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Abstract

In this paper we propose a modified version of the classical collocation method and
two spline collocation methods with high order of convergence, for the solution of integral
equations on surfaces of R3. Such methods are based on optimal superconvergent quasi-
interpolants defined on type-2 triangulations and based on the Zwart-Powell quadratic
box spline.
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1 Introduction

In this paper we consider the surface integral equation

ρ(P1)−

∫

S

K(P1,P2)ρ(P2)dSP2
= ψ(P1), P1 ∈ S, (1)

where S is a connected surface in R
3, described by a sufficiently smooth map F : Ω → S,

with Ω a polygonal domain in R
2, and the kernel K(P1,P2) is continuous for P1, P2 ∈ S.

Therefore, (1) can be written as

ρ(F(u, v))−

∫

Ω
K(F(u, v),F(s, t))ρ(F(s, t)) |(DsF×DtF)(s, t)| ds dt = ψ(F(u, v)), (u, v) ∈ Ω,

where |(DsF×DtF)(s, t)| is the Jacobian of the map F(s, t).
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Spline QIs for the solution of surface integral equations

If we denote by K : C(S) −→ C(S) the integral operator defined by

Kρ(F(u, v)) :=

∫

Ω
K(F(u, v),F(s, t))ρ(F(s, t)) |(DsF×DtF)(s, t)| ds dt,

for (u, v) ∈ Ω, then we can write (1) in the following operator form

(I − K)ρ = ψ. (2)

We remark that (2) has a unique solution ρ ∈ C(S) for any given ψ ∈ C(S) [3].
In the literature, standard methods for solving (2) consist in Nyström, Galerkin and

collocation methods. For instance, we recall the collocation ones based on a sequence of
linear interpolatory projection operators onto finite dimensional subspaces Xmn of C(S),
converging to the identity operator pointwise. A classical choice of Xmn is the space of C0

piecewise polynomials of a given degree d (usually d = 2) on a triangulation of Ω (see [3, 5]).
In this paper we propose three collocation methods for (2), based on a sequence of

optimal superconvergent spline quasi-interpolating operators {Qmn}, that are not projectors
and are defined on the space Xmn = S1

2(Ω, Tmn) of the C1 quadratic splines on a uniform
type-2 triangulation Tmn of Ω, with Ω a rectangular domain. We recall [12] that the above
quasi-interpolating splines are expressed by means of the scaled/translates of the Zwart-
Powell quadratic box spline (ZP-element) (see e.g. [4, Chap. 1], [14, Chap. 2]). From a
computational point of view, this is more convenient than the use of other spanning sets, for
instance formed by bivariate B-splines with support completely included in Ω [1, 7, 9, 13],
that, having different supports, have different expressions in the domain, while the ZP-
element is always the same.

Given a rectangular domain Ω = [a, b] × [c, d], by dividing it into mn equal squares
{Ωij}

m n
i=1, j=1 with a given edge h,m,n ≥ 4, each of them being subdivided into 4 triangles by

its diagonals, we obtain a uniform type-2 triangulation Tmn of Ω. We denote by S1
2(Ω, Tmn)

the space of C1 quadratic splines on Tmn, whose dimension is (m+ 2)(n+ 2)− 1 ([14] and
the reference therein).

This space is generated by the (m + 2)(n + 2) B-spline functions {Bi,j , (i, j) ∈ Amn},
where Amn = {(i, j), 0 ≤ i ≤ m + 1, 0 ≤ j ≤ n + 1}, obtained by dilation/translation of
the ZP-element. Moreover, in order to obtain a B-spline basis for S1

2(Ω, Tmn) we have to
neglect one B-spline from the spanning set ([14] and the reference therein).

In the space S1
2(Ω, Tmn) we consider special optimal quasi-interpolants (abbr. QIs) of

the form
Qmnf :=

∑

(i,j)∈Amn

λi,j(f)Bi,j , (3)

with {λi,j , (i, j) ∈ Amn} a family of local linear functionals defined in this way

λi,j(f) :=
∑

(k,l)∈Fi,j

σi,j(k, l)f(Mk,l), (4)
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where the finite set of points {Mk,l, (k, l) ∈ Fi,j}, Fi,j ⊂ Amn, lies in some neighbourhood of
suppBi,j ∩Ω and the σi,j(k, l)’s are chosen such that Qmnf ≡ f for all f in P2 (the space of
bivariate polynomials of total degree two) and superconvergence is induced at some specific
points, i.e. the vertices, the centers, the midpoints of horizontal and vertical edges of each
subsquare of the partition. The coefficient functional expression (4) is given in [12] and we
recall that ‖Qmn‖∞ ≤ 2. The points Mk,l in (4) are the mn centers of the squares, the
2(m+ n) midpoints of boundary segments and the four vertices of Ω.

We remark that the QIs (3) can also be written in quasi-Lagrange form

Qmnf :=
∑

(i,j)∈Amn

f(Mi,j)Li,j ,

by means of the fundamental functions Li,j , obtained as linear combination of the Bi,j ’s.
Standard results in approximation theory and other specific ones given in [6] allow

us to deduce the following theorem, where Dβ = Dβ1β2 = ∂|β|

∂xβ1∂yβ2
, with |β| = β1 +

β2, ‖Dνf‖∞ = max
|β|=ν

∥

∥

∥
Dβf

∥

∥

∥

∞
, ω (Dνf, h) = max {ω (Dαf, h) , |α| = ν}, where ω (f, h) =

max {|f(P1)− f(P2)| ;P1, P2 ∈ Ω, ‖P1 − P2‖ ≤ h} is the modulus of continuity of f ∈ C(Ω),
and ‖·‖ is the Euclidean norm.

Theorem 1 Let f ∈ Cν(Ω), 0 ≤ |α| ≤ ν ≤ 2, |α| = 0, 1 then

‖Dα(f −Qmnf)‖∞ ≤ Kα,νh
ν−|α|ω (Dνf, h) ,

where the error constant Kα,ν is independent of h and depends only on α and ν.

If, in addition, f ∈ C3(Ω), then

‖Dα(f −Qmnf)‖∞ ≤ Kα,3h
3−|α|

∥

∥D3f
∥

∥

∞
.

We underline that Qmn has superconvergence properties. In particular, for f ∈ C4(Ω),
we have that |(f −Qmnf)(P )| = O(h4) at specific points P in Ω, that are the vertices, the
centers, the midpoints of horizontal and vertical edges of each subsquare of Ω partition.

Finally, the above superconvergent QIs can be applied to numerical integration, getting
cubature rules that we will use in Section 2.2.

For any function f ∈ C(Ω), we can numerically evaluate the integral

I(f) =

∫

Ω
f(s, t) ds dt

by the cubature rule defined by

I(Qmnf) =
∑

(i,j)∈Amn

wi,jf(Mi,j), (5)
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where the weights

wi,j =

∫

Ω
Li,j(s, t) ds dt.

are reported in [8].
From Theorem 1, we can easily deduce the following result.

Theorem 2 Let f ∈ C(Ω) and E(f) = I(f)− I(Qmnf).
Then, |E(f)| ≤ C̄ω(f, h), where C̄ is a positive constant independent of m and n.

Moreover if f ∈ Cν(Ω), ν = 1, 2, 3, then E(f) = O(hν).

We remark that the above cubature has precision degree at least 2, because Qmn is
exact on P2. However, since uniform partitions are special cases of the ones with symmetric
knots with respect to the center of Ω, Corollary 1 of [10] can be generalized to our case,
getting

I(f) = I(Qmnf) for f(s, t) = sr1tr2 ,

with 0 ≤ r1, r2 ≤ 3, r1 + r2 = 3 and r1, r2 = 1, 3, with r1 + r2 = 4. Therefore the precision
degree of the cubature (5) is 3 and, if f ∈ C4(Ω), then E(f) = O(h4).

2 Collocation methods for surface integral equations

In this section we present and analyse three collocation methods (see [8] for details) based
on the sequence {Qmn} of spline QI operators defined in Section 1.

2.1 Modified collocation method

In this method, that we call modified collocation method, in (2) we replace the operator
K by QmnK and the right hand side ψ by Qmnψ. We remark that the idea of defining
a collocation method by operators that are not projectors has been proposed in [2] for
univariate integral equations.

Therefore, we approximate the integral equation (2) by

(I −QmnK)ρmn = Qmnψ. (6)

We write the approximated solution ρmn, belonging to S1
2(Ω, Tmn), as

ρmn(F(u, v)) =
∑

α∈Amn

XαLα(u, v), with α = (i, j).

Substituting the expressions of Qmn and ρmn into (6), by identifying the coefficients of Lα,
we obtain

Xα −
∑

β∈Amn

XβL̄β(Mα) = ψ(F(Mα)), α ∈ Amn,
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with L̄β = KLβ . This is a linear system of (m+2)(n+2) equations, that can be written in
the form

(I −A)X = a (7)

where A is the matrix with entries

Aαβ := L̄β(Mα) =

∫

Ω
K(F(Mα),F(s, t)) |(DsF×DtF)(s, t)|Lβ(s, t) ds dt (8)

and a is the vector with elements aα := ψ(F(Mα)).
Concerning the convergence, we can state the following theorem.

Theorem 3 Let ρ ∈ C3(Ω), then ‖ρ− ρmn‖∞ = O
(

h3
)

.

2.2 Collocation methods with high order of convergence

In these methods, that we call collocation methods with high order of convergence, in (2)
we replace K by one of the two following finite rank operators

Kmn,i := QmnK +K∗
mn,i −QmnK

∗
mn,i, i = 1, 2,

where

1. K∗
mn,1 is the degenerate kernel operator defined by

K∗
mn,1ρ(F(u, v))

:=

∫

Ω
Qmn (K(F(u, v),F(s, t)) |(DsF×DtF)(s, t)|) ρ(F(s, t)) ds dt

=
∑

α∈Amn

K(F(u, v),F(Mα)) |(DsF×DtF)(Mα)| ·

∫

Ω
Lα(s, t)ρ(F(s, t)) ds dt,

(9)

2. K∗
mn,2 is the Nyström operator based on Qmn and defined by

K∗
mn,2ρ(F(u, v)) :=

∑

α∈Amn

wαK(F(u, v),F(Mα)) |(DsF×DtF)(Mα)| ρ(F(Mα)),

(10)
according to (5).

We remark that such methods are defined by a logical scheme similar to that one used in
[1] to construct methods for 2D integral equations, based on other quasi-interpolants.

Therefore, we approximate (2) by

ρmn,i − (QmnK +K∗
mn,i −QmnK

∗
mn,i)ρmn,i = ψ, i = 1, 2. (11)
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that can be reduced to two systems of 2(m+ 2)(n+ 2) linear equations.
After some algebra, from (9) and (11), we can write the approximate solution ρmn,1 as:

ρmn,1(F(u, v)) = ψ(F(u, v)) +
∑

α∈Amn

XαLα(u, v)

+
∑

α∈Amn

YαK(F(u, v),F(Mα)) |(DsF×DtF)(Mα)| ,

where the unknowns {Xα} and {Yα}, α ∈ Amn, are obtained by solving the linear system
(I −R)Z = d, with

R :=

[

A D −B

C E

]

, Z :=

[

X

Y

]

, d :=

[

b

c

]

(12)

and A, B, C, D, E ∈ R
(m+2)(n+2)×(m+2)(n+2), b, c ∈ R

(m+2)(n+2), whose entries are given
by

• Aα,β := L̄β(Mα), see (8),

• Bα,β := K(F(Mα),F(Mβ)) |(DsF×DtF)(Mβ)|,

• Cα,β :=

∫

Ω
Lα(s, t)Lβ(s, t) ds dt,

• Dα,β :=

∫

Ω
K(F(Mα),F(s, t))|(DsF×DtF)(s, t)|K(F(s, t),F(Mβ))|(DsF×DtF)(Mβ)| ds dt,

• Eα,β :=

∫

Ω
K(F(s, t),F(Mβ)) |(DsF×DtF)(Mβ)|Lα(s, t) ds dt,

• bα := Kψ(F(Mα)) =

∫

Ω
K(F(Mα),F(s, t)) |(DsF×DtF)(s, t)|ψ(F(s, t)) ds dt,

• cα :=

∫

Ω
ψ(F(s, t))Lα(s, t) ds dt.

Similarly, from (10) and (11), we can get that the solution ρmn,2 is

ρmn,2(F(u, v)) = ψ(F(u, v)) +
∑

α∈Amn

XαLα(u, v)

+
∑

α∈Amn

wαYαK(F(u, v),F(Mα)) |(DsF×DtF)(Mα)| ,

where the unknowns {Xα} and {Yα}, α ∈ Amn, are obtained by solving the linear system
(I − T )Z = f , with

T :=

[

A F −G

H G

]

, Z :=

[

X

Y

]

, f :=

[

a

e

]

(13)

and F , G, H ∈ R
(m+2)(n+2)×(m+2)(n+2), e ∈ R

(m+2)(n+2), whose entries are given by
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• Fα,β := wβ

∫

Ω
K(F(Mα),F(s, t))|(DsF×DtF)(s, t)|K(F(s, t),F(Mβ))|(DsF×DtF)(Mβ)| ds dt,

• Gα,β := wβK(F(Mα),F(Mβ)) |(DsF×DtF)(Mβ)|,

• Hα,β := Lβ(Mα),

• eα := ψ(F(Mα).

Concerning the convergence, we can state the following theorem.

Theorem 4 If ρ is differentiable with bounded derivatives, K(·, ·) ∈ C4(S × S) and F ∈
C5(Ω), then ‖ρ− ρmn,1‖∞ = O(h7).

If ρ ∈ C4(S), K(·, ·) ∈ C4(S × S) and F ∈ C5(Ω), then ‖ρ− ρmn,2‖∞ = O(h7).

3 Numerical results

By using the collocation methods (6) and (11), we have to evaluate many integrals and
usually it must be done by suitable numerical integration formulas. Therefore, we have
to discretize the proposed methods by introducing convenient cubatures and we denote by
ρDmn, ρ

D
mn,i, i = 1, 2, the corresponding solutions.

Here, we decide to compute the entries of the matrices and vectors appearing in (7), (12),
(13), by using a composite Gaussian cubature on triangular domains (see [11]), implemented
by the Matlab function triquad (see [15]), with N2 nodes in each triangle of Tmn and with
precision degree 2N − 1. The number of nodes is chosen to preserve the approximation
order of the method. Therefore, we choose N = 2 for the modified collocation method (6)
and N = 4 for the two collocation methods with high order of convergence (11).

We test the performances of the proposed methods in the numerical solution of the
surface integral equation from [3]

ρ(P1)−
1

30

∫

S

ρ(P2)
∂

∂nP2

(

‖P1 −P2‖
2
)

dSP2
=

1

30
ψ(P1), P1 ∈ S,

where S is the ellipsoidal surface given by x2 +
(

4y
3

)2
+ (2z)2 = 1, nP2

is the inner normal

to S at P2 and

F(s, t) =





sin (s) cos (t)
3
4 sin (s) sin (t)

1
2 cos (s)

,



 (s, t) ∈ Ω = [0, π]× [0, 2π].

We choose ρ(P) = e
1

2
cos (s) and define ψ accordingly.
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For each method we compute the maximum absolute errors

Emn = max
(u,v)∈G

|ρ(u, v)− ρDmn(u, v)|, Emn,i = max
(u,v)∈G

|ρ(u, v)− ρDmn,i(u, v)|, i = 1, 2,

for increasing values of m and n, where G is a uniform grid of 100 × 100 points in Ω. We
also compute the corresponding numerical convergence orders omn, omn,i, i = 1, 2.

The results are shown in Table 1 and we can notice that they agree with the theoretical
ones.

Table 1: Maximum absolute errors and numerical convergence orders.

m n Emn omn Emn,1 omn,1 Emn,2 omn,2

4 8 7.56e-03 - 2.51e-05 - 3.17e-05 -

8 16 8.11e-04 3.22 2.09e-07 6.91 1.29e-07 7.94

16 32 8.21e-05 3.30 1.48e-09 7.14 1.71e-09 6.24

32 64 8.34e-06 3.30 1.12e-11 7.04 1.46e-11 6.87
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