The effects of innovative silicon applications on growth and powdery mildew control in soilless-grown cucumber (Cucumis sativus L.) and zucchini (Cucurbita pepo L.)

Original Citation:
The effects of innovative silicon applications on growth and powdery mildew control in soilless-grown cucumber (Cucumis sativus L.) and zucchini (Cucurbita pepo L.) / Vercelli, Monica; Minuto, Andrea; Minuto, Giovanni; Contartese, Valeria; Devecchi, Marco; Larcher, Federica. - In: ACTA PHYSIOLOGIAE PLANTARUM. - ISSN 0137-5881. - 39:6(2017), pp. 1-6.

Availability:
This version is available http://hdl.handle.net/2318/1636056 since 2017-05-22T11:00:38Z

Published version:
DOI:10.1007/s11738-017-2426-5

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
This is the author's final version of the contribution published as:

Vercelli, Monica; Minuto, Andrea; Minuto, Giovanni; Contartese, Valeria; Devecchi, Marco; Larcher, Federica. The effects of innovative silicon applications on growth and powdery mildew control in soilless-grown cucumber (Cucumis sativus L.) and zucchini (Cucurbita pepo L.). ACTA PHYSIOLOGIAE PLANTARUM. 39 (6) pp: 1-6. DOI: 10.1007/s11738-017-2426-5

The publisher's version is available at:

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/1636056
The Effects of Innovative Silicon Applications on Growth and Powdery Mildew Control in Cucumber (Cucumis sativus L.) and Zucchini (Cucurbita pepo L.) Soiless Grown

Monica Vercelli¹, Andrea Minuto³, Giovanni Minuto³, Valeria Contartese², Marco Devecchi³, Federica Larcher⁴

¹Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
²Centro di Sperimentazione ed Assistenza Agricola, Regione Rollo (Ce.R.S.A.A.), 17031 Albenga, SV, Italy
³Green Has Italia s.p.a., C.so Alba 85-89, 12043 Canale d’Alba, CN, Italy

* Corresponding author: University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy. E-mail address: federica.larcher@unito.it Tel.: +39011 6708793; fax +39011 6708798.

Abstract
Silicon (Si) is one of the most beneficial microelement for several plants including the growth regulation in horticultural species. The research evaluated the effects of innovative Si-applications on Cucumis sativus L. and Cucurbita pepo L. soilless grown. Crop growth, powdery mildew incidence and abiotic stress resistance were evaluated. Two experiments were carried out in a not heated glasshouse on benches. Two new Si treatments (Si-Nanosponge complex, and one experimental fertilizer) were compared with the traditional K₂SiO₃ Topas® EC 10 was used as control fungicide treatment. Biometric parameters, and incidence and severity of powdery mildew were measured. C. sativus plants showed a severe powdery mildew infection and no significant effect of the Si treatments was found. C. pepo plants were initially grown under lower disease pressure conditions and the positive effect of Si treatments was found. The innovative use of Si-Nanosponge complex and the new experimental fertilizer can be considered a good alternative to traditional compounds for plant growth stimulation.

Keywords: Nanosponge complex, fertilization, disease control, hydroponics, greenhouse

INTRODUCTION
Silicon (Si) is one of the most beneficial elements for several plants although it is not considered as an essential plant nutrient (Marschner 1995). Silicon is abundant in the earth’s crust and hence a sub-optimal supply of this element is more likely in soilless cultivation rather than in soil-grown crops (Savvas et al. 2009). Si is not used routinely in nutrient solution preparations for soilless cultivation, however the Si beneficial effects has been demonstrated by many studies carried out in hydroponic experiments (Guntzer et al. 2012; Miyake and Takahashi 1983; Voogt and Sonneveld 2001) and in different horticultural plants subjected both to abiotic and biotic stresses (Cho et al. 2013; Datnoff et al. 2001; Garg et al. 2015; Soundararajan et al. 2015). The effects on biometric parameters in Si-treated plants were observed by Sivanesan et al. (2013). Si fertilization has the potential to mitigate environmental and pathogenetic stresses being a suitable alternative to the extensive use of conventional disease control tools and fertilizers thus complying current sustainable agriculture EU regulations (Directive 2009/128/EC) and related National recommendations and regulations (National Action Plans 2009). Particularly in the field of disease control, Silicon induces mechanism for broad-spectrum plant
disease resistance (Van Bockhaven et al 2013). Si may also contribute to limit rates and number of application of fungicides and it is now considered as an environment-friendly fertilizer being to limit powdery mildew epidemics as widely recognized (Hammerschmidt 2005). Different types of Si fertilizers exist, which have been compared in several studies (Gascho 2001; Mefel et al. 2007; Meyer and Keeping 2001; Rodgers-Gray and Shaw 2004). The most popular fertilizers contain inorganic silicates (potassium or sodium silicates) and can be applied through the irrigation water delivered via drip or sprinkler irrigation. In order to ameliorate the Si-efficiency, considering that plants have low Silicon requests, controlling its release is fundamental. Recently there has been development of β-Cyclodextrin-based nanosponges (NS) as a delivery system capable of slowing the release of active ingredients (Cavalli et al. 2006; Roggero et al. 2011; Trotta and Tumiatti 2003; Sharma and Pathak 2010; Swaminathan et al. 2010). In previous researches NS complexes have been investigate in cut flowers postharvest conservation (Seglie et al. 2008) and in hydroponic Fe-fertilization for horticultural plants (Vercelli et al., 2015). Based on the Si content of the plant tops, plants are separated into high Si-accumulators [10 – 15% (w/w) DW], intermediate Si-accumulators [1 – 3% (w/w) DW], and non-accumulators [< 1% (w/w) DW]. Cucurbitaceae, are classified as high Si-accumulators (Ma et al. 2001). Moreover this species is subjected to heavily powdery mildew infections (agent: Podosphaera xanthii syn Sphaerotheca fuliginea) particularly on leaves and, particularly in Italy, is considered economically important. The aim of this study was to compare the effects of innovative Silicon nanosponge complex, and new commercial fertilizer with traditional applications, supplied via the nutrient solution, on crop growth, powdery mildew (Podosphaera xanthii) incidence and abiotic stress resistance (low temperature exposure) in Cucumis sativus L. and Cucurbita pepo L. grown in a soilless system.

MATERIALS AND METHODS
Nanosponges synthesis and Si-loading
Nanosponges (NS) was synthetized as the procedure mentioned in the patent (Roggero et al. 2011). For this study Si-Nanosponge complex (Si-NS) were developed. Si was dispersed as K₂SiO₃ in aqueous suspension of the NS and was stirred for 24 h in the dark and at acidic pH. Si-NS was micronized at 63µm to avoid the possible clogging problems in the drippers. A preliminary phytotoxicity test using NS on plants was carried out excluding problems for their use (data not shown).

Experimental trials
Centro di Sperimentazione ed assistenza Agricola (CeRSAa), Albenga, Savona (Northern Italy) was the test site were the trials were carried out in a glasshouse (High technology greenhouse in accordance with EFSA 2008) on benches. In order to simulate a abiotic stress and due to the high sensitivity to low temperature of Cucurbits plants (Schwarz et al. 2010) the trial was organized between October and December in a not heated greenhouse. Two experiments were conducted using Cucumis sativus L. (experiment 1: 23/09/2013-18/10/2013) and Cucurbita pepo L. (experiment 2: 21/10/2013-25/12/2013) as model plants. Basically the experimental design was the same for both experiments. A randomized experimental design was organized. The total number of experimental units was 40 slabs (i.e., 5 nutrients X 8 replications). Each experimental plot contained 18x8 plants. Seeds were sown in perlite for two weeks. Seedlings were directly transplanted into slabs (18 plants) and hydroponically grown. Rockwool slabs (Cutilene) were adopted as growing substrate. Each treatment consisted of two slabs per each single replicate and totally four replicates were set up. Seeds
were sown in perlite for two weeks; furthermore seedlings were directly transplanted into slabs and hydroponically grown. In Table 1 the treatments and the application timing are reported. In particular the fungicide (Topas® 10 EC) was supplied via foliar application once each two weeks, the other treatments (K₂SiO₃, Si-NS, OSK) were supplied via drip irrigation twice a week.

According to Datnoff et al. (2001), the amount of chemicals was calculated to ensure 100 ppm of Silicon needed for plant nutrition. All plants were fertilized with a standard nutrient solution delivered via drip irrigation system. Considering that the addition of Si compounds (K₂SiO₃) determined a strongly basic nutrient solution, an equivalent amount of acid was necessary (Voogt and Sonneveld 2001). The pH of all nutrient solutions was adjusted to 5.5 – 6.0 using 1 M H₂SO₄ (Buttaro et al. 2009). The control treatment without Si was balanced using K₂SO₄.

Assessments
During the cultivation period biometric parameters (chlorophyll content, mortality, dry weight) and incidence and severity of powdery mildew were measured on all plants. Chlorophyll content was estimated by a Chlorophyll Meter (Field Scout CM 1000, Spectrum Technologies Inc., Plainfield IL, USA), that provides a sensitive and accurate index of plant response to the treatments. Mortality (as effect of a plant stress) and plant dry weight were evaluated at the end of the cultivation period. Disease incidence and severity were assessed evaluating on all plants the percentage of infected leaves and the percentage of the leaf surface affected in accordance with EPPO Standard scale (EPPO 2005). The evaluation of powdery mildew incidence and severity was carried out during 3 assessments carried out 7 days after last treatment (DAT). On C. sativus only chlorophyll content and disease incidence were assessed. Moreover molecular analysis were performed on powdery mildew mycelia and conidia to characterize the disease specie.

Statistical analysis
All data were analyzed using by one-way ANOVA with SPSS statistical package (version 21.0; SPSS Inc., Chicago, Illinois). Mean values were compared using the Ryan-Einot-Gabriel-Welsch-F test (REGW-F). The critical value for statistical significance was $P \leq 0.05$. Arcsine transformation was performed on all percent incidence data (dry weight, mortality, incidence and severity) before statistical analysis in order to improve homogeneity of variance.

RESULTS
Experiment 1. The evaluation of chlorophyll content on C. sativus gave similar evidences as the disease assessments: plants treated with Topas® 10 EC showed greener leaves, while other treated and not treated plants suffered for a high presence of fungal mycelium and sporulation characterized by a whitish color. The infections caused by Podosphaera xanthii occurred immediately after plant emergence, causing fast plant decay. Nevertheless plots treated with Topas® 10 EC showed the lowest disease incidence and severity. The application of Si based compounds did not highlight any advantage (Table 2).

Experiment 2. Among the chlorophyll content significant differences emerged between treatments on C. pepo (Table 3). Considering the initial mean value of 137.61, the highest increase was observed in OSK while the lowest in (-Si). The evaluation of the indoor air temperature (15th - 29th November) showed, as expected, a temperature decrease as well as a decrease in chlorophyll content. Nevertheless persistent leaf greening was observed on plants treated with OSK. The average temperature dropped from 20 to 15°C and considering optimal C. pepo growing conditions, such temperature are considered too low for the crop growing. Particularly the minimum temperature level was from 21st November to 21st December rather below the minimum optimal growing temperature. Comparing Si-treatments in terms of dry weight OSK
plants grew more than Topas® EC 10 and K₂SiO₃ while plants treated with Si-NS did not statistically differ from the other treatments. Topas® 10 EC showed a smaller size (Table 3). Plant mortality, as effects of the exposure to unpleasant climatic conditions occurred between 15th and 29th November, increased after 05th December. Even if no statistical differences were observed, lowest mortality was recorded in plots treated with Si based compounds (Si-NS, K₂SiO₃ and OSK) (data not shown). In term of disease incidence *P. xanthii* spread showed statistical differences starting from the first date (Table 4). The untreated control exhibited a widespread presence of infected leaves. Treated plants showed lower disease infections than control plants to powdery mildew infection in terms of the percentage of infected leaves and in terms of the percentage of leaf surface infected. Topas® 10 EC and K₂SiO₃ performed better; particularly Topas® 10 EC showed the best control in term of disease incidence reduction, nevertheless, both treatments maintained across the whole growing period statistical differences compared with the untreated control. The evaluation of the severity of powdery mildew infection gave for all the tested treatments statistical differences respect with the untreated control. Best disease control was guaranteed both by Topas® 10 EC and K₂SiO₃. At the end of the trial K₂SiO₃ and Topas® 10 EC were different from (-Si) for both the incidence (respectively 72.40% and 89.43% vs 100%) and severity (respectively 18.53% and 37.53% vs 62.53%); nevertheless both Si-NS and OSK statistically reduced the disease incidence, but less efficiently as Topas® 10 EC and K₂SiO₃.

Among the various edible horticultural plants, the most efficient Si accumulators are some species of the *Cucurbitaceae* family. The two experiments shows that the use of Si compounds in the nutrient solution increased Cucurbits plant biometric parameters and health. Concerning powdery mildew responses no differences between *C. sativum* and *C. pepo* can be highlighted. As Savvas and Ntatsi (2015) confirmed, the Si application through by roots is much more effective in increasing the Si levels in plant tissues, but moreover the use of nanosponges to can provide a more effective Si translocation in the plant.

DISCUSSION

In the first experiment, thanks to the mild climatic conditions, plants showed a severe powdery mildew infection: under such conditions no significant effect of the Si treatments was found. This is in agreement with Seebold et al. (2004): the Authors observed that under conditions relatively unfavorable to rice blast, the application of 1000 kg ha⁻¹ of silicon reduced symptoms better than did the fungicide tricyclazole in Colombia. Pagani et al. (2014) found that efficacy of silicate treatments is more valuable when conditions for the wheat blast development are less favorable. When disease pressure was high, the effects of silicate treatments were less marked. In the second experiment plants were initially grown under lower disease pressure conditions and the effects of Si treatments (K₂SiO₃, and OSK) were shown in plant growth and disease control, thus confirming previous achievements on rice (Seebold et al. 2004; Pagani et al. 2014). Moreover these results agree with the findings reported by Walters and Bingham (2007) in several species, by Fawe et al. (1998) and Liang et al. (2005) in *Cucumis sativus* L., and by Savvas et al. (2009) in *Cucurbita pepo* L.. Application of Topas® EC 10 was effecting in reducing powdery mildew infection. Nevertheless plants showed a smaller size and the lowest dry weight, as widely known for several triazoles (Benton and Cobb 1997; Fletcher et al. 2010; Petit et al. 2012; Rademacher 2000). Fungicide constitute one of the most effective and integrative method to control diseases phytopathogenic fungus in agriculture. However, the potential toxicity and pollution generate by fungicide use cannot be neglected. Some pesticides interfere with the metabolic pathways of plants and some interfere specifically with the photosynthetic process (Petit et al. 2012). Better agronomic achievements were observed in OSK treatment. As expected
(Soundararajan et al. 2014) these data confirmed that Si supply in the nutrient solution is positive for plants soilless cultivated, because of the nitrogen content in the product, confirmed also by the higher plant dry weights.

The innovative use of Si-NS complex can be considered a good alternative to traditional compounds for plant growth stimulation. Otherwise Si release in nutrient solution and Si plants kinetic in different climates is not yet clear, therefore further experiments have to be carried out.

Silicon supplied via nutrient solution to hydroponically grown plants allowed a good plant development and reduced the incidence of powdery mildew. Si provided a rapid and long term fungal control. Considering that C. pepo should be grown with a minimum air temperature of 12°C and an optimal air temperature of 25°C (Maynard et al. 2007; Tesi 2008), under low temperature conditions occurred in experiment 2 Si provided additional advantages: after 15th November better plant growth in plots treated with Si-based compounds (excluding Si-NS) were assessed. Comparing results of the two experiments performed, the fungicide treatment is necessary when the disease appears in the first plant cultivation period, otherwise Si-treatments can be much effective if used for the disease prevention and its slow development. The data collected in this study made possible to increase the knowledge about the potential use of Si to limit negative effect of unpleasant climatic condition on specific crops as Cucurbita. Future investigations will be devoted to understand Si efficacy for fruit yield and qualitative parameters. Moreover a combination of silicate and synthetic fungicides, not tried here, may display additive or even synergistic effects.

In conclusion, our results contribute to clarify the multiple role of silicon as a biostimulant in horticulture, increasing plant resistance to multiple stresses. While, as researches largely demonstrated, the use of silicon is not toxic to humans and the environment (Savvas and Ntatsi 2015), opening a good perspective in using Si in soilless systems particularly for minor crops and for organic farming, where no conventional active chemical ingredients are allowed.

ACKNOWLEDGEMENTS

We thank Sea Marconi Technologies s.a.s. for providing nanosponges and Si-NS, Fabio Deorsola for assistance with the laboratory technologies and Paolo Vinotti, Anna Lanteri, Cinzia Bruzzone (Ce.R.S.A.A.) respectively for the technical assistance during the experimental trials, the biomolecular analysis on powdery mildew and the data sets set-up.

LITERATURE CITED

Roggero CM, Dicarlo S, Tumiatti V, Tumiatti M, Devecchi M, Scariot V, Kapila S (2011) Uso di nanospugne funzionalizzate per la crescita, la conservazione, la protezione e la disinfezione di organismi vegetali. IT Patent application no. TO2011A000873

Sivanesan I, Son MS, Song JY, Jeong BR (2013) Silicon supply through the subirrigation system affects growth of three chrysanthemum cultivars. Hort Environ Biotechnol 54(1):14-19

Table 1: Treatments and application timing accordingly with standard practice

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Treatment acronym</th>
<th>Treatment description</th>
<th>Active ingredient</th>
<th>Rate/l</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>(-Si)</td>
<td>Drip irrigation</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fungicide</td>
<td>Topas®10 EC</td>
<td>Foliar application</td>
<td>10.15% Penconazole</td>
<td>0.5 ml</td>
<td>Once each two weeks</td>
</tr>
<tr>
<td>Mineral nutrient</td>
<td>K₂SiO₃</td>
<td>Drip irrigation</td>
<td>26.5% SiO₂</td>
<td>0.81 g</td>
<td>Twice a week</td>
</tr>
<tr>
<td>Nanosponge Complex</td>
<td>Si-NS</td>
<td>Drip irrigation</td>
<td>18% SiO₂</td>
<td>1.19 g</td>
<td>Twice a week</td>
</tr>
<tr>
<td>Experimental fertilizer</td>
<td>OSK</td>
<td>Drip irrigation</td>
<td>16% SiO₂</td>
<td>1.34 g</td>
<td>Twice a week</td>
</tr>
</tbody>
</table>

C. sativus: Topas® 10 EC: 08/10, 23/10; treatments via drip irrigation 08/10, 10/10, 15/10, 17/10. *C. pepo*: Topas® 10 EC: 12/11, 26/11, 10/12; treatments via drip irrigation 12/11, 14/11, 19/11, 21/11, 26/11, 28/11, 03/12, 05/12, 10/12, 12/12, 17/12, 19/12.
Table 2 Effects of treatments on chlorophyll content, and incidence (% infected leaves) and severity (% of withered leaves) of powdery mildew on *Cucumis sativus* L.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Chlorophyll content</th>
<th>Incidence</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18 October</td>
<td>25 October</td>
<td>31 October</td>
</tr>
<tr>
<td>(-Si)</td>
<td>164.17 a</td>
<td>154.31</td>
<td>154.87 b</td>
</tr>
<tr>
<td>Topas®10 EC</td>
<td>169.80 a</td>
<td>160.73</td>
<td>178.48 a</td>
</tr>
<tr>
<td>K₂SiO₃</td>
<td>151.98 b</td>
<td>152.72</td>
<td>140.84 b</td>
</tr>
<tr>
<td>Si-NS</td>
<td>143.42 b</td>
<td>145.00</td>
<td>151.98 b</td>
</tr>
<tr>
<td>OSK</td>
<td>162.85 a</td>
<td>157.77</td>
<td>159.55 ab</td>
</tr>
</tbody>
</table>

P^z *** ns *** *** *** *** ***

^z ns non-significant and *** significant at P ≤ 0.001
Table 3 Effects of treatments on chlorophyll content during the experiment (ns, no significant differences between treatments; different letters, significant differences at $P \leq 0.001$) and dry weight [Index 0-100: (-Si) = 100] at the end of the trial (different letters, significant differences at $P \leq 0.05$) on Cucurbita pepo L.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>15 November</th>
<th>29 November</th>
<th>10 December</th>
<th>25 December</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-Si)</td>
<td>154.83 b</td>
<td>165.08</td>
<td>155.54 b</td>
<td>100 a</td>
</tr>
<tr>
<td>Topas®10 EC</td>
<td>159.41 b</td>
<td>175.58</td>
<td>155.10 b</td>
<td>83.15 b</td>
</tr>
<tr>
<td>K₂SiO₃</td>
<td>147.26 c</td>
<td>174.38</td>
<td>150.77 b</td>
<td>91.88 b</td>
</tr>
<tr>
<td>Si-NS</td>
<td>178.14 a</td>
<td>172.52</td>
<td>153.75 b</td>
<td>109.95 ab</td>
</tr>
<tr>
<td>OSK</td>
<td>164.5 ab</td>
<td>187.17</td>
<td>192.98 a</td>
<td>128.03 a</td>
</tr>
</tbody>
</table>

P^z *** ns *** *

z ns non-significant, * and *** significant at $P \leq 0.05$ and $P \leq 0.001$, respectively
Table 4 Effects of treatments on incidence (% infected leaves) and severity (% infected leaf surface) of powdery mildew on *Cucurbita pepo* L.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>5 December</th>
<th></th>
<th>12 December</th>
<th></th>
<th>19 December</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incidence</td>
<td>Severity</td>
<td>Incidence</td>
<td>Severity</td>
<td>Incidence</td>
<td>Severity</td>
</tr>
<tr>
<td>(-Si)</td>
<td>98.60 a</td>
<td>53.48 a</td>
<td>97.68 a</td>
<td>57.73 a</td>
<td>100 a</td>
<td>62.53 a</td>
</tr>
<tr>
<td>Topas®10 EC</td>
<td>49.98 b</td>
<td>20.23 b</td>
<td>26.88 c</td>
<td>20.80 bc</td>
<td>20.55 c</td>
<td>16.80 c</td>
</tr>
<tr>
<td>K₂SiO₃</td>
<td>44.05 b</td>
<td>12.95 b</td>
<td>55.90 b</td>
<td>15.28 c</td>
<td>72.40 b</td>
<td>18.53 c</td>
</tr>
<tr>
<td>Si-NS</td>
<td>78.00 a</td>
<td>14.20 b</td>
<td>92.93 a</td>
<td>31.85 b</td>
<td>95.25 a</td>
<td>41.83 b</td>
</tr>
<tr>
<td>OSK</td>
<td>82.05 a</td>
<td>20.90 b</td>
<td>94.38 a</td>
<td>29.05 bc</td>
<td>89.43 ab</td>
<td>37.53 b</td>
</tr>
</tbody>
</table>

P **xxx**, significant at *P* ≤ 0.001