon energy is smeared by
the Gaussian with energy dependent width, σsmear =
0.0083 × Eγ . This factor is determined from the differ-
ence in relative energy resolution between data and MC
of 4% [29]. With this smearing applied to the exclusive
signal MC, we determine the corresponding efficiency and

find that the systematic error associated with the photon
energy resolution is 0.9%.
The difference in energy resolution between data and

MC also affects the kinematic fit. When we adjust the
energy error in the reconstructed photon error matrix by
4% [29], we obtain a 1.1% difference in the branching
fraction measurement.
The uncertainty in photon position reconstruction is

studied by changing the position parameter of each pho-
ton in the signal MC and the difference is found to be
negligible (less than 0.1%).
When fitting two photons invariant mass distributions

of the η and π0 candidate, we vary the background shape
by replacing a third order Chebychev polynomial with
a second or fourth order polynomial. The difference of
2.4% with respect to our nominal result is associated with
these effects.
The angular distributions of the η and π0 in the signal

MC are based on the phase space model. To obtain the
uncertainty associated with this assumption, we change
the angular distributions for the η and π0 by assuming
a form: dN/d cos θη/π0 ∼ (1 + cos θ2η/π0). We find the

difference in the branching fraction of 9.2% from this
effect.
In the nominal fit, the mass spectrum of the η is

fitted in the range from 0.45 GeV/c2 to 0.65 GeV/c2.
Alternative fits within ranges from 0.43 GeV/c2 to 0.67
GeV/c2 and from 0.47 GeV/c2 to 0.63 GeV/c2 are per-
formed, and the difference in the branching fraction of
1.6% is taken as the systematic uncertainty.
The uncertainty due to background subtraction is ob-

tained by changing the π0 sidebands from 0.03 GeV/c2 <
|Mγγ−mπ0 | < 0.045 GeV/c2 to 0.035 GeV/c2 < |Mγγ −
mπ0 | < 0.05 GeV/c2, which corresponds to a 1σ change
in sideband separation from the mass peak. The differ-
ence is found to be 2.0%, which is taken as the uncer-
tainty from the background subtraction.
The number of J/ψ events is determined from an in-

clusive analysis of the J/ψ hadronic decays, and has an
uncertainty of 0.6% [13]. The uncertainties due to the
branching fractions of η → γγ and π0 → γγ are tak-
en from PDG [1]. The uncertainties due to the branch-
ing fractions of the background channels J/ψ → ωη and
J/ψ → φη are obtained by varying the respective val-
ues within 1σ [1]. The uncertainty associated with the
branching fractions of background channels is determined
to be 3.2%.
All the contributions are summarized in Table I. The

total systematic uncertainty is given by the quadratic
sum of the individual errors, assuming all sources to be
independent.

VI. SUMMARY

Based on 223.7 million J/ψ events collected with the
BESIII detector, the J/ψ → γηπ0 decay has been first-
ly observed. The branching fraction of the J/ψ → γηπ0
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Table I. Summary of systematic uncertainties(%) in the mea-
surement of the branching fractions. Ba0(980) is the branch-

ing fraction of J/ψ → γa0(980) → γηπ0 and Ba2(1320) is the

branching fraction of J/ψ → γa2(1320) → γηπ0.

Sources B(J/ψ → γηπ0) Ba0(980) Ba2(1320)

Photon efficiency 5.0 5.0 5.0

Photon energy scale 1.9 3.6 3.8

Photon energy resolution 0.9 0.6 0.5

Kinematic fit 1.1 2.4 2.6

Background shape 2.4 - -

MC model 9.2 - -

Fitting region 1.6 - -

Background subtraction 2.0 - -

Number of J/ψ events 0.6 0.6 0.6

Intermediate decays 0.6 0.6 0.6

Bbg 3.2 - -

Total 11.8 6.7 6.9

process is measured to be (2.14±0.18(stat)±0.25(syst))×
10−5. With the Bayesian approach, upper limits for
the intermediate production of a0(980) and a2(1320)
have been obtained at the 95% C.L. The upper lim-
its are B(J/ψ → γa0(980) → γηπ0) < 2.5 × 10−6 and
B(J/ψ → γa2(1320) → γηπ0) < 6.6 × 10−6, including
systematic uncertainties.
For comparison, the branching fraction for the pro-

cess J/ψ → γf2(1270) → γπ0π0 is (4.0 ± 0.09 ± 0.58)×
10−4 [8], while for J/ψ → γf0(1500) → γπ0π0 it is
(0.34±0.03±0.15)×10−4 [8]. This study shows that the
suppression rates for isospin-one processes in J/ψ radia-
tive decays, compared to isospin-zero decays, are consis-
tent with naive theoretical expectations [4], i.e., at least
one order of magnitude. It is noticed that the upper limit
on B(J/ψ → γa0)×B(a0 → ηπ0) is much lower than the
theoretical calculation in Ref. [5]. The result in this paper
indicates that the decay mechanism of J/ψ → γa0(980)
may be totally different from φ→ γa0(980), so the factor-
ization method may not work for the J/ψ → γa0(980) de-

cay [5]. Our measurement provides important constraints
on theoretical calculations.
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