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Abstract. We present new sequent calculi for Lewis’ logics of coun-
terfactuals. The calculi are based on Lewis’ connective of comparative
plausibility and modularly capture almost all logics of Lewis’ family.
Our calculi are standard, in the sense that each connective is handled
by a finite number of rules with a fixed and finite number of premises;
internal, meaning that a sequent denotes a formula in the language, and
analytical. We present two equivalent versions of the calculi: in the first
one, the calculi comprise simple rules; we show that for the basic case of
logic V, the calculus allows for syntactic cut-elimination, a fundamental
proof-theoretical property. In the second version, the calculi comprise
invertible rules, they allow for terminating proof search and semantical
completeness. We finally show that our calculi can simulate the only
internal (non-standard) sequent calculi previously known for these logics.

1 Introduction

In his seminal works [14], Lewis proposed a formalization of conditional logics
in order to represent a kind of hypothetical reasoning that cannot be captured
by the material implication of classical logic. His original motivation was to
formalize counterfactuals, that is to say, conditionals of the form “if A were
the case then B would be the case”, where A is false. Independently from
counterfactuals, conditional logics have found an interest in several fields of
knowledge representation; for instance, they have been used to model belief change
[10]. To this regard, a multi-agent version of Lewis’ conditional logic VTA [2, 3]
has been used to formalize epistemic change in a multi-agent setting, where the
conditional operator expresses the “conditional beliefs” of an agent. In a different
context, conditional logics have been used to reason about prototypical properties
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[8, 5], and to provide an axiomatic foundation of non-monotonic reasoning [11], in
which a conditional A� B is read as “in normal circumstances, if A then B”.

The family of logics studied by Lewis is semantically characterized by sphere
models, a particular kind of neighbourhood models introduced by Lewis himself.
In Lewis’ terminology, a sphere denotes a set of worlds; in sphere models, each
world is equipped with a nested system of such spheres. From the viewpoint of
the given world, inner sets represent the “most plausible worlds”, while worlds
belonging only to outer sets are considered as less plausible. In order to treat
the conditional operator, Lewis takes as primitive the comparative plausibility
connective 4: a formula A 4 B means “A is at least as plausible as B”. The
conditional A� B can be then defined as “A is impossible” or “A ∧ ¬B is less
plausible than A ∧B”. However, the latter assertion is equivalent to the simpler
one “A ∧ ¬B is less plausible than A”4.

From the point of view of proof theory and automated deduction, conditional
logics do not have a state of the art comparable with, say, the one of modal
logics, for which there exist well-established calculi with well-understood proof-
theoretical and computational properties. Calculi for some weaker conditional
logics are given, e.g., in [1, 18] and more recently in [19, 15]. Regarding Lewis’
counterfactual logics, external labelled calculi have been proposed in [9] and in
[16], both based on a relational reformulation of the sphere semantics. We are
interested in internal sequent calculi, where a sequent denotes a formula of the
language. Calculi of this kind have been proposed by Gent [7] and de Swart
[20], and more recently in [12, 13]. They are analytical and provide a decision
procedure for the respective logics; on the other hand, they comprise an infinite
set of rules with a variable number of premises.

Our aim is to provide internal calculi for the whole family of Lewis’ logics. We
sought the calculi to display the following features: (i) they should be standard, i.e.
each connective should be handled by a fixed finite set of rules with a fixed finite
set of premises; (ii) they should be modular, i.e. it should be possible to obtain
calculi for stronger logics adding independent rules to calculi for weaker ones;
(iii) they should have good proof-theoretical properties, first they should allow a
syntactic proof of cut admissibility; (iv) they should provide a decision procedure
for the respective logics; finally (v) they should be of optimal complexity with
respect to the known complexity of the logic. In our opinion requirement (i)
is particularly important: a standard calculus could provide a self-explanatory
presentation of the logic, thus a kind of proof-theoretic semantics. A first step
in this direction is the calculus IV presented in [17] for logic V: it is internal
and it is formulated in terms of structured sequents containing blocks encoding
disjunctions of 4-formulas. The calculus provides an optimal decision procedure
for V; however, no syntactic proof of cut admissibility is known for it.

In this work we make a further step towards the objectives mentioned above,
extending the results of [17]. We present internal, standard, cut-free calculi for
most logics of the Lewis family, namely logics V, VN, VT, VW, VC, VA and VNA
(hereafter denoted by L). Our calculi make use of a simplified block structure with

4 It is worth noticing that in turn the connective 4 can be defined in terms of �.



respect to IV . We first present the calculi IL, containing particularly perspicuous
non-invertible rules together with explicit contraction rules. As a preliminary
result we provide a syntactic proof of the admissibility of the cut rule for the basic
case of logic V, obtaining, as a by-product, a syntactic proof of completeness
of the calculus. We then present the calculi I iL, an alternative version of IL
with invertible rules and provably admissible contraction rules. We show that
calculi I iL are equivalent to IL, and that they allow terminating proof-search;
therefore they provide a decision procedure for the respective logics. Moreover,
we also prove the semantic completeness of I iL calculi for all logics of Lewis family
not including the absoluteness condition. As a final result, we show that calculi
IL (whence I iL) can simulate the non-standard calculi by Lellman [12]. This
result is interesting in itself as it clarifies the relation between rather different
proof-systems, and moreover it provides an alternative completeness proof of
both IL and I iL calculi, in particular for the missing cases of logics VA and VNA.
For the remaining logics of Lewis’ family such as VTA, VWA, and VCA the issue
of completeness of our calculi is open and will be dealt with in future research.

2 Preliminaries

We consider the conditional logics defined by Lewis in [14]. The set of conditional
formulae is given by F ::= p | ⊥ | F → F | F 4 F , where p ∈ V is a propositional
variable. The other boolean connectives are defined in terms of ⊥,→ as usual.
Intuitively, a formula A 4 B is interpreted as “A is at least as plausible as B”.

As mentioned above, Lewis’ counterfactual implication � can be defined in
terms of comparative plausibility 4 as A� B ≡ (⊥ 4 A) ∨ ¬((A ∧ ¬B) 4 A).

The semantics of this logic is defined by Lewis in terms of sphere semantics:

Definition 1. A sphere model (or model) is a triple 〈W, SP, J. K〉, consisting of
a non-empty set W of elements, called worlds, a mapping SP : W → P(P(W )),
and a propositional valuation J. K : V → P(W ). Elements of SP(x) are called
spheres. We assume the following conditions: for every α ∈ SP(w) we have α 6= ∅,
and for every α, β ∈ SP(w) we have α ⊆ β or β ⊆ α. The latter condition is
called sphere nesting.

The valuation J. K is extended to all formulae by: J⊥K = ∅; JA→ BK = (W −
JAK)∪ JBK; JA 4 BK = {w ∈W | for all α ∈ SP(w). if JBK∩α 6= ∅, then JAK∩
α 6= ∅}. For w ∈ W we also write w |= A instead of w ∈ JAK. As for spheres,
we write α ∀ A meaning ∀x ∈ α. x  A and α ∃ A meaning ∃x ∈ α. x  A5.
Validity and satisfiability of formulae in a class of models are defined as usual.
Conditional logic V is the set of formulae valid in all sphere models.

Extensions of V are semantically given by specifying additional conditions on
the class of sphere models, namely:

– normality : for all w ∈W we have SP(w) 6= ∅;
5 Employing this notation, satisfiability of a 4-formula in a model becomes the following:
x  A 4 B iff for all α ∈ SP(x). α ∀ ¬B or α ∃ A.



CPR
` B → A

` A 4 B
CPA (A 4 A ∨ B) ∨ (B 4 A ∨ B)

TR (A 4 B) ∧ (B 4 C)→ (A 4 C) CO (A 4 B) ∨ (B 4 A)
N ¬(⊥ 4 >) W A→ (A 4 >)
T (⊥ 4 ¬A)→ A A1 (A 4 B)→

(
⊥ 4 ¬(A 4 B)

)
C (A 4 >)→ A A2 ¬(A 4 B)→

(
⊥ 4 (A 4 B)

)
AV := {CPR,CPA,TR,CO}

AVN := AV ∪ {N} AVT := AV ∪ {N,T} AVW := AV ∪ {N,T,W}
AVC := AV ∪ {N,T,W,C} AVA := AV ∪ {A1,A2} AVNA := AV ∪ {N,A1,A2}

Table 1. Lewis’ logics and axioms.

– total reflexivity : for all w ∈W we have w ∈
⋃
SP(w);

– weak centering : normality holds and for all α ∈ SP(w) we have w ∈ α;
– centering : for all w ∈W we have {w} ∈ SP(w);
– absoluteness: for all w, v ∈W we have SP(w) = SP(v)6.

Extensions of V are denoted by concatenating the letters for these properties:
N for normality, T for total reflexivity, W for weak centering, C for centering,
and A for absoluteness. All the above logics can be characterized by axioms in a
Hilbert-style system [14, Chp. 6]. The axioms formulated in the language with
only the comparative plausibility operator are presented in Table 1 (where ∨ and
∧ bind stronger than 4).

3 A sequent calculus for Lewis’ logic and extensions

We propose internal sequent calculi for the basic Lewis’ logic V as well as for some
extensions. Our calculi are based on a modification of the sequent format from [17].
To make contraction explicit we consider sequents based on multisets, and write
Γ,∆ for multiset union and An for the multiset containing n copies of the formula
A. The basic constituent of sequents are blocks of the form [A1, . . . , Am C A],
with A1, . . . , Am, A formulas, representing disjunctions of 4-formulas.

Definition 2. A block is a tuple consisting of a multiset Σ of formulae and a
single formula A, written [Σ C A]. A sequent is a tuple Γ ⇒ ∆, where Γ is a
multiset of conditional formulae, and ∆ is a multiset of conditional formulae and
blocks. The formula interpretation of a sequent is given by (all blocks shown):

ι(Γ ⇒ ∆′, [Σ1 C A1] , . . . , [Σn C An]) :=
∧
Γ →

∨
∆′ ∨

∨
1≤i≤n

∨
B∈Σi

(B 4 Ai)

Table 2 presents non-invertible calculi for logic V and its extensions, including
rules for contraction of formulae both on the sequent level and inside blocks7.
We write [Θ,Σ C A] for [(Θ,Σ) C A], with Θ,Σ standing for multiset union.

6 Lewis’ original presentation in [14] is slightly different: he did not assume the general
condition on sphere models that for every α ∈ SP(w): α 6= ∅, and formulated normality
as ∀w ∈W :

⋃
SP(w) 6= ∅ and weak centering as normality plus ∀w ∈W α ∈ SP(w),

if α 6= ∅ then w ∈ α. Furthermore, note that absoluteness can be equally stated as
local absoluteness: ∀w ∈W∀v ∈

⋃
SP(w) SP(w) = SP(v).

7 Actually, the rules ConS and ConB are not needed for completeness (refer to Sct. 6); we
have included them in our official formulation of the calculi for technical convenience.



Γ,⊥ ⇒ ∆
⊥L

Γ, p⇒ ∆, p
init

Γ,B ⇒ ∆ Γ ⇒ ∆,A

Γ,A→ B ⇒ ∆
→L

Γ,A⇒ ∆,B

Γ ⇒ ∆,A→ B
→R

Γ ⇒ ∆, [A C B]

Γ ⇒ ∆,A 4 B
4R

Γ ⇒ ∆, [D,Σ C A] Γ ⇒ ∆, [Σ C C]

Γ,C 4 D ⇒ ∆, [Σ C A]
4L

Γ ⇒ ∆, [Σ1, Σ2 C A] Γ ⇒ ∆, [Σ1, Σ2 C B]

Γ ⇒ ∆, [Σ1 C A] , [Σ2 C B]
com

A⇒ Σ

Γ ⇒ ∆, [Σ C A]
jump

A,A, Γ ⇒ ∆

A,Γ ⇒ ∆
ConL

Γ ⇒ ∆,A,A

Γ ⇒ ∆,A
ConR

Γ ⇒ ∆, [Σ C A] , [Σ C A]

Γ ⇒ ∆, [Σ C A]
ConS

Γ ⇒ ∆, [Σ,A,A C B]

Γ ⇒ ∆, [Σ,A C B]
ConB

Γ ⇒ ∆, [⊥ C >]
Γ ⇒ ∆

N
Γ ⇒ ∆,B Γ ⇒ ∆, [⊥ C A]

Γ,A 4 B ⇒ ∆
T

Γ ⇒ ∆,Σ

Γ ⇒ ∆, [Σ C A]
W

Γ,C ⇒ ∆ Γ ⇒ D,∆

Γ,C 4 D ⇒ ∆
C

Γ4, B ⇒ ∆4, Σ

Γ ⇒ ∆, [Σ C B]
A

Here Γ4 ⇒ ∆4 is Γ ⇒ ∆ restricted to formulae of the form C 4 D and blocks.

IV := {⊥L, init,→L,→R,4R,4L, com, jump,ConR,ConL,ConS}

IVN := IV ∪ {N} IVW := IV ∪ {N,T,W} IVA := IV ∪ {A}
IVT := IV ∪ {N,T} IVC := IV ∪ {N,T,W,C} IVNA := IV ∪ {N,A}

Table 2. The calculus IV and its extensions

For notational convenience in the following we take L to range over the logics
V,VN,VT,VW,VC,VA,VNA, unless specified otherwise. As usual, given a for-
mula G ∈ L, in order to check whether G is valid we look for a derivation of
⇒ G. Given a sequent Γ ⇒ ∆, we say that it is derivable, written IL ` Γ ⇒ ∆,
if it admits a derivation, namely a tree where the root is Γ ⇒ ∆, every leaf is
an instance of axioms init or ⊥L, and every non-leaf node is (an instance of) the
conclusion of a rule having (an instance of) the premises of the rule as children.

Given the definition of � in terms of 4, rules for counterfactual implication
can be explicitly stated as follows:

⊥ 4 A,Γ ⇒ ∆ Γ ⇒ ∆, [A ∧ ¬B C A]

A� B,Γ ⇒ ∆
�L

(A ∧ ¬B) 4 A,Γ ⇒ ∆, [⊥ C A]

Γ ⇒ ∆,A� B
�R

Theorem 3 (Soundness). If IL ` Γ ⇒ ∆, then ι(Γ ⇒ ∆) is a theorem of L.

Example 4. To illustrate the use of the calculus we show a derivation of the
characteristic axiom (⊥ 4 ¬A) → A for logic VT in the calculus IVW and a
derivation of it in the calculus VC (where ¬A = (A→ ⊥)):

A⇒ A,⊥,⊥
init

⇒ A,A→ ⊥,⊥
→R

⇒ A, [(A→ ⊥),⊥ C >]
W

⊥ ⇒ ⊥
⊥L

⇒ A, [⊥ C ⊥]
jump

⊥ 4 (A→ ⊥)⇒ A, [⊥ C >]
4L

⊥ 4 (A→ ⊥)⇒ A
N

⇒ (⊥ 4 (A→ ⊥))→ A
→R

⊥ ⇒ A
⊥L

A⇒ A,⊥
init

⇒ A,A→ ⊥
→R

⊥ 4 (A→ ⊥)⇒ A
C

Therefore, rule T could be omitted in the rule sets IVW and IVC.



Completeness of the calculi are shown in next section. We now provide the
cut elimination proof in presence of the contraction rules (ConL, ConR, ConS
and ConB). The general strategy, adapted from the hypersequent setting [4],
consists in eliminating topmost applications of cut of maximal complexity by
first permuting them into the left premise until it is reached an occurrence of the
cut formula which is principal, and then permuting them into the right one. The
cut rules we consider are:

Γ ⇒ ∆,A A,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π
cut1

Γ ⇒ ∆, [Ω C A] Σ ⇒ Π, [A,Θ C B]

Γ,Σ ⇒ ∆,Π [Ω,Θ C B]
cut2

Definition 5. We write ILCut for the calculus IL extended with the cut rules
cut1 and cut2. The complexity of an application of cut1 or cut2 is the complexity
of the cut formula. Given a derivation D in ILCut, its formula cut rank rkcut1(D) is
the maximal complexity of an application of cut1 in it. Analogously, its structural
cut rank rkcut2(D) is the maximal complexity of an application of cut2 in it. The
height of a derivation is the number of nodes of its longest branch minus one.
Thus, a derivation of height 0 is an axiom. We write IL `n Γ ⇒ ∆ if there exists
a derivation of height n in IL with endsequent Γ ⇒ ∆. Similarly for ILCut.

By straightforward induction on the height of the derivation we obtain:

Lemma 6. The weakening rules are height-preserving admissible in IL and
ILCut, i.e. (using the uniform notation IL(Cut) for both cases): If IL(Cut) `n
Γ ⇒ ∆, then IL(Cut) `n Γ,Σ ⇒ ∆,Π and if IL(Cut) `n Γ ⇒ ∆, [Σ C A], then
IL(Cut) `n Γ ⇒ ∆, [Σ,Ω C A]. Moreover, both the formula cut rank and the
structural cut rank are preserved.

Lemma 7 (cut1-reduction). Suppose IVCut ` Γ ⇒ ∆,An and IVCut ` Am, Σ ⇒
Π by derivations D1 and D2 with rkcut1(D1) < |A| > rkcut1(D2) and rkcut2(D1) <
|A| > rkcut2(D2), where An and Am are n and m occurrences of A. Then there is
a derivation D in IVCut of Γ,Σ ⇒ ∆,Π with rkcut1(D) < |A| > rkcut2(D).

Proof. By induction on the sum of the heights of D1 and D2. We write R1 and R2

for the last rules in D1 resp. D2, and count the atom p in init and the contracted
formula in the contraction rules as principal. If none of the occurrences of A
is principal in R1, we apply the induction hypothesis on the premise(s) of R1

followed by R1. Otherwise, if none of the occurrences of A is principal in R2, we
apply the induction hypothesis to the premise(s) of R2 followed by R2.

If at least one occurrence of A was principal both in R1 and R2, we apply the
induction hypothesis to the premise(s) of R1 and the conclusion of R2 and vice
versa to delete the occurrences of A in the context. If either of the rules was a
contraction rule we are done, otherwise apply cut1 or cut2 on formulae of smaller
complexity. The propositional cases are standard, the case where A = C 4 D is
straightforward. Applying contraction rules then yields the result. ut

Lemma 8 (Shift-right). Suppose for k1, . . . , kn ≥ 1 we have IVCut-derivations
D1 and D2 of Γ ⇒ ∆, [Ω C A] and Σ ⇒ Π,

[
Ak1 , Θ1 C B

]
, . . . ,

[
Akn , Θn C B

]



respectively with rkcut1(D1) ≤ |A| ≥ rkcut1(D2) and rkcut2(D1) < |A| > rkcut2(D2)
such that the last applied rule in D1 is jump. Then there is a derivation D in
IVCut with rkcut1(D) ≤ |A| > rkcut2(D) of the sequent

Γ,Σ ⇒ ∆,Π, [Ω,Θ1 C B] , . . . , [Ω,Θn C B]

Proof. By induction on the height of D2, distinguishing cases according to the
last applied rule R. If R is a rule other than jump, com we apply the induction
hypothesis to the premise(s) of R, followed by R if necessary. In particular, the
general induction hypothesis immediately takes care of ConS and ConB. If R
is jump, we apply cut1 several times to the occurrence of A in the premise of
the application of jump in D1 and the occurrences of A in the premise of R,
followed by applications of ConL and an application of jump. These new cuts
have complexity |A|. If R is com, again we apply the induction hypothesis on the
premises of R, but now we might need to apply weakening inside a block before
applying com again. ut

Lemma 9 (cut2-reduction). Suppose we have IV-derivations D1 and D2 of
Γ ⇒ ∆, [Ω1 C A] , . . . , [Ωn C A] and Σ ⇒ Π, [A,Θ C B] with rkcut1(D1) ≤ |A| ≥
rkcut1(D2) and rkcut2(D1) < |A| > rkcut2(D2). Then there is a derivation D in
IVCut with rkcut1(D) ≤ |A| > rkcut2(D) of the sequent

Γ,Σ ⇒ ∆,Π, [Ω1, Θ C B] , . . . , [Ωn, Θ C B]

Proof. By induction on the height of D1, distinguishing cases according to the
last applied rule R. If none of the occurrences of A in the conclusion of R is in an
active block we apply the induction hypothesis to the premise(s) of R followed by
an application of R. Suppose A occurs in an active block. If R is com or 4L we
apply the induction hypothesis on the premises, followed possibly by admissibility
of Weakening (Lem. 6) and finally an application of R. If R is ConB , we simply
apply the induction hypothesis to its premise. If R is jump, we apply Lem. 8. ut

Theorem 10 (Cut Elimination). If IVCut ` Γ ⇒ ∆, then IV ` Γ ⇒ ∆. In
particular, there is a procedure to eliminate cuts from a derivation in IVCut.

Proof. We show how to convert an IVCut-derivation D into a cut-free derivation
with same conclusion by induction on the tuples 〈rkcut1(D),#cut2(D),#cut1(D)〉 in
the lexicographic ordering, where #cut1(D) is the number of applications of cut1
in D with cut formula of complexity max{rkcut1(D), rkcut2(D)}, and analogous for
#cut2(D) with respect to cut2. A topmost application of cut1 with complexity
max{rkcut1(D), rkcut2(D)} is eliminated using Lem. 7. A topmost application of
cut2 with complexity max{rkcut1(D), rkcut2(D)} is eliminated using Lem. 9. It
follows from the lemmas that in both cases the induction measure decreases. ut

As a consequence of the admissibility of cut, we can provide a syntactical proof
of completeness of logic V:

Corollary 11 (Completeness via cut elimination). If a formula F is valid
in V, then there is a derivation of ⇒ F in IV.



Γ,⊥ ⇒ ∆
⊥L

Γ, p⇒ ∆, p
init

Γ,B ⇒ ∆ Γ ⇒ ∆,A

Γ,A→ B ⇒ ∆
→L

Γ,A⇒ ∆,B

Γ ⇒ ∆,A→ B
→R

Γ ⇒ ∆, [A C B]

Γ ⇒ ∆,A 4 B
4R

Γ,A 4 B ⇒ ∆, [B,Σ C C] Γ,A 4 B ⇒ ∆, [Σ C A] , [Σ C C]

Γ,A 4 B ⇒ ∆, [Σ C C]
4i

L

Γ ⇒ ∆, [Σ1, Σ2 C A] , [Σ2 C B] Γ ⇒ ∆, [Σ1 C A] , [Σ1, Σ2 C B]

Γ ⇒ ∆, [Σ1 C A] , [Σ2 C B]
comi

A⇒ Σ

Γ ⇒ ∆, [Σ C A]
jump

Γ ⇒ ∆, [⊥ C >]
Γ ⇒ ∆

N

Γ,A 4 B ⇒ ∆,B Γ,A 4 B ⇒ ∆, [⊥ C A]

Γ,A 4 B ⇒ ∆
Ti

Γ ⇒ ∆, [Σ C A] , Σ

Γ ⇒ ∆, [Σ C A]
Wi

Γ,A 4 B ⇒ ∆,B Γ,A 4 B,A⇒ ∆

Γ,A 4 B ⇒ ∆
Ci

Γ4, B ⇒ ∆4, [Σ C B] , Σ

Γ ⇒ ∆, [Σ C B]
Ai

Here Γ4 ⇒ ∆4 is Γ ⇒ ∆ restricted to formulae of the form C 4 D and blocks.

I iV := {⊥L, init,→L,→R,4R,4
i
L, com

i
, jump}

I iVN := I iV ∪ {N} I iVW := I iV ∪ {N,T
i,Wi} I iVA := I iV ∪ {A

i}
I iVT := I iV ∪ {N,T

i} I iVC := I iV ∪ {N,T
i,Wi,Ci} I iVNA := I iV ∪ {N,A

i}

Table 3. The invertible calculus I iV and its extensions

Proof. By deriving the rules and axioms of the Hilbert-calculus for V (Tab. 1) in
IVCut and using Thm. 10. For rule CPR from ⇒ B → A by propositional rules
and cut1 we obtain B ⇒ A, and applications of jump and 4R yield ⇒ A 4 B. ut

4 The invertible calculus

In Table 3 we present fully invertible calculi for Lewis’ logics. The equivalence
between IL and I iL is proved via admissibility of weakening and contraction;
furthermore, we shall use I iL to semantically prove completeness of logics V, VN,
VT, VW and VC. It can be shown that weakening is height preserving admissible
in I iV and its extensions, and that all the rules are invertible, with the exception
of jump and Ai. Given these properties, we can prove that:

Lemma 12 (Adm. of Contraction). 1. Rules ConL and ConR are admissible
in I iL; 2. Rule ConS is admissible in I iL; 3. Rule ConB is admissible in I iL.

Theorem 13 (Equivalence). For A arbitrary formula, A is derivable in the
calculus IL iff A is derivable in the invertible calculus I iL.

Proof. Both directions are proved by easy induction on the height of the deriva-
tion, modulo weakening and contraction. Note that for the [if ] direction applica-
tion of weakening is justified, since the rule is admissible in the calculus IL, and
for direction [only if ] applications of weakening and contraction are legitimate
since both rules are admissible in I iL. ut

Standard reasoning shows that the calculi I iL can be used in a decision procedure
for the logic L as follows. Since contractions and weakenings are admissible we
may assume that a derivation of a duplication-free sequent (containing dupli-
cates neither of formulae nor of blocks) only contains duplication-free sequents:



whenever a (backwards) application of a rule introduces a duplicate of a formula
already in the sequent, it is immediately deleted in the next step using a back-
wards application of weakening. While officially our calculi do not contain the
weakening rules, the proof of admissibility of weakening yields a procedure to
transform a derivation with these rules into one without. Since all rules have the
subformula property, the number of duplication-free sequents possibly relevant
to a derivation of a sequent is bounded in the number of subformulae of that
sequent, and hence enumerating all possible loop-free derivations of the above
form yields a decision procedure for the logic. This argument is sufficient to show
termination; however, it is clear that the complexity of the resulting procedure is
far from the optimal PSPACE or coNP complexities of the logics [6, 20].

Theorem 14. Proof search for a sequent Γ ⇒ ∆ in calculus I iL always comes
to an end in a finite number of steps.

5 Semantic Completeness

In this section we prove the semantic completeness of I iL. In order to simplify
the proof we adopt a cumulative version of rules →L, →R, 4R and comi. This
allows us to consider only the upper sequent of each derivation branch, instead
of taking into account whole branches of the derivation.

Γ,A→ B,B → ∆ Γ,A→ B ⇒ ∆,B

Γ,A→ B ⇒ ∆
→c

L

Γ,A⇒ ∆,A→ B,B

Γ ⇒ ∆,A→ B
→c

R

Γ ⇒ ∆,A 4 B, [A C B]

Γ ⇒ ∆,A 4 B
4c

R

Γ ⇒ ∆, [Σ1, Σ2 C A] , [Σ1 C A] , [Σ2 C B] Γ ⇒ ∆, [Σ1, Σ2 C B] [Σ1 C A] , [Σ2 C B]

Γ ⇒ ∆, [Σ1 C A] , [Σ2 C B]
comc

Definition 15. The modal degree of a formula resp. sequent is defined as follows:
md(⊥) = md(P ) = 0, for P atomic formula; md(A→ B) = max(md(A),md(B));
md(A 4 B) = max(md(A),md(B)) + 1; md([Σ C A]) = max(md(Σ),md(A)) +
1; md(Γ ⇒ ∆) = max{md(G) | G ∈ Γ ∪∆, G formula or block}.

Proposition 16. All rules of I iV preserve the modal degree: the premises of the
rule have a modal degree no greater than the one of the respective conclusion.

Observe that jump is the only rule which decreases the modal degree. Furthermore,
an application of a rule is said to be redundant if the conclusion of the rule can
be derived from one of its premises by weakening or contraction. If a sequent is
derivable it has a non redundant derivation, since the redundant applications
of the rules can be removed without affecting the correctness of the derivation.
If an application of comc is non redundant, then it must respect the restriction
(∗) Σ1 * Σ2 and Σ2 * Σ1. To see this: if (∗) is not respected then either Σ1 ⊆ Σ2

or Σ2 ⊆ Σ1; in both cases we get a redundant application of comc.



Definition 17. A sequent is saturated if it has the form Π1 ⇒ Π2, [Σ1 C C1] , ...,
[Σn C Cn] where Π1, Π2 are a multi-set of formulas such that (init) Π1∩Π2 = ∅;
(⊥L) ⊥ /∈ Π1 and > /∈ Π2; (→c

L) if A→ B ∈ Π1 then either A ∈ Π1 or B ∈ Π2;
(→c

R) if A → B ∈ Π2 then A ∈ Π1 and B ∈ Π2; (comc) for every [Σi C Ci],
[Σj C Cj ] it holds that either Σi ⊆ Σj or Σj ⊆ Σi; (4c

R) for every A 4 B ∈ Π2

it holds that [A C B] ∈ {[Σ1 C C1] , ..., [Σn C Cn]}; (4i
L) for every A 4 B ∈ Π1

and for every [Σi C Ci], where 1 6 i 6 n, it holds that either B ∈ Σi or there
exists [Π,Σ C A] ∈ {[Σ1 C C1] , ..., [Σn C Cn]}; (N) either Γ ⇒ ∆ has the form
⊥ ⇒ > or [⊥ C >] belongs to ∆; (Ti) for every A 4 B in Π1, it holds that either
B ∈ Π2 or [⊥ C A] ∈ {[Σ1 C C1] , ..., [Σn C Cn]}; (Wi) for every block [Σ C A],
it holds that Σ ⊆ Π2; (Ci) for every A 4 B in Π1, it holds that either B ∈ Π2 or
A ∈ Π1. For each logic L, the definition of saturated sequent takes into account
only the saturation conditions of the rules of the corresponding calculus.

All the blocks [Σ1 C C1] , ..., [Σn C Cn] of a saturated sequent can be considered
as ordered with respect to set inclusion8. We call static all the rules except for
jump and Ai. By finished sequent we mean a sequent for which every further
static rule application is redundant. Note that a finished sequent is saturated.

Proposition 18. After finitely many non redundant static rule applications we
reach an axiom or a finished sequent.

Proof. Let Γ ⇒ ∆ be the root sequent of a derivation. We consider any branch
of a derivation (i) without applications of jump or Ai, (ii) without redundant
applications of rules. Observe that each rule application must add at least one
formula or block to each premise, and the number of formulas or blocks (each
one is finite in itself) that can occur within a sequent is finite. Thus the branch
must be finite: if not, then it would not contain axioms and some formula or
block would be added infinitely many times by eventually redundant applications
of a rule. Moreover, once a rule (R) has been applied to a formula or block, the
saturation condition with respect to the rule (R) and the involved formulas or
blocks will be satisfied by the premises of (R). Thus the last node of the branch,
if it is not an axiom, must be finished. ut

Corollary 19. Given a sequent Γ ⇒ ∆, every branch of any derivation tree
starting with Γ ⇒ ∆ ends in a finite number of steps with a saturated sequent of
no greater modal degree than that of Γ ⇒ ∆.

Theorem 20. If a sequent Γ0 ⇒ ∆0 is valid, then it is derivable in I iV.

Proof. We first prove completeness for I iV, then show how to extend the proof
to I iVN, I iVT, I iVW, I iVC9. The proof strategy is the same in all cases, and it

8 A quick argument: once all non redundant comc have been applied, it holds that
either Σi ⊆ Σj or Σj ⊆ Σi; we then order the blocks: Σ1 ⊆ Σ2 ⊆ ... ⊆ Σn.

9 The proof uses in an essential way the fact that a backwards application of jump
reduces the modal degree of a sequent. Although rule Ai plays a similar role as jump,
it does not reduce the modal degree when applied backwards. Thus we need another
argument for handling logics including A; this is object of further investigation.



proceeds by induction on the modal degree of the sequent. If md(Γ0 ⇒ ∆0) = 0,
Γ0 ⇒ ∆0 is composed only of propositional formulas, and its completeness can
be proved from the completeness of sequent calculus for propositional logic. If
md(Γ0 ⇒ ∆0) > 0, by Proposition 16 and Proposition 19 we have that Γ0 ⇒ ∆0

can be derived from a set of saturated sequents Γk ⇒ ∆k of no greater modal
degree. Since all the rules are invertible, except jump, and since by hypothesis
Γ0 ⇒ ∆0 is valid, also all saturated sequents Γk ⇒ ∆k are valid. Thus, either
i) Γk ⇒ ∆k is an axiom, or ii) it must have been obtained by jump from a
valid sequent Γk+1 ⇒ ∆k+1. In the first case the theorem is trivially proved. We
shall prove ii): if Γk ⇒ ∆k is valid and saturated, and it is not an axiom, there
exists a valid sequent Γk+1 ⇒ ∆k+1 from which Γk ⇒ ∆k is obtained by jump.
We shall prove the statement by contraposition. Let Γk ⇒ ∆k be the saturated
sequent Π1 ⇒ Π2, [Σ1 C C1] , ..., [Σk C Ck]. Suppose that none of the sequents
C1 ⇒ Σ1, ..., Ck ⇒ Σk is valid. We prove that the sequent Γk ⇒ ∆k is not valid.

By hypothesis there are models M1, ...,Mk which falsify the sequents C1 ⇒
Σ1, ..., Ck ⇒ Σk. For 1 6 j 6 k, let Mj = 〈Wj ,SP

j , J. Kj〉 and for some elements
xj ∈ Wj let Mj , xj � Cj and Mj , xj 2 S for all S ∈ Σj . Suppose all Wj

are disjoint, i.e. Wj ∩ Wj′ = ∅. From these models we build a new model
M = 〈W, SP, J. K〉 as follows: W = ∪Wl ∪ {x}, for x new; SP(z) = SPj(z),
if z ∈ Wj ; SP(x) = {α1, ..., αk}, where αk = {xk}; αk−1 = {xk, xk−1}, ... ,
α1 = {xk, ..., x1}; JP K = ∪ JP Kj , for P atomic and P ∈ Π2; JP K = ∪ JP Kj ∪ {x},
for P atomic and P ∈ Π1. One can easily check that for E arbitrary formula or
block, it holds that if Mj , xj  E, then M, xj  E, for 1 6 j 6 k.

To complete the proof we show thatM falsifies each formula or block occurring
in Γk ⇒ ∆k. Thus, we have to prove that a) if G ∈ Γk, then M, x  G, for
G formula; b) if G ∈ ∆k, then M, x 1 G, for G formula; c) if [Σj C Aj ] ∈ ∆k,
then M, x 1 [Σj C Aj ]. The proof proceeds by induction on the modal degree of
formulas. The base case and the inductive step for the propositional cases are
immediate. Proof of a. Let G = C 4 D. For the saturation conditions (comc)
and (4c

L), it holds that for all blocks [Σj C Aj ] in the saturated sequent, either
D ∈ Σj or there exists in the saturated sequent a block [Π,Σl C C], for l 6 j.
Consider an arbitrary sphere αj = {xk, ..., xj} and the corresponding block
[Σj C Aj ]. There are two cases to consider: if i) D ∈ Σj , by construction of the
model it holds that αj 1∃ D, i.e. αj ∀ ¬D. Suppose that ii) there exists a block
[Π,Σl C C] belonging to the saturated sequent Γk ⇒ ∆k. By construction of the
model, we have that there exists a world xl such that xl  C; thus, αl ∃ C.
However, since the spheres are incremental, αl ⊆ αj ; thus, αj ∃ C. We have
that for αj arbitrary block, either αj ∀ ¬D or αj ∃ C; thus, M, x  C 4 D.
Proof of b. Let G = C 4 D. By the saturation condition (4c

R) there exists a
block [Σj C Aj ] belonging to Γk ⇒ ∆k such that C ∈ Σj and D = Aj . Let us
consider αj = {xk, ..., xj}. We have that C ∈ Σj+1, ..., C ∈ Σk. By construction,
xj 1 C; therefore, xj 1 C, ..., xk 1 C. Furthermore, xj  Aj ; thus xj  D. There
exists αj ∈ SP(x) such that αj 1∀ ¬D and αj 1∃ C; thus, M, x 1 C 4 D. The
proof of c) is the same as in the previous case.

We have thus proven that if Γk ⇒ ∆k is valid and saturated, and it is not



an axiom, then there exists a valid sequent Γk+1 ⇒ ∆k+1 from which Γk ⇒ ∆k

is obtained by jump. Since md(Γk+1 ⇒ ∆k+1) < md(Γk ⇒ ∆k), by inductive
hypothesis we have that Γk+1 ⇒ ∆k+1 is derivable; therefore, Γk ⇒ ∆k is
derivable as well, by the jump rule.

Completeness of I iVN. If md(Γ0 ⇒ ∆0) = 0, then any saturated sequent
derived from it will have the form Γk ⇒ ∆k, [⊥ C >], where Γk and ∆k are
composed only of propositional formulas. If Γk ⇒ ∆k is an axiom, we are done.
If Γk ⇒ ∆k is not an axiom, it has a propositional countermodel. Associate this
countermodel to a world x, and build a model with W = {x} and SP(x) = {{x}}.
The reader can easily check that the model satisfies N . If md(Γ0 ⇒ ∆0) > 0, the
proof proceeds in the same way as for I iV. Notice that by inductive hypothesis
all the models Mi involved in the construction satisfy N .

Completeness of I iVT. We modify the definition of SP(x) in the model M by
adding a new sphere α0, in order to account for total reflexivity. Thus, SP(x) =
{α0, α1, α2, ..., αk}, where αk = {xk}, αk−1 = {xk, xk−1}, ..., α1 = {xk, ..., x1},
α0 = α1 ∪ {x}. Cases b) and c) remain the same as in the completeness proof
for I iV. As for a), consider SP(x) = {α0, α1, α2, ..., αk}. For spheres αk, ..., α1

a) holds; we have to prove that also for α0 either α0 ∀ ¬D or α0 ∃ C. We
know that either i) α1 ∀ ¬D or ii) α1 ∃ C. If i) holds, the theorem is proved,
since α0 ∃ C. If it holds that (∗) α1 1∀ ¬D then ii) holds. By absurd, suppose
α0 1∀ ¬D; thus, (∗∗) x  D (since all the other worlds did not satisfy D). By
saturation condition (Ti), we have that either D ∈ ∆ or [⊥ C C] ∈ ∆. There
are two cases to consider. If D ∈ ∆, since md(D) < md(C 4 D), by inductive
hypothesis we have x 1 D, against (∗∗). If [⊥ C C] ∈ ∆, there exists a block
[Σu C Au] in the saturated sequent Γk ⇒ ∆k such that Au = C. Thus, by
construction αu ∃ C, and xu  C for some xu ∈ αu. By construction xu ∈ α1;
thus, α1 ∃ C against (∗). We reached a contradiction; thus, also for α0 it holds
that α0 ∀ ¬D or α0 ∃ C, and M, x  C 4 D.

Completeness of I iVW. We modify SP(x) in order to account for weak centering
by adding a new world x to each sphere, as follows: SP(x) = {α1, α2, ..., αk},
where αk = {xk, x}; αk−1 = {xk, xk−1, x}, ..., α1 = {xk, ..., x1, x}. We have to
prove that conditions a), b) and c) hold. The proof makes an essential use of the
saturation condition (Wi), and it is omitted for space reasons.

Completeness of I iVC. For centering, we modify SP(x) by adding a new
sphere αk+1, which contains only x. Namely: αk+1 = {x}; αk = {xk, x}; αk−1 =
{xk, xk−1, x},..., α1 = {xk, ..., x1, x}. Conditions b) and c) are as in the proof for
I iVW; case a) is slightly different and employs the saturation condition (Ci). ut

6 Completeness via translation

We can give quick alternative completeness proofs for the proposed calculi by
simulating derivations in the corresponding sequent calculi from [13, 12], shown
in Tab. 4. The main difficulty is to simulate the rules for 4.

Theorem 21. Every rule of RL is derivable in ILr {ConS ,ConB}. Hence ILr
{ConS ,ConB} is cut-free complete for L.



{Bk ⇒ D1, . . . , Dm, A1, . . . , An | 1 ≤ k ≤ n}
∪ {Ck ⇒ D1, . . . , Dk−1, A1, . . . , An | 1 ≤ k ≤ m}

Γ,C1 4 D1, . . . , Cm 4 Dm ⇒ A1 4 B1, . . . , An 4 Bn, ∆
Rm,n

{Ck ⇒ D1, . . . , Dk−1 | 1 ≤ k ≤ m}
∪ {Γ ⇒ D1, . . . , Dm, ∆}
Γ,C1 4 D1, . . . , Cm 4 Dm ⇒ ∆

Tm

Γ,C ⇒ ∆ Γ ⇒ D,∆

Γ,C 4 D ⇒ ∆
C2

{Bk ⇒ D1, . . . , Dm, A1, . . . , An | 1 ≤ k ≤ n}
∪ {Γ ⇒ D1, . . . , Dm, A1, . . . , An, ∆}

Γ,C1 4 D1, . . . , Cm 4 Dm ⇒ A1 4 B1, . . . , An 4 Bn, ∆
Wm,n

Γ ⇒ A,∆

Γ ⇒ A 4 B,∆
W2

{
Γ4, Bk ⇒ D1, . . . , Dm, A1, . . . , An, ∆

4 | 1 ≤ k ≤ n
}

∪
{
Γ4, Ck ⇒ D1, . . . , Dk−1, A1, . . . , An, ∆

4 | 1 ≤ k ≤ m
}

Γ,C1 4 D1, . . . , Cm 4 Dm ⇒ A1 4 B1, . . . , An 4 Bn, ∆
Am,n

Γ4 is the restriction of Γ to formulae of the form A 4 B; RV4 := {Rm,n | m ≥ 0, n ≥ 1};

RVN4 := {Rm,n | m+ n ≥ 1} RVC4 := RV4 ∪ {RW2,RC2}
RVT4 := RV4 ∪ {Tm | m ≥ 1} RVA4 := {Am,n | m ≥ 0, n ≥ 1}
RVW4

:= RV4 ∪ {Wm,n | m+ n ≥ 1} RVNA4 := {Am,n | m+ n ≥ 1}

Table 4. The rules and rule sets for extensions of V4.

Proof. We only consider the rules for 4, the remaining rules are straightforward.
For the sake of readability for k < ` we abbreviate Ck 4 Dk, . . . , C` 4 D` by
(C 4 D)`k. Similarly, we write (A)`k for Ak, . . . , A`, and (D)`k for Dk, . . . , D`.
To simulate rule Rm,n, for every k ≤ n we have the following derivation:

Bk ⇒ An
1 ,D

m
1

Γ ⇒ ∆, [An
1 ,D

m
1 C Bk]

jump

Cm ⇒ An
1 ,D

m−1
1

Γ ⇒ ∆,
[
An

1 ,D
m−1
1 C Cm, Bk

] jump

Γ,Cm 4 Dm ⇒ ∆,
[
An

1 ,D
m−1
1 C Bk

] 4L

.

.

.

.
Γ, (C 4 D)m2 ⇒ ∆, [An

1 C Bk]

C1 ⇒ An
1

Γ, (C 4 D)m2 ⇒ ∆, [An
1 C C1, Bk]

jump

Γ, (C 4 D)m1 ⇒ ∆, [An
1 C Bk]

4L

The conclusion is obtained by multiple applications of com to these sequents,
followed by the derivation

Γ, (C 4 D)m1 ⇒ ∆, [A1 C B1] , . . . , [An C Bn]

Γ,C1 4 D1, . . . , Cm 4 Dm ⇒ ∆,A1 4 B1, . . . , An 4 Bn
4R

The simulations for the remaining rules apart from Tm are only slight modifica-
tions. For instance, to simulate Rm,0 we would have the rule N instead of the
blocks of 4R and com at the bottom, for Wm,n with n ≥ 1 we replace the top
leftmost application of jump by an application of W, for Wm,0 we apply N at
the bottom, and for Am,n we replace all applications of jump by A. Rule C2 is
simulated straightforwardly by W followed by 4R. For rule Tm finally, we first
construct for `, k ≥ 0 derivations D`,`+k+1 of the sequents

Ω, (C 4 D)
`
1 ⇒ Θ,

[
⊥,D`+k

`+1
, Σ C C`+k+1

]



for arbitrary Ω,Θ,Σ from the premises {Ci ⇒ Di−1
1 | 1 ≤ i ≤ `+ k + 1}. The

derivation D0,k+1 is straightforward using the rules of weakening (Lemma 6) and
jump. The derivation D`+1,`+1+k+1 is obtained by

Ω, (C 4 D)`1 ⇒ Θ,
[
⊥,D`+1+k

`+1
, Σ C C`+1+k+1

]Ω, (C 4 D)`1 ⇒ Θ,
[
⊥,D`+1+k

`+2
, Σ C C`+1

]

Ω, (C 4 D)
`+1
1 ⇒ Θ,

[
⊥,D`+1+k

`+2
, Σ C C`+1+k+1

] 4L

where the premises are derived by D`,`+1+k+1 and D`,`+1. We obtain Tm as:

Γ ⇒ ∆,Dm
1 Γ ⇒ ∆,Dm

2 , [⊥ C C1]

Γ,C1 4 D1 ⇒ ∆,Dm
2

T
Γ,C1 4 D1 ⇒ ∆,Dm

3 , [⊥ C C2]

Γ, (C 4 D)21 ⇒ ∆,Dm
3

T

.

.

.

.

Γ, (C 4 D)
m−1
1 ⇒ ∆,Dm Γ, (C 4 D)

m−1
1 ⇒ ∆, [⊥ C Cm]

Γ, (C 4 D)m1 ⇒ ∆
T

where the premises are derived using D0,1,D1,2, . . . ,Dm−1,m. Note that none of
the simulations uses ConS . ut

Corollary 22. Let L ∈ {V,VN,VT,VW,VA,VNA}. Then the calculus I iL is
complete for L. ut

7 Conclusions

We have introduced internal, standard, cut-free calculi for Lewis’ logics V, VN,
VT, VW, VC, VA and VNA, extending the basic ideas of the calculi proposed
in [17] for the basic system V. The same logics have been considered in [12], where
calculi comprising an infinite set of rules with a variable number of premises are
introduced, whereas the calculi we have introduced here are standard in the sense
that each connective is handled by a fixed finite set of rules with a fixed finite set
of premises. As far as we know, these are the first standard and internal calculi
covering most, if not all, logics of the Lewis’ family.

In future research we aim at extending the proof of cut elimination to exten-
sions of V. Moreover, we aim at providing a semantic completeness proof also for
the logics with the absoluteness condition. Finally we shall study how to obtain
optimal decision procedures for the respective logics based on our calculi.
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