Germline mutations in DNA repair genes predispose asbestos-exposed patients to malignant pleural mesothelioma.

This is a pre print version of the following article:

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1645980 since 2020-02-28T17:07:30Z

Published version:
DOI:10.1016/j.canlet.2017.06.028

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Title: Germline mutations in DNA repair genes predispose asbestos-exposed patients to malignant pleural mesothelioma

Article Type: Original Research Paper

Keywords: Mesothelioma; Asbestos exposure; Germline mutation; DNA repair genes; Homologous recombination repair

Corresponding Author: Dr. Corrado Magnani,
Corresponding Author's Institution: University of Piemonte Orientale

First Author: Marta Betti

Order of Authors: Marta Betti; Elisabetta Casalone; Daniela Ferrante; Anna Aspesi; Giulia Morleo; Alessandra Biasi; Marika Sculco; Giuseppe Mancuso; Luisella Righi; Federica Grosso; Roberta Libener; Mansueto Pavesi; Narciso Marian; Caterina Casadio; Renzo Boldorini; Dario Mirabelli; Barbara Pasini; Corrado Magnani; Giuseppe Matullo; Irma Dianzani

Suggested Reviewers: Paolo Vineis
Department of Epidemiology and Public Health, Imperial College London, St Mary's Campus
p.vineis@imperial.ac.uk
He is an expert on genetic risk factors

Maurizio Genuardi
Dipartimento di Medicina di Laboratorio, Policlinico Universitario "A. Gemelli"
maurizio.genuardi@rm.unicatt.it
He is an expert on cancer predisposition syndromes

Margaret R. Karagas
James W. Squires Professor and Chair Department of Epidemiology, Geisel School of Medicine at Dartmouth
Margaret.R.Karagas@Dartmouth.Edu
To the Editor of the *Cancer Letters*

Dear Sir,

We are submitting our manuscript entitled “Germline mutations in DNA repair genes predispose asbestos-exposed patients to malignant pleural mesothelioma.”

We studied the prevalence of germline mutations in 94 genes involved in cancer syndromes in 93 patients with malignant pleural mesothelioma. To our knowledge this is the first study of this kind. A main asset of our study was the thorough quantification of asbestos exposure in the studied patients. We observed that 9.7% of the patients carried pathogenic truncating variants in DNA repair genes. Moreover, these patients were exposed to a smaller amount of asbestos as compared with all the other patients. This difference is statistically significant.

Our study suggests that patients with a DNA repair defect are more susceptible to asbestos carcinogenesis because they cannot efficiently repair the DNA damage induced by asbestos. Our study has clinical relevance because these patients might respond to drugs that induce synthetic lethality. Moreover, patients’ relatives who carry the same variants should undergo surveillance for the constellation of cancers specific for the mutated genes.

We wish to underline that mesothelioma is a rare cancer; thus, our 93-patient study panel is noteworthy.

We were wondering whether we could exclude the following scientists as reviewers, because they are direct competitors:

- Luciano Mutti, RCPI Medical Oncology, Chair In Cancer Research, University of Salford
- Michele Carbone, University of Hawaii Cancer Center, BSB200, 701 Ilalo Street, Honolulu, Hawaii 96813, USA
- Joseph R. Testa, Cancer Biology Program and Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Raphael Bueno, Brigham and Women's Hospital, Division of Thoracic Surgery, 75 Francis Street Boston, MA 02115, USA
-Harvey Pass, Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, NY, 10065, USA.

We hope that our paper may find a place in the Cancer Letters.

Yours sincerely,
Corrado Magnani
Dipartimento di Medicina Traslazionale
Università del Piemonte Orientale SSD Epidemiologia dei Tumori
AOU Maggiore della Carità e CPO-Piemonte
Via Solaroli 17
28100 Novara Italy
Tel (+ 39) 0321 3732057 / 0321 660692 / 340 4865609
Fax (+ 39) 0321 620421
Email: corrado.magnani@med.uniupo.it
Highlights

1. We show that germline mutations in DNA repair genes may predispose to MPM.

2. Mutation carriers showed lower asbestos exposure as compared with the other patients.

3. Abnormal DNA repair may favour MPM carcinogenesis due to asbestos exposure.

4. Carriers may benefit from drugs that induce synthetic lethality.

5. MPM should be included in the spectrum of several cancer predisposition syndromes.
Germline mutations in DNA repair genes predispose asbestos-exposed patients to malignant pleural mesothelioma

Marta Betti1,*, Elisabetta Casalone2,3,*, Daniela Ferrante4, Anna Aspesi1, Giulia Morleo1, Alessandra Biasi1, Marika Sculco1, Giuseppe Mancuso5, Luisella Righi6, Federica Grosso7, Roberta Libener8, Mansueto Pavesi9, Narciso Mariani10, Caterina Casadio11, Renzo Boldorini5, Dario Mirabelli12,13, Barbara Pasini2,14, Corrado Magnani14,13, Giuseppe Matullo2,14,**, Irma Dianzani1,13,**

* These authors participated equally in the work for this paper.
**These authors participated equally in the coordination and supervision of this research.

1 Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
2 Department of Medical Sciences, University of Turin, Turin, Italy
3 Human Genetics Foundation, HuGeF, Turin, Italy
4 CPO-Piemonte and Unit of Medical Statistics and Epidemiology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
5 Department of Health Sciences, Section of Pathological Anatomy, University of Piemonte Orientale, Novara, Italy
6 Department of Oncology, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy
7 Division of Medical Oncology, SS. Antonio e Biagio General Hospital, Alessandria, Italy
8 Pathology Unit, SS. Antonio e Biagio General Hospital, Alessandria, Italy
9 Pathological Anatomy Unit, Santo Spirito Hospital, Casale Monferrato, Italy
10 Pathological Anatomy Unit, SS. Antonio e Biagio General Hospital, Alessandria, Italy
11 Thoracic Surgery Unit, AOU Maggiore della Carità, Novara, Italy
12 Unit of Cancer Epidemiology, CPO-Piemonte and University of Turin, Turin, Italy
13 Interdepartmental Center for Studies on Asbestos and other Toxic Particulates “G. Scansetti”, University of Turin, Turin, Italy
14 Medical Genetics Unit, AOU Città della Salute e della Scienza, Turin, Italy

Corresponding author
Corrado Magnani
Dipartimento di Medicina Traslazionale
Università del Piemonte Orientale SSD Epidemiologia dei Tumori
AOU Maggiore della Carità e CPO-Piemonte
Via Solaroli 17
28100 Novara Italy
Tel (+ 39) 0321 3732057 / 0321 660692 / 340 4865609
Fax (+ 39) 0321 620421
Email: corrado.magnani@med.uniupo.it
Abstract

Malignant pleural mesothelioma (MPM) is a rare, aggressive cancer caused by asbestos exposure. An inherited predisposition has been suggested to explain multiple cases in the same family and the observation that not all individuals highly exposed to asbestos develop the tumor. Germline mutations in BAP1 are responsible for a rare cancer predisposition syndrome that includes predisposition to mesothelioma. We reasoned that other genes could be responsible for the inherited mesothelioma predisposition. We investigated the prevalence of germline variants in 94 cancer-predisposing genes in 93 MPM patients with a quantified asbestos exposure. Ten pathogenic truncating variants (PTVs) were identified in PALB2, BRCA1, FANCI, ATM, SLX4, BRCA2, FANCC, FANCF, PMS1 and XPC. All these genes are involved in DNA repair pathways, mostly in homologous recombination repair. Patients carrying PTVs represented 9.7% of the panel and showed lower asbestos exposure than all the other patients (p=0.0017). This suggests that they do not efficiently repair the DNA damage induced by asbestos, leading to carcinogenesis.

This study shows that germline variants in several genes could increase MPM susceptibility in the presence of asbestos exposure and may be relevant for specific treatment.

Keywords
Mesothelioma
Asbestos exposure
Germline mutation
DNA repair genes
Homologous recombination repair
1. Introduction

Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer caused by exposure to a single carcinogen, asbestos [1]. The frequency of MPM is dramatically higher in asbestos-polluted areas, as exemplified by the MPM epidemic in the northern Italy town of Casale Monferrato, caused by the presence of an asbestos cement factory (1907-1986). In this area, the average annual incidence in 2009–2013 was 51.2 among men and 20.2 (per 100,000, per year) among women, approximately 10 times higher than the corresponding Italian incidence rates (http://cpo.it/workspace/files/pleural-mesothelioma-incidence-574400b9b1625.pdf).

Asbestos induces carcinogenesis by directly interfering with mitotic spindle formation and by inducing chronic inflammation [2–4] with the production of cytokines and reactive oxygen species (ROS) by activated macrophages. ROS are also generated by the iron contained in asbestos fibers [5].

Similar to exposure to other carcinogens, not all individuals exposed to high level of asbestos develop cancer [6]. This observation and the reports of families with multiple cases suggest a possible role for an inherited predisposition, even though common asbestos exposure must be considered [7–10]. As for other tumors [11,12], low-risk susceptibility factors have been identified by Genome Wide Association studies (GWAs) on the germline genome of MPM patients [13,14].

The occurrence of a dominant inherited predisposition, so called a high-risk predisposition, is a well known concept in cancer and has been clearly demonstrated for several cancer types [15–18]. The most studied high-risk factor for MPM is inherited mutations in BAP1, a tumor suppressor gene that encodes a deubiquitinase involved in the modulation of transcription and DNA repair [19]. So far, 79 families in which individuals carry one of 65 germline loss-of-function (LOF) mutations in BAP1 have been identified worldwide [20–24]. The carriers are at high risk for a number of tumors, including mesothelioma, cutaneous and uveal melanoma, clear cell renal carcinoma, and basal cell carcinoma. Patients are also prone to develop peculiar cutaneous tumors, called melanocytic BAP1-
mutated atypical intradermal tumors (MBAITs), that are considered to be a marker of BAP1 syndrome [25].

Cancer is induced because of the loss of the tumor suppressor activity by a second somatic mutation [26].

Investigations on mesothelioma cases with germline BAP1 mutations suggest that these patients require asbestos exposure to develop mesothelioma and that these tumors most often have an epithelioid histotype and may be associated with a long survival [21,27].

We recently identified mesothelioma as being in the cancer spectrum of the CDKN2A syndrome, together with familial melanoma and pancreatic cancer [22]. Our study also showed that twelve families with familial mesothelioma did not carry germline mutations either in BAP1 or melanoma predisposition genes, suggesting that other genes could play a role [22].

Here, we decided to investigate the overall genetic predisposition conferred by 94 genes associated with cancer in 93 patients with MPM who lived in areas subjected in the past to high asbestos exposure. Asbestos exposure was quantitatively evaluated in all study participants.

2. Materials and Methods

2.1 Patients

The study included 93 Italian patients with MPM. Diagnosis was made as described in Betti et al [22]. Seventy-seven patients were randomly selected from the previously reported case-control studies [28] and were classified as sporadic, whereas sixteen patients had a family history of mesothelioma. Six familial and five sporadic patients were studied for mutations in BAP1 and other genes involved in familial melanoma and were found to be mutation-negative [22].

All patients lived in Piedmont (northern Italy) and signed an informed consent. The study was approved by the local ethics committee.
Clinical details on gender, age at diagnosis, survival, histotype, asbestos exposure and family history for mesothelioma for all patients were collected from their oncologist and/or from the Malignant Mesothelioma Registry of the Piedmont Region (RMM) (Table I). Information on family history was limited to first- and second-degree relatives. Information on asbestos exposure at work, at home and in the general environment was collected by the RMM using a standardized questionnaire [29], which was administered by trained interviewers. Asbestos exposure was classified in the following categories: occupational, para-occupational, environmental and household, as previously described [21]. Moreover, exposure was assessed quantitatively by considering the whole exposure history of every study subject [30]. In brief, an exposure index was computed for each exposure circumstance by multiplying frequency, intensity and duration of exposure. The sum of the indices provided an estimate of life-long cumulative asbestos exposure. For familial cases, information on cancer in relatives was gathered from their attending clinician’s reports, clinical records and a section of the RMM questionnaire.

2.2 Next-generation sequencing (NGS) and variant validation

Genomic DNA was extracted from peripheral blood using the QIAamp® DNA Blood Maxi Kit (QIAGEN Inc., Valencia, CA, USA) according to the manufacturer’s protocol. Targeted next-generation sequencing (NGS) was performed on patient genomic DNA (gDNA) using the TruSight® Cancer sequencing panel (Illumina Inc., San Diego, CA, USA) that targets 94 genes involved in common and rare cancer syndromes. In addition, the set includes 284 SNPs found to be associated with cancer through GWAs. Detailed protocols for the library preparation and data analyses are described in the Supplementary Methods.

Loss of heterozygosity (LOH) analysis in tumor samples was performed using Sanger sequencing and microsatellite analyses. Protein expression was evaluated by immunohistochemistry (IHC) (Supplementary Methods).

2.3 Statistical Analyses
Patients were divided in two groups, those carrying pathogenic truncating variants (PTVs) and all other patients.

To evaluate the association between the two groups of patients and clinical characteristics, i.e., histological type (epithelioid versus others) and asbestos exposure (occupational versus environmental/para-occupational), a binary logistic regression was performed. The odds ratio (ORs) and the 95% confidence intervals (95% CIs) were calculated.

A Student’s 2-tailed t-test after normalization using logarithmic transformation was used to compare the mean cumulative asbestos exposure between groups.

The follow-up time was analyzed from the date of diagnosis to the date of death or the latest follow-up date. Overall survival (OS) was calculated using a Kaplan-Meier analysis stratified by group, and the OS difference was determined using the log-rank test.

A p value ≤ 0.05 was considered statistically significant. Statistical analysis was performed using STATA v12 (Stata Corporation, College Station, TX, USA).

3. Results

3.1 Patient clinical features

Clinical features of the 93 MPM patients are reported in Table I. Asbestos exposure was evaluated as occupational, para-occupational, environmental and household in approximately 57%, 18%, 20% and 1% of patients, respectively. No information about asbestos exposure was available for three patients (3.2%).

The mean follow-up time of the 93 MPM patients was 1.8 years (SD 2.2). Seventy-two patients died, 12 were alive and 9 patients were lost at follow up. At one year from diagnosis, 57% of the patients were alive, and at two years only 30% of the patients were still alive.

3.2 Variant detection and characterization
On average, 70% of the mapped NGS reads were on target regions. Most samples had over 93% of reads with coverage above 20x, while the mean per-target depth of coverage across all samples was 215x.

We identified 772 variants, including 17 PTVs (12 indels and five nonsense variants) and 402 missense and 353 synonymous variants. Seven of the PTVs should be considered variants of unknown significance (VUS) until a functional assay evaluates their effect (Table S2).

Therefore, only ten PTVs were considered pathogenic and were subjected to further study (Table II). Eleven missense variants fulfilled the filter criteria described in Supplementary Methods (Table III).

3.3 Pathogenic truncating variants

Nine MPM patients (9.7%) harbored heterozygous PTVs in the following ten genes: PALB2, BRCA1, FANCI, ATM, SLX4, BRCA2, FANCC, FANCF, PMS1 and XPC (Table IV).

One patient was a double heterozygote for two truncating mutations in different genes: a nonsense mutation in BRCA1 (c.3001G>T p.Glu1001*) and a frameshift mutation in FANCI (c.3846_3850delCACCT p.Ser1282fs*18).

A nonsense mutation in PALB2 (c.691A>T p.Lys231*) was carried by another patient, whereas frameshift deletions were carried by seven patients, affecting BRCA2 (c.6591_6592delTG p.Glu2198Asnfs*4), ATM (c.8436delT p.Ser2812fs), SLX4 (c.2819delG p.Gly940fs), PMS1 (c.1380delT p.Ser460fs), FANCC (c.1344delC p.Ala448fs), FANCF (c.604delC p.Leu202fs) and XPC (c.524_528delCAAGA p.Thr175fs).

The nonsense mutation in BRCA1 is classified as pathogenic by ClinVar and ENIGMA. The frameshift mutation in BRCA2 is classified as pathogenic by ClinVar, ENIGMA and ARUP. The deleterious mutation in FANCI is reported in ExAC with an MAF (minor allele frequency) lower than 0.001%.

The other eight PTVs were not reported in gene- or disease-specific databases (Table S3).
The MAF of each PTV in our dataset was higher than the MAF of all LOF variants in the corresponding gene in the ExAC and EVS databases ($p<0.0001$), except for $BRCA2$ ($p=0.004$) in EVS and $PMS1$ ($p=0.017$) in ExAC.

All the variants were successfully validated with Sanger sequencing on DNA obtained from peripheral blood.

The clinical data for the patients are reported in Table IV. Patients with $SLX4$ and XPC PTVs had familiarity for mesothelioma in first- or second-degree relatives, whereas the patient with $BRCA1$ and $FANCI$ PTVs had familiarity for breast cancer and the patient with $PALB2$ PTV for intestinal cancer.

No truncating mutations were found in $BAP1$ and $CDKN2A$ in our cohort.

3.4 Functional studies on tumor samples

Cancer-predisposing genes are most often tumor suppressor genes whose bi-allelic loss is due to an additional somatic variant in the tumor that complements the inherited LOF variant.

To evaluate the expression of the protein in an FFPE (Formalin-Fixed Paraffin-Embedded) tumor sample, IHC was performed using specific antibodies.

IHC using the anti-$BRCA1$ antibody on an FFPE tumor sample of MPM156AL showed a diffuse cytoplasmatic staining instead of the expected nuclear staining (data not shown). Since the inherited variant was a PTV, the results suggest that a second mutation leads to a variant non-functional protein. This patient also carried a PTV in $FANCI$ that was found in tumor DNA, but the FFPE tumor specimen amount was not enough to perform IHC.

The patient who carried a PTV in $BRCA2$ showed LOH for the D13S1701 microsatellite marker and a decreased amount of the D13S171 allele in the FFPE tumor sample (data not shown). This suggests that a somatic event causes loss of the gene and abolishes the protein.

The patient who carried a PTV in $SLX4$ validated in tumor DNA showed cytoplasmatic positivity in the FFPE tumor sample instead of the expected nuclear staining, suggesting the presence of a second somatic variant that leads to the production of a non-functional protein.
The patient with a PTV in \textit{ATM} showed a decreased amount of an allele for the only informative microsatellite marker (D11S1778) in the tumor DNA (data not shown), suggesting LOH. However, IHC with the anti-ATM antibody showed normal nuclear staining (data not shown), suggesting the presence of a wild type allele. Since we have not identified the PTV in the tumor tissue, overall, this result suggests that the mutated allele was lost in the tumor. This behavior was also reported for breast cancers harboring ATM PTVs [31], possibly because during cancer progression, allele deletion was more advantageous than the original PTV.

No tumor specimen was available from the patients with PTVs in \textit{PALB2}, \textit{XPC}, \textit{FANCC}, \textit{FANCF} and \textit{PMS1}.

\textbf{3.5 Missense variants}

Eleven missense variants were found in six different genes: \textit{FANCA}, \textit{MLH1}, \textit{MSH6}, \textit{MUTYH}, \textit{TSC2} and \textit{HNF1A} (Table III, Table V).

Only one of these variants (\textit{MUTYH} c.1145G>A p.Gly382Asp), carried by three patients, is considered pathogenic by ClinVar. One of these patients also carried a PTV in \textit{SLX4}.

Two variants were identified in \textit{MLH1}. One patient carried the c.1136A>G p.Tyr379Cys variant, whereas two other patients carried a variant that affects two consecutive base pairs in \textit{cis} leading to a Lys618Ala missense variant (c.1852_1853delAAinsGC) already reported as a VUS in genomic databases (Table S4).

Three variants were found in \textit{FANCA} (c.1874G>C p.Cys625Ser, c.3665C>T p.Pro1222Leu, c.1255T>G p.Phe419Val) in four patients. One of them also carried a \textit{TSC2} variant (c.1915C>T p.Arg639Trp). Another missense variant in \textit{TSC2} (c.2278A>C p.Thr760Pro) was carried by a different patient.

LOF mutations in \textit{TSC1} and \textit{TSC2} are the cause of tuberous sclerosis syndrome (TS), a generally severe genodermatosis inherited as an autosomal dominant trait and characterized by mental retardation, seizures and angiofibromas of the skin. The c.1915C>T p.Arg639Trp variant is reported as pathogenic in the TS database-Leiden Open Variation Database. We cannot rule out that these
patients were affected by TS since information about this concurrent inherited disease was not thoroughly reported in the Registry and during the interview.

It is intriguing that a patient with TS has been reported to develop a primary pericardial mesothelioma [32]. Moreover, TSCI has been found to be somatically mutated in mesothelioma, and mice with TSCI and TP53 mutations develop mesothelioma [33].

A variant (c.1226C>A p.Pro409His) in HNF1A was found in two patients. A variant (c.3727A>T p.Thr1243Ser) in MSH6 was found in another patient, and two missense variants (MUTYH c.1145G>A p.Gly382Asp, MLH1 p.Lys618Ala) were found in patients with familial MPM. Familiarity for other cancers was found in patients with FANCA, HNF1A and TSC2 variants.

Because the data are not unequivocal, all these missense variants should be considered VUS until their effect is evaluated by a functional assay.

3.6 Other findings

A group of variants that did not fulfill the selected filter criteria are nevertheless mentioned here because they have been reported as low-risk factors in the literature.

MITF c.952G>A p.Glu318Lys (rs149617956), which is considered a low-risk factor for familial melanoma [34], was found in a single MPM patient who also carried also MUTYH c.1145G>A p.Gly382Asp.

We also found a BAP1 missense variant (c.944A>C p.Glu315Ala) (rs149974450) in one patient. This variant is reported in ExAC and EVS with an MAF lower than 0.02%, but four out of six in silico prediction tools considered it as benign. A functional assay is needed to evaluate the effect of this VUS.

3.7 Statistical analyses

Statistical analyses were performed to evaluate the differences between patients carrying PTVs and the other patients.
The mean of the quantitative asbestos exposure was 3.8 (SD 9.5) for the group with PTVs and 25.7 (SD 148) for the other group. A statistically significant difference of the mean values of quantitative exposure between the two groups was detected (p=0.0017) (Table I). A statistically significant difference was also present when the quantitative exposure of the PTV group was compared to that of the 71 patients who did not carry either PTVs or missense variants (p=0.0037) (Table S5).

No statistically significant association was found for histotype or the categories of asbestos exposure in the two groups. Considering the group without PTVs as a reference, the OR for patients with sarcomatoid and biphasic histologies compared with those who had epithelioid histology was 4 (95% CI 0.5-33.6), and the OR among those with occupational exposure compared with those with environmental and para-occupational asbestos exposure was 1.2 (95% CI 0.3-4.7) (Table I).

The mean age at diagnosis was 73.9 (SD 7.2) for the group with PTVs and 67.4 (SD 12.6) for the other group. No significant differences in age at diagnosis or survival were found between the two groups (p=0.13 and p=0.25, respectively) (Table I).

4. Discussion

Our study shows, for the first time, that a substantial proportion (9.7%) of MPM patients carry PTVs in DNA repair genes, and these patients show a statistically significant lower intensity of asbestos exposure. This suggests that although asbestos exposure is necessary to develop MPM, in these patients, even a low exposure to asbestos is sufficient to induce tumorigenesis.

Interestingly, eight of these mutated genes are involved in homologous recombination repair (HRR) (BRCA1, BRCA2, PALB2, ATM, FANCI, FANCC, FANCF, SLX4), like BAP1, whereas two (XPC and PMS1) are involved in nucleotide excision repair (NER) and mismatch repair (MMR), respectively. HRR is the mechanism used to repair double-strand breaks (DSBs) induced by asbestos fibers. On the other hand, asbestos may also cause DNA damage repaired by base excision repair (BER), NER or MMR.
It is thus possible to hypothesize that these patients, because of their defect in DNA repair, were less able to repair DNA damage induced by asbestos.

Moreover, 13 patients (14%) carry rare missense variants considered damaging by in silico prediction tools and located in FANCA, TSC2, HNF1A, MLH1, MSH6, and MUTYH. Although a stringent approach cannot consider these mutations as pathogenic without functional analyses, it is intriguing to note that they are located in genes involved in the same DNA repair systems reported for the PTVs, i.e., HRR (FANCA) and MMR (MLH1, MSH6, MUTYH).

Our approach of variant classification was very conservative, since we did not consider the possible pathogenic missense variants in the analysis. In this way, we may have underestimated the prevalence of mutation carriers. The NGS approach we used does not reveal large rearrangements, for which a whole genome NGS or CGH-based approach would be more appropriate [35,36]. Last and not least, mutations in genes that are not included in the TruSight Cancer panel have not been screened. Thus, it is possible that patients who did not carry variants in the 94 genes that were the object of our study harbor variants in genes that were not screened.

Our data show, for the first time, that predisposition to MPM is very heterogeneous, similar to that reported for pancreatic cancer and other cancer types [17,18,37]. Also the proportion of patients carrying PTV is similar.

Our study suggests that MPM must be added to the constellation of tumors resulting from mutations in BRCA1, BRCA2, ATM, SLX4, FANCC, FANCI, PALB2, FANCF, PMS1 and XPC. Most probably the type of carcinogen exposure is relevant for the cancer type that will be developed by variant carriers, as suggested for BAP1 [21].

The characterization of mutation carriers within these families is of particular clinical relevance because all carriers are at risk for a certain cancer spectrum and should be included in specific high-risk surveillance and secondary prevention programs [38]. However, in order to completely characterize all genes conferring increased risk of MPM, a whole exome approach is needed.
Finally, the identification of inherited predisposition for mesothelioma may turn out to be relevant for treatment in the future. This was the case for ovarian cancers due to predisposing germline \textit{BRCA1} and \textit{BRCA2} variants, where a different response to PARP inhibitors was identified [39,40]. Similarly, the identification of subsets of patients who carry predisposing mutations in the homologous recombination pathway may distinguish patients who can benefit from drugs that induce synthetic lethality [41,42].

\textbf{Acknowledgements}

We wish to thank all the patients who kindly participated in this study and Dr Ezio Piccolini for his co-operation.

\textbf{Funding}

This work was supported by the Human Genetics Foundation (HuGeF), Compagnia di San Paolo Torino, Italy, Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)—(IG 17464) (GM recipient) and Istituto Superiore di Sanità 2013-2014 (Progetto Amianto) (CM recipient in collaboration with ID). MB was supported by RoPHS (Report on the Piedmont Health System) 2014-2016.

\textbf{References}

Table I. Clinical features of 93 MPM patients

<table>
<thead>
<tr>
<th>Clinical features</th>
<th>MPM Patients (N=93)</th>
<th>Patients with PTVs (N=9)</th>
<th>Patients without PTVs (N=84)</th>
<th>OR* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>65 (69.9%)</td>
<td>6 (66.7%)</td>
<td>59 (70.2%)</td>
<td>1 (reference)</td>
</tr>
<tr>
<td>Female</td>
<td>28 (30.1%)</td>
<td>3 (33.3%)</td>
<td>25 (29.8%)</td>
<td>1.2 (0.3-5.1)</td>
</tr>
<tr>
<td>Histotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epithelioid</td>
<td>62 (66.7%)</td>
<td>8 (88.9%)</td>
<td>54 (64.3%)</td>
<td>4 (0.5-33.6)</td>
</tr>
<tr>
<td>Biphasic</td>
<td>16 (17.2%)</td>
<td>1 (11.1%)</td>
<td>15 (17.9%)</td>
<td>1 (ref: biphasic and sarcomatoid)</td>
</tr>
<tr>
<td>Sarcomatoid</td>
<td>12 (12.9%)</td>
<td>-</td>
<td>12 (14.3%)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>2 (2.1%)</td>
<td>-</td>
<td>2 (2.4%)</td>
<td></td>
</tr>
<tr>
<td>Not available</td>
<td>1 (1.1%)</td>
<td>-</td>
<td>1 (1.1%)</td>
<td></td>
</tr>
<tr>
<td>Asbestos exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupational</td>
<td>53 (57%)</td>
<td>5 (44.4%)</td>
<td>48 (42.9%)</td>
<td>1.2 (0.3-4.7)</td>
</tr>
<tr>
<td>Para-occupational</td>
<td>17 (18.3%)</td>
<td>3 (33.3%)</td>
<td>14 (16.7%)</td>
<td>1 (ref: para-occupational, environmental and household)</td>
</tr>
<tr>
<td>Environmental</td>
<td>19 (20.4%)</td>
<td>1 (11.1%)</td>
<td>18 (21.4%)</td>
<td></td>
</tr>
<tr>
<td>Household</td>
<td>1 (1.1%)</td>
<td>-</td>
<td>1 (1.2%)</td>
<td></td>
</tr>
<tr>
<td>Not available</td>
<td>3 (3.2%)</td>
<td>-</td>
<td>3 (3.6%)</td>
<td></td>
</tr>
<tr>
<td>History of cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-/second-degree relative with mesothelioma</td>
<td>16 (17.2%)</td>
<td>2 (22.2%)</td>
<td>14 (16.7%)</td>
<td></td>
</tr>
<tr>
<td>Not reported</td>
<td>75 (80.6%)</td>
<td>7 (77.8%)</td>
<td>68 (80.9%)</td>
<td></td>
</tr>
<tr>
<td>Not available</td>
<td>2 (2.2%)</td>
<td>-</td>
<td>2 (2.4%)</td>
<td></td>
</tr>
<tr>
<td>Age at diagnosis, years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>68±12.3</td>
<td>73.9±7.2</td>
<td>67.4±12.6</td>
<td>0.13</td>
</tr>
<tr>
<td>Survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-year (95% CI)</td>
<td>57% (46-67)</td>
<td>25% (4-56)</td>
<td>59% (47-70)</td>
<td>0.25</td>
</tr>
<tr>
<td>2-year (95% CI)</td>
<td>30% (20-40)</td>
<td>12% (1-42)</td>
<td>30% (20-41)</td>
<td></td>
</tr>
<tr>
<td>Quantitative asbestos exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>23.4±140.2</td>
<td>3.8±9.5</td>
<td>25.7±148.0</td>
<td></td>
</tr>
<tr>
<td>Mean ± SD (after logarithmic...</td>
<td>0.9±1.8</td>
<td>-0.8±2.3</td>
<td>1.1±1.6</td>
<td>0.0017</td>
</tr>
</tbody>
</table>

Abbreviations: PTVs, pathogenic truncating variants; OR, odd ratio; CI, confidence interval; SD, standard deviation

*Patients with PTVs versus Patients without PTVs; "Not available for 3 patients;" Not available for 6 patients

^Not available for 3 patients

^^Not available for 6 patients
<table>
<thead>
<tr>
<th>Gene</th>
<th>Transcript</th>
<th>Mutation</th>
<th>Mutation type</th>
<th>Mutation Effect</th>
<th>FFPE tumor sample</th>
<th>DNA repair pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALB2</td>
<td>NM_024675.3</td>
<td>c.691A>T p.Lys231*</td>
<td>Substitution</td>
<td>Nonsense</td>
<td>na</td>
<td>HRR</td>
</tr>
<tr>
<td>BRCA1</td>
<td>NM_007294.3</td>
<td>c.3001G>T p.Glu1001*</td>
<td>Substitution</td>
<td>Nonsense</td>
<td>Cytoplasmatic protein expression (IHC)</td>
<td>HRR</td>
</tr>
<tr>
<td>FANCI</td>
<td>NM_001113378.1</td>
<td>c.3846_3850delCACCT p.Ser1282fs*18</td>
<td>Deletion</td>
<td>Frameshift</td>
<td>na</td>
<td>HRR</td>
</tr>
<tr>
<td>ATM</td>
<td>NM_000051.3</td>
<td>c.8436delT p.Ser2812fs</td>
<td>Deletion</td>
<td>Frameshift</td>
<td>LOH-nuclear protein expression (IHC)</td>
<td>HRR</td>
</tr>
<tr>
<td>SLX4</td>
<td>NM_032444.2</td>
<td>c.2819delG p.Gly940fs</td>
<td>Deletion</td>
<td>Frameshift</td>
<td>Cytoplasmatic protein expression (IHC)</td>
<td>HRR</td>
</tr>
<tr>
<td>BRCA2</td>
<td>NM_000059.3</td>
<td>c.6591_6592delTG p.Glu2198Asnfs*4</td>
<td>Deletion</td>
<td>Frameshift</td>
<td>LOH</td>
<td>HRR</td>
</tr>
<tr>
<td>FANCC</td>
<td>NM_000136.2</td>
<td>c.1344delC p.Ala448fs</td>
<td>Deletion</td>
<td>Frameshift</td>
<td>na</td>
<td>HRR</td>
</tr>
<tr>
<td>FANCF</td>
<td>NM_022725.3</td>
<td>c.604delC p.Leu202fs</td>
<td>Deletion</td>
<td>Frameshift</td>
<td>na</td>
<td>HRR</td>
</tr>
<tr>
<td>PMS1</td>
<td>NM_000534.4</td>
<td>c.1380delT p.Ser460fs</td>
<td>Deletion</td>
<td>Frameshift</td>
<td>na</td>
<td>MMR</td>
</tr>
<tr>
<td>XPC</td>
<td>NM_004628</td>
<td>c.524_528delCAAGA p.Thr175fs</td>
<td>Deletion</td>
<td>Frameshift</td>
<td>na</td>
<td>NER</td>
</tr>
</tbody>
</table>

Abbreviations: PTVs, pathogenic truncating variants; FFPE, Formalin-Fixed Paraffin-Embedded; IHC, immunohistochemistry; LOH, loss of heterozygosity; HRR, homologous recombination repair; MMR, mismatch repair; NER, nucleotide excision repair; na, not available; PALB2, partner and localizer of BRCA2; BRCA1, early-onset breast cancer gene 1; FANCI, Fanconi Anemia Complementation Group I; ATM, ataxia telangiectasia mutated; SLX4, Structure-Specific Endonuclease Subunit; BRCA2, early-onset breast cancer gene 2; FANCC, Fanconi Anemia Complementation Group C; FANCF, Fanconi Anemia Complementation Group F; PMS1, postmeiotic segregation increased 1; XPC, Xeroderma pigmentosum, complementation group C.

All changes are heterozygous.
<table>
<thead>
<tr>
<th>Gene</th>
<th>Transcript</th>
<th>Variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>FANCA</td>
<td>NM_000135.2</td>
<td>c.1874G>C p.Cys625Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c.3665C>T p.Pro1222Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c.1255T>G p.Phe419Val</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c.1915C>T p.Arg639Trp</td>
</tr>
<tr>
<td>TSC2</td>
<td>NM_000548.3</td>
<td>c.2278A>C p.Thr760Pro</td>
</tr>
<tr>
<td>HNF1A</td>
<td>NM_000545.5</td>
<td>c.1226C>A p.Pro409His</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c.1852_1853delAAinsGC p.Lys618Ala</td>
</tr>
<tr>
<td>MLH1</td>
<td>NM_000249.3</td>
<td>c.1136A>G p.Tyr379Cys</td>
</tr>
<tr>
<td>MSH6</td>
<td>NM_000179.2</td>
<td>c.3104G>T p.Arg1035Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c.3727A>T p.Thr1243Ser</td>
</tr>
<tr>
<td>MUTYH</td>
<td>NM_001048171.1</td>
<td>c.1145G>A p.Gly382Asp</td>
</tr>
</tbody>
</table>

Abbreviations: FANCA, Fanconi Anemia Complementation Group A; TSC2, Tuberous Sclerosis Complex 2; HNF1A, Hepatocyte Nuclear Factor 1-Alpha; MLH1, MutL Homolog 1; MSH6, mutS homolog 6; MUTYH, MutY DNA Glycosylase.

All changes are heterozygous.
Table IV. Clinical features of patients carrying PTVs

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>PTV</th>
<th>Gender</th>
<th>Histotype</th>
<th>Age at onset, years</th>
<th>Age at death, years</th>
<th>Asbestos exposure</th>
<th>Cancers in relatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPM125AL</td>
<td>PALB2 c.691A>T p.Lys231*</td>
<td>M</td>
<td>Biphasic</td>
<td>82</td>
<td>83</td>
<td>Para-occupational</td>
<td>Intestinal cancer (brother)</td>
</tr>
<tr>
<td>MPM156AL</td>
<td>BRCA1 c.3001G>T p.Glu1001*
 FANCI c.3846_3850delCACCT p.Ser1282fs*18</td>
<td>F</td>
<td>Epithelioid</td>
<td>70</td>
<td>na</td>
<td>Occupational</td>
<td>Breast cancer (sister)</td>
</tr>
<tr>
<td>MPM1115</td>
<td>ATM c.8436delT p.Ser2812fs</td>
<td>M</td>
<td>Epithelioid</td>
<td>72</td>
<td>75</td>
<td>Occupational</td>
<td>nr</td>
</tr>
<tr>
<td>MPM1135</td>
<td>SLX4 c.2819delG p.Gly940fs</td>
<td>F</td>
<td>Epithelioid</td>
<td>64</td>
<td>65</td>
<td>Para-occupational</td>
<td>MPM (sister), lung cancer (mother, father)</td>
</tr>
<tr>
<td>MPM88TO</td>
<td>BRCA2 c.6591_6592delTG p.Glu2198Asnfs*4</td>
<td>M</td>
<td>Epithelioid</td>
<td>65</td>
<td>68</td>
<td>Occupational</td>
<td>nr</td>
</tr>
<tr>
<td>MPM85AL</td>
<td>FANCC c.1344delC p.Ala448fs</td>
<td>F</td>
<td>Epithelioid</td>
<td>79</td>
<td>79</td>
<td>Para-occupational</td>
<td>nr</td>
</tr>
<tr>
<td>MPM122AL</td>
<td>FANCF c.604delC p.Leu202fs</td>
<td>M</td>
<td>Epithelioid</td>
<td>81</td>
<td>81</td>
<td>Occupational</td>
<td>nr</td>
</tr>
<tr>
<td>MPM87TO</td>
<td>PMS1 c.1380delT p.Ser460fs</td>
<td>M</td>
<td>Epithelioid</td>
<td>67</td>
<td>68</td>
<td>Occupational</td>
<td>nr</td>
</tr>
<tr>
<td>MPM155AL</td>
<td>XPC c.524_528delCAAGA p.Thr175fs</td>
<td>M</td>
<td>Epithelioid</td>
<td>80</td>
<td>82</td>
<td>Environmental</td>
<td>MM (mother)</td>
</tr>
</tbody>
</table>

Abbreviations: PTVs, pathogenic truncating variants; M, male; F, female; MM, malignant mesothelioma; MPM, malignant pleural mesothelioma; na, not available; nr, not reported.
<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Variant</th>
<th>Gender</th>
<th>Histotype</th>
<th>Age at onset, years</th>
<th>Age at death, years</th>
<th>Asbestos exposure</th>
<th>Cancers in relatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPM1114</td>
<td>FANCA c.1874G>C p.Cys625Ser</td>
<td>M</td>
<td>Biphasic</td>
<td>67</td>
<td>68</td>
<td>Environmental</td>
<td>Rectal cancer (father)</td>
</tr>
<tr>
<td>MPM124AL</td>
<td>FANCA c.1874G>C p.Cys625Ser</td>
<td>M</td>
<td>Epithelioid</td>
<td>84</td>
<td>84</td>
<td>Para-occupational</td>
<td>nr</td>
</tr>
<tr>
<td>MPM1110</td>
<td>FANCA c.1255T>G p.Phe419Val</td>
<td>M</td>
<td>Epithelioid</td>
<td>70</td>
<td>71</td>
<td>Occupational</td>
<td>nr</td>
</tr>
<tr>
<td>MPM1119</td>
<td>HNF1A c.1226C>A p.Pro409His</td>
<td>M</td>
<td>Epithelioid</td>
<td>50</td>
<td>51</td>
<td>Environmental</td>
<td>Colon cancer (mother)</td>
</tr>
<tr>
<td>MPM82TO</td>
<td>HNF1A c.1226C>A p.Pro409His</td>
<td>M</td>
<td>Sarcomatoid</td>
<td>69</td>
<td>70</td>
<td>Occupational</td>
<td>nr</td>
</tr>
<tr>
<td>MPM173AL</td>
<td>MLH1 c.1852_1853delAinsGC p.Lys618Ala</td>
<td>M</td>
<td>Sarcomatoid</td>
<td>na</td>
<td>na</td>
<td>Occupational</td>
<td>MPM (father), ovarian cancer (mother), lung cancer (paternal uncle)</td>
</tr>
<tr>
<td>MPM1120</td>
<td>MLH1 c.1852_1853delAinsGC p.Lys618Ala</td>
<td>M</td>
<td>Biphasic</td>
<td>69</td>
<td>70</td>
<td>Occupational</td>
<td>nr</td>
</tr>
<tr>
<td>MPM1129</td>
<td>MLH1 c.1136A>G p.Tyr379Cys</td>
<td>M</td>
<td>Epithelioid</td>
<td>59</td>
<td>63</td>
<td>Occupational</td>
<td>nr</td>
</tr>
<tr>
<td>MPM94TO</td>
<td>MSH6 c.3727A>T p.Thr1243Ser</td>
<td>M</td>
<td>Biphasic</td>
<td>69</td>
<td>70</td>
<td>Occupational</td>
<td>nr</td>
</tr>
<tr>
<td>MPM97TO</td>
<td>MUTYH c.1145G>A p.Gly382Asp</td>
<td>M</td>
<td>Epithelioid</td>
<td>66</td>
<td>68</td>
<td>Occupational</td>
<td>MPM (paternal cousin), bone sarcoma (sibling)</td>
</tr>
<tr>
<td>MPM126AL</td>
<td>MUTYH c.1145G>A p.Gly382Asp</td>
<td>M</td>
<td>Biphasic</td>
<td>74</td>
<td>75</td>
<td>Occupational</td>
<td>nr</td>
</tr>
<tr>
<td>MPM1132</td>
<td>TSC2 c.2278A>C p.Thr760Pro</td>
<td>M</td>
<td>Epithelioid</td>
<td>58</td>
<td>-</td>
<td>Occupational</td>
<td>Lung cancer (father), cancer of unknown site (son)</td>
</tr>
</tbody>
</table>

Abbreviations: **FANCA**, Fanconi Anemia Complementation Group A; **TSC2**, Tuberous Sclerosis Complex 2; **HNF1A**, Hepatocyte Nuclear Factor 1-Alpha; **MLH1**, MutL Homolog 1; **MSH6**, mutS homolog 6; **MUTYH**, MutY DNA Glycosylase; **M**, male; **F**, female; **MPM**, malignant pleural mesothelioma; **nr**, not reported; **na**, not available.
Click here to download Supplementary File: Supplementary Data.doc
Conflict of interest statement

Article title: Germline mutations in DNA repair genes predispose asbestos-exposed patients to malignant pleural mesothelioma

Marta Betti, Elisabetta Casalone, Daniela Ferrante, Anna Aspesi, Giulia Morleo, Alessandra Biasi, Marika Sculco, Giuseppe Mancuso, Luisella Righi, Federica Grosso, Roberta Libener, Mansueto Pavesi, Narciso Mariani, Caterina Casadio, Renzo Boldorini, Dario Mirabelli, Barbara Pasini, Corrado Magnani, Giuseppe Matullo, Irma Dianzani

The authors have no conflict of interest.
CM and DM were expert witness for the public prosecutor in criminal trials regarding the occurrence of asbestos-related diseases following occupational and environmental exposures to asbestos.