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Abstract

High-Throughput technologies provide genomic and trascriptomic data that are suitable for

biomarker detection for classification purposes. However, the high dimension of the output

of such technologies and the characteristics of the data sets analysed represent an issue for

the classification task. Here we present a new feature selection method based on three

steps to detect class-specific biomarkers in case of high-dimensional data sets. The first

step detects the differentially expressed genes according to the experimental conditions

tested in the experimental design, the second step filters out the features with low discrimi-

native power and the third step detects the class-specific features and defines the final bio-

marker as the union of the class-specific features.

The proposed procedure is tested on two microarray datasets, one characterized by a

strong imbalance between the size of classes and the other one where the size of classes is

perfectly balanced. We show that, using the proposed feature selection procedure, the clas-

sification performances of a Support Vector Machine on the imbalanced data set reach a

82% whereas other methods do not exceed 73%. Furthermore, in case of perfectly balanced

dataset, the classification performances are comparable with other methods. Finally, the

Gene Ontology enrichments performed on the signatures selected with the proposed pipe-

line, confirm the biological relevance of our methodology. The download of the package

with the implementation of Peculiar Genes Selection, ‘PGS’, is available for R users at:

http://github.com/mbeccuti/PGS.

Introduction

High Throughput (HT) experiments have become one of the major source of genomic and

trascriptomic information, providing insights into the modulation of gene expression profiles

of samples under different conditions. The high potential of HT technologies lies in the quan-

tity of information obtained by one experiment which may increase the possibility of discover-

ing unknown mechanisms underpinning the differences in the biological conditions of

interest. For this reason, one of the goals of HT data analysis is the detection of biomarkers for

classification purposes [1–3]. Despite this high potential, both the high-dimensional output of
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such technologies and the characteristics of the data set analyzed may represent an issue for

classification.

The problem of high-dimensionality of the output is known as the large p small n problem,

where p indicates the number of available predictors—i.e. the thousands of genes assessed—

and n indicates the number of conditions tested in the experiment—i.e. the number of sam-

ples. In the last years, several machine-learning approaches have been proposed to deal with

the risk of overfitting deriving from the large p small n problem, leading to a vaste literature

about classification methods and features selection/extraction [4–8].

Features selection and features extraction methods reduce the data dimensionality by

removing noise and non-informative data and by storing the information needed for the clas-

sification purpose in a subset of features called signature.
The difference of the two approaches relies in how the signature is created from original

data. Indeed, feature selection methods shrink the information related to sample classification

in the (sub-)optimal subset by removing irrelevant or redundant variables without altering the

original representation of the features. Feature extraction methods creates new predictors as

combination of the features [9].

Once the signature is selected, a classification method is applied to test it. Even though both

feature extraction and feature selection are good solutions for the large p small n problem, fea-

ture selection allows extraction of meaningful biological rules from the classifier without alter-

ing the original characteristics of the selected features and it is less computationally expensive

to perform [9].

Another important aspect to consider in classification tasks is the possibility that the data

set analyzed is characterized by imbalance among the size of classes. The issue of class imbal-

ance and how to derive good biomarkers from such datasets has received a great deal of inter-

est from the research community and has been the focus of several recent studies [10–13].

Recent works proposed an undersampling-based approach to handle the imbalance between

classes size [2, 3]. Also new classifiers, specific for imblanced data sets, were developed and

succesfully tested implemented [13, 14]. Classification algorithms are indeed affected in their

accuracy performances by imbalance because it is harder to detect the discriminating charac-

teristics of the underrepresented class. This fact leads to high levels of misclassification of sam-

ples belonging to the underrepresented class even if there is a good overall accuracy.

The imbalance problem frequently occurs in the new discipline of systems vaccinology

[15, 16] where HT experiments are mainly used for the detection of gene signatures predictive

of possible adverse reactions related to vaccination or suboptimal vaccine responsiveness. In

this clinical context the imbalance in the data sets is due to the fact that a vaccine reaching the

human testing phase is supposed to elicit an high response in the majority of the subjects, lead-

ing to a poorly populated non-responders response category.

HT studies are commonly used also in cancer-related researches where the capability to dis-

tinguish between cancerous and noncancerous tissues or to classify different type of cancer is

indeed an inestimable help in medical and biological domain.

Microarrays are a commonly used HT technology which measure the expression levels of

large numbers of genes simultaneously or to genotype multiple regions of a genome extracted

from a relatively small human samples. The necessity of tools to extract significant information

from microarray experiments leads to a vaste amount of softwares and packages available

[17–19]. However, the absence of the possibility, in case of imbalanced data sets, to set the

parameters of a classifier in order to correctly classify samples belonging to the underrepre-

sented class, is the cause of one of the shortcoming of currently available tools for microarray

data analysis.

PGS feature selection
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In this study we present a new features selection method, called Peculiar Genes Selection
(PGS), to identify predictive biomarkers that are robust to class imbalance and improve the

Support Vector Machine (SVM) classification performances in case of imbalanced data sets.

The PGS procedure is also applied to a balanced dataset to confirm that it perform well also

when the size of the classes is the same. The biomarkers generated by this procedures are there-

fore a suitable compromise between maximum overall accuracy and correct classification

within the underrepresented class.

The novelty of PGS relies on the simple and fast computation of a binary matrix, created by

fitting a logistic regression model using single gene expression as predictor of the class label of

samples. Grids of parameters for the SVM (i.e. different kernels, same kernels with different

initial coefficient and degree, cost and class weights) were explored to maximize one of the

three metrics related to classification tasks: overall accuracy, specificity and sensitivity. Since

these three metrics are strongly inversely related, the parameters maximizing one do not maxi-

mize the other two.

We then compare the classification results obtained on two public microarray data sets

with those obtained using one of the available packages for microarray data analysis: the Clas-

sification for MicroArrays package, CMA, available under the Bioconductor distribution for R

software [18] and with those obtained using MRMD, Maximum Relevance Minimum Dis-

tance, a correlation-based feature selection procedure minimizing the feature redundancy and

maximizing the correlation with the target class [20].

Materials and methods

Data sets

We applied our pipeline on two public sets of data available at NCBI GEO database: a vaccina-

tion-related, (GEO accession code: GSE48024) [21], and a cancer-related, (GEO accession

code: GSE19804) [22].

Vaccination dataset description. This dataset is the result of two studies conducted on

two different cohorts of patients. The first cohort, consisting of 119 adult male subjects vacci-

nated with the 2008–2009 inactivated trivalent influenza vaccine (A/ Brisbane/ 59/ 2007

[H1N1], A / Brisbane/10/ 2007 [H3N2], B/ Florida/ 4/ 2006, Sanofi-Pasteur, Lyon, France). A

second cohort, included 128 adult females that received the 2009–2010 trivalent influenza vac-

cine (A/ Brisbane/ 59/ 2007 [H1N1], A/ Brisbane/ 10/ 2007 [H3N2], B/ Brisbane/ 60/ 2008

strains, Sanofi-Pasteur, Lyon, France).

Fig 1 shows the schedule of the visits along with the data that were used for this study.

Peripheral blood samples were taken immediately before (day 1−) and after vaccination on

days 1, 3, and 14 whereas the antibody titers measurements were available before vaccination

and on days 14 and 28 after vaccination.

Fig 1. Schematic representation of the vaccination time scheduling experiment used in the present study.

https://doi.org/10.1371/journal.pone.0177475.g001
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Classification of subjects. Since the proposed pipeline is specific for binary classification

problems, the selected subjects were classified into two classes: ‘High responders’ and ‘Low

responders’. The classification is usually based on the 4 fold-increase of the antibody titers fol-

lowing the vaccination. However, because of the well known baseline effect [23, 24], consisting

in an inverse relation between fold-increase and baseline levels of the antibody titers, in influ-

enza-related trials this rough criterion might lead to misclassification. To circumvent this

issue, a threshold Ti, i 2 { H1N1, H3N2, FluB } was detected as the highest baseline level at

which a subject was able to reach a 4 fold-increase in his antibody titers.

Cancer data set description. The cancer-related data set consists in 60 paired samples of

tumor and adjacent normal lung tissue coming from a study conducted in Taiwan on non-

smokers females aged 50 to 70 years old. Three tumors are represented in the data set: Adeno-

carcinoma, Bronchioloalveolar and Squamous carcinoma (56, 3, 1 sample respectively).

Methodology

The proposed methodology is a new feature selection procedure called Peculiar Genes Selec-

tion (PGS), that detects genes characterizing the class of the samples they belong to. The classi-

fication accuracy performances of the gene signature derived from the application of PGS are

evaluated using a SVM classifier exploring grids of parameters to maximize the desired metric:

overall accuracy and specificity.

The Peculiar Genes Selection procedure. In the proposed pipeline the feature selection is

performed in three steps:

1. Identification of Differentially Expressed Genes (DEGs)

2. Identification of good predictors

3. Selection of the peculiar good predictors for each class

Step 1 allows the detection of J differentially expressed genes under two conditions of inter-

est leading to a significative data dimensionality reduction [25].

Step 2 is based on the computation of a regression model in which single variable levels are

used to predict the class label of each subject [26].

Let N be the number of subjects with n +m = N, n being the number of subjects belonging

to class 0 (‘C0’) and m the number of subjects belonging to class 1(‘C1’). Let also J be the num-

ber of DEGs detected in step 1. We indicate with Xj = {xj1, . . ., xjN}, j 2 {1, . . ., J} the expression

of the j-th DEG across all subjects and with �y the ordered N dimensional vector of true classifi-

cation labels, where f�yig
n
i¼1
¼ 0, and f�yig

N
i¼nþ1

¼ 1.

PGS computes J logistic regressions to predict the probability of each subject to be a success,

in other words to belong to class ‘1’, given the expression of the j-th independent variable Xj.
Eq (1) shows the model of logistic regression used, where pi is the predicted probability of suc-

cess for subject i, β0 the intercept of the model, βj the fitted parameter and Xji the expression of

the j-th gene of subject i.

logitðpiÞ ¼ ln
pi

1 � pi

� �

¼ b0 þ bjXji ð1Þ

The logistic-regression fit lead to J N-dimensional vectors p of predicted probabilities of

‘success’, where each component is the pi calculated in Eq (1). Since the possible class labels are

only 0 and 1, the classification vector ŷ , predicted using the j-th gene as independent variable,

PGS feature selection
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is obtained by applying the following criterion:

ŷ i ¼

(
1 if pi � t

0 else
ð2Þ

where τ stands for pre-selected threshold value that can varies in case of strong imbalance

between classes size.

The comparison of ŷ with �y measures the ability of each predictor to correctly classify the

subjects. This quantity is called predictive power (pp) and it is defined as follows:

ppj ¼

XN

i¼1
1fŷ i¼�y ig

N
; 8j 2 f1; . . . ; Jg: ð3Þ

The J values of pp form a distribution of predictive power values, describing the ability of

the DEGs of classifying the samples. The P, with P� J, good predictors are chosen among the

DEGs which pp>= q, with q being a quantile of the predictive powers distribution, describing

the minimal number of subjects a DEG needs to correctly classify to be considered a good

predictor.

Step 3 consists in the analysis of the binary matrix MP�N , where each row Mðp;�Þ is repre-

sented by one of the P binary vectors ŷ created in step 2 and each column Mð�;iÞ contains the

classification labels assigned to subject i by each predictor.

In an unrealistic situation where all the DEGs have pp = 1, meaning that ŷ i ¼ �yi,
8i 2 f1; . . . ;Ng, M would have the first n columns filled with 0 and the remainingm columns

filled with 1.

To select the peculiar predictors for ‘C0’, denoted by G0, the algorithm focuses on the first

n column of M containing the n samples belonging to class 0. It detects the features that

assign the correct class label to the majority of the samples and simultaneously detects the

most mislclassified samples. In fact, the basic idea is that the peculiar genes are those capable

to correctly classify a subject when the majority of genes misclassifies them.

The criterion used to identify the most misclassified subjects is based on the analysis of the

n columns of M. Whenever the p-th gene misclassifies the i-th sample then Mði;pÞ ¼ 1 since

we are focusing on samples whose correct classification is 0. Hence, the sum overall the i-th

column of M represents the number of features misclassifying the sample. The column

indexes corresponding to highest sum values are the most misclassified samples. The same

procedure applies to samples belonging to class 1, being careful to minimize the sum values

instead of maximizing them, in order to find the most misclassified samples. To formalize this

procedure, Kk, k 2 {0, 1} indicates the chosen quantile of the misclassification distribution to

detect the most misclassified subjects in the two classes:

Xn

i¼1

Mð�;iÞ > K0;
XN

l¼nþ1

Mð�;lÞ < K1: ð4Þ

The peculiar genes are now easily detectable as the genes (rows of M) voting for the correct

classification of the most misclassified subjects and they are denoted by G0 and G1 for ‘low

responders’and ‘high responders’respectively.

It may occurs that either G0 ¼ ; or G1 ¼ ;. In this case, one can relax the thresholds that

define the misclassified samples or introduce a ‘tolerance’ in the features choice, for example

including features misclassifying a pre-selected number of most misclassified samples.
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The final selected signature will be the union of the two lists of features, denoted by

S ¼ G0 [ G1 ð5Þ

The classifier parameters setting. The PGS procedure provides a signature S that is used

to build our classification model. Classification algorithms extract meaningful rules from avail-

able data to build a model capable of correctly classify new inputs with the right label. Learning

procedures can be supervised or unsupervised. In the first case the problem is presented with

example inputs and their desired outputs, given by a priori knowledge and the goal is to learn a

general rule that maps inputs to outputs. In the second case no labels are given to the learning

algorithm, leaving it on its own to find structures capable of classify its input [27, 28].

In this paper we present a supervised approach using the Support Vector Machine (SVM)

as classifier [29]. SVMs are widely studied and used classifiers in many different domains as

described in [30] and [31]. Recently, they also became a useful tool in the classification of sam-

ples coming from microarray experiments [32, 33].

SVMs separate a given set of binary labeled training data finding the equation of the hyper-

plane that maximizes the distance between the two classes. In case of noisy/sparse data the lin-

ear separation of the two classes is not always possible in the input space. In this case SVMs

can perform a non-linear mapping of data in a so called feature space where the classes are line-

arly separable by using the ‘kernel’ technique [34].

Let S be a sample of n labeled data points: S = {(x1, y1), . . ., (xn, yn)}, where xi 2 Rn,
yi 2 {0, 1} and let � : I � Rn ! F � RN be a mapping from the input space to the feature

space F. The kernel technique allow to define the inner product in the feature space without

computing the mapping of inputs xi! ϕ(xi) by the relation K(xi, xj) = ϕ(xi) � ϕ(xj). Classical

choices for kernel functions are

Gaussian : Kijðx
i;xjÞ ¼ e�

kxi � xjk
s2

Polynomial : Kijðx
i; xjÞ ¼ ðhxi; xji þ c0Þ

d

Sigmoid : Kijðx
i; xjÞ ¼ tanhðaxiTxj þ rÞ

where σ, d, a, r are kernel parameters to be tuned.

SVMs give the possibility to chose a constant c to account penalties for misclassification.

This pipeline uses SVM as classifier and explores a grid of parameters in order to detect the set-

ting which allows the best classification performances on the selected metric.

In order to assess the accuracy of the model, it is common practice to split the original

data set into k training and validation sets [35, 36]. This procedure is called k-fold cross-vali-
dation and usually uses the 80% of the original data for training the model and the 20% of

the remaining samples to check the accuracy of the model on new inputs [37]. All the perfor-

mances of the model presented in this work are evaluated with a 10 fold cross-validation

procedure.

Results

To evaluate the proposed approach, we applied the PGS on the two public microarray data sets

described in Materials and Methods and we compared the classification performances to those

obtained using MRMD software and the CMA package.

PGS feature selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0177475 August 14, 2017 6 / 18

https://doi.org/10.1371/journal.pone.0177475


Vaccination dataset

The proposed pipeline is specific for binary classification tasks. As described in Materials and

Methods section, the binary classification of the samples was based on the 4-fold increase in

the antibody titers levels: subjects reaching a 4-fold increase between day 1− and day 28 against

at least one of the three antigens were labeled as ‘high responders’while the others were labeled

as ‘low responders’.

Fig 2A, 2B and 2C show that subjects with antibody-titers T such that Ti> 256, i 2 {H1N1,

H3N2, FluB} at the baseline, never exceed a 4-fold increase. Therefore, to avoid misclassifica-

tion due to pre-existing immunity, all subjects with a baseline titer Ti> 256 were excluded

from subsequent analysis.

According to the classification criterion, 49 of the remaining samples were labeled as low

responders and 144 as high responders. With such a relatively small sample size, it appears evi-

dent the imbalance between the two class sizes: the number of high responders is around three

times the number of low responders. This situation is not surprising: the vaccination is

expected to elicit a good response in the majority of the people.

The features selection procedure. PGS, as described in Materials and Methods, consists

of three steps. The identification of DEGs, (Step 1), was performed using limma package [17],

available under Bioconductor distribution. We set as contrasts the difference in genes expres-

sion one day before and one day after the vaccination. This step allowed us to reduce the data

dimensionality of one magnitude order: from 28450 genes present on the microarray, only

3605 were significantly differentially expressed (Adjusted p-value� 0.01).

For the detection of the good predictors (Step 2), we applied the logistic regression model

using fold-change of the gene expression between day 0 and day 1 as independent variable. To

predict the class label of each subject we then applied the criterium presented in Eq (2), setting

τ = 0.6. The fit of the model allowed us to compute, for each gene, the proportion of subjects

correctly classified, which is referred to as predictive power (pp). We defined good predictors

the genes whose pp belonged to the 5th percentile of the pp distribution of all the DEGs as

showed in Fig 3.

The peculiar genes selection (Step 3), required the analysis of the binary matrix obtained in

Step 2. Computational experiments showed that by setting K0 = 165 and K1 = 20, we identified

2 highly frequently misclassified ‘low responders’ and 5 frequently misclassified ‘high respond-

ers’. The algorithm detected 11 peculiar genes belonging to G0 and 19 belonging to G1.

Fig 2. Negative association between baseline MN titers and titers fold-increase. Almost all subjects with a baseline MN titers higher than 256 did not

reach the 4 fold-increase, fact that may lead to confounding effects in the classification procedure. This condition was met with all three antigens of the

vaccine H1N1 (A), H3N2 (B), FluB(C).

https://doi.org/10.1371/journal.pone.0177475.g002

PGS feature selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0177475 August 14, 2017 7 / 18

https://doi.org/10.1371/journal.pone.0177475.g002
https://doi.org/10.1371/journal.pone.0177475


Tables 1 and 2 shows that the Gene Ontology (GO) on S, performed with Erichr [38, 39],

found statistically significant enrichments in the biological processes involved in the immune

response to virus. More specifically, the cytokine-mediated signaling pathway and in the type-I

interferon signaling pathway are known to play an important role in host defense against

virus. Table 3 shows that the antigen processing and presentation pathways are significantly

enriched in the signature S, confirming the biological relevance of PGS.

Fig 3. Histogram showing the predictive power distribution of all DEGs. The right 5th percentile of the

distribution, in black, represents the number of genes selected as good predictors. The numbers on the

columns of the histogram represent the number of genes with the same pp.

https://doi.org/10.1371/journal.pone.0177475.g003

Table 1. Biological process enriched in S.

Biological Process Adjusted p-value

Defense response to virus < 0.001

Defense response to other organisms < 0.001

Cytokine-mediated signaling pathway < 0.001

Regulation of immune effector process < 0.001

Type I interferon signaling pathway < 0.001

https://doi.org/10.1371/journal.pone.0177475.t001

Table 2. Molecular functions enriched in S.

Molecular Functions Adjusted p-value

MHC Protein Complex Binding < 0.01

MHC Class II Protein Complex Binding < 0.01

https://doi.org/10.1371/journal.pone.0177475.t002
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To conclude the comparison of the feature selection procedures, we compared the lists of

genes belonging to the different signatures. Fig 4 showed that MRMD, PGS and Random For-

est selected signatures with the lowest overlap with all the others, whereas the other features

selection procedures show a good overlap of genes.

Table 3. Transcription factors enriched in S.

Transcriptions factors Adjusted p-value

Antigen Processing and Presentation < 0.01

Influenza A Homo Sapiens 0.01

Graft-versus-host disease Homo sapiens 0.01

Herpes Symplex Infection 0.01

Intestinal Immune Network for IgA production 0.01

https://doi.org/10.1371/journal.pone.0177475.t003

Fig 4. Number of genes shared by the signatures selected from the different feature selection methodologies.

https://doi.org/10.1371/journal.pone.0177475.g004
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To further investigate the properties of the genes shared among the different sigantures, we

detected 43 genes selected by at least 5 different feature selection procedures. The GO per-

fermed on the list of the most selected genes showed results reported in Table 4, where no bio-

logical process is significantly enriched, suggesting that even considering the union of the

most selected genes in the different signatures, the number of genes representing a particular

biological process is too low to lead to a significant enriched pathway.

Classification results. We performed classification experiments using the feature selected

as described in the previous paragraph to build a classification model with SVMs using a

10-fold cross-validation. Table 5 shows the results obtained applying our pipeline on the two

most interesting cases for this set: the maximization of the accuracy on the entire validation set

and the maximization of the specificity -i.e. when we want to detect all the samples belonging

to the underrepresented class-.

The 10 fold-cross validation showed that the model reached its best performance

maximizing the overall accuracy when the kernel of the SVM is a polynomial; -i.e. of the form

Kij(xi, xj) = (hxi, xji + c0)d, where d = 5 is the degree and c0 the initial coefficient. The associated

cost is 0.1, where the cost parameter for an SVM represents the tolerance of misclassification

within each training example. When the parameter is small it means that the SVM looked for a

larger-margin separating hyperplane allowing misclassification. To maximize the overall accu-

racy, the weight vector, the parameter accounting for the imbalance in the SVM has equal

components: the same weight is given to both classes. Interestingly the situation is completely

different when we want to detect all the subjects belonging to the underrepresented class: in

this case, the imbalance in the classes size is reflected by the weight vector that shows the same

strong imbalance between its two components.

Table 6 shows the best classification performances using different feature selection proce-

dures in combination with the same classifier SVM where the tuning was possible only for

fewer parameters. The list of genes selected by all the feature selection procedures tested are

reported in S1 File.

Cancer data set

In Cancer data set description we pointed out that this data set is composed by paired-samples:

each subject indeed, provided two samples of tissue, one normal and one tumor. This impor-

tant remark has two main consequences on the subsequent analysis:

Table 4. Biological processes enriched in the ‘most selected genes’list.

Biologica Process Adjusted p-value

Regulation of cellular extravasation 0.1

Regulation of cellular extravasation 0.1

Protein localization to vacuole 0.4

Protein localization to lysosome 0.4

Positive regulation of protein deacetylation 0.4

https://doi.org/10.1371/journal.pone.0177475.t004

Table 5. Transcription factors enriched in S.

Metric Kernel Degree Coefficient Cost Class Weight Accuracy

Overall Accuracy Polynomial 5 1 0.1 wC0
¼ 1, wC1

¼ 1 82%

Sensitivity Polynomial 6 -6 1000 wC0
¼ 300,wC1

¼ 1 1

https://doi.org/10.1371/journal.pone.0177475.t005
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1. no risk of misclassification in labeling the samples with 0 or 1

2. perfect balance between the size of the two classes, with 60 samples in each.

The features selection procedure. To detect DEGs in this case study (Step 1) we used the

limma setting as contrast the class labels of the samples. We detect 10901 DEGs starting from a

chip containing 21655 genes. To detect the good predictors, as described in Step 2, we applied

the logistic regression model using the gene expression of each sample to predict its class. For

this dataset the τ used to predict the class labels of the samples was τ = 0.5. We obtained the pp
distribution and, we defined good predictors the genes whose pp belonged to the 99th percen-

tile of the pp distribution of all the DEGs as showed in Fig 5.

For this data set, the peculiar gene selection (Step 3 of our procedure) required the analysis

of the binary matrix obtained in Step 2. Computational experiments showed that by setting

K0 = 10 and K1 = 80 this analysis led to the detection of 2 highly frequently misclassified ‘low

responders’ and 6 highly frequently misclassified ‘high responders’. The algorithm, found 4

peculiar genes belonging to G0 and 20 peculiar genes belonging to G1. The GO performed on

the signature S did not show any biological process nor molecular function significantly

enriched whereas the analysis using the oncogenic signature database showed an enrichment

on epidermal growth factor receptors as reported in Table 7.

Also for this data set, we compared the lists of genes selected by the different feature selec-

tion procedures. As in the vaccination data set, Fig 6 shows that the overlap among the genes

selected by PGS and MRMD with those selected by the other feature selection procedures is

low. On the contrary, despite the small number of genes per signature, the other feature selec-

tion methods seem to have a better agreement on the choice of the predictors. The list of genes

selected by all the feature selection procedures tested are reported in S2 File.

Accordingly to what we did for the vaccination data set, we selected the genes that appeared

in at least 5 different signatures as the ‘most selected genes’and we performed a gene ontology

study. The GO results showed that no biological process nor molecular functions were signifi-

cantly enriched, results confirmed also for the ‘most selected genes’. However, using the onco-

genic signature database, we found again a significant enrichment for the epidermal growth

Table 6. Accuracy on validation data set.

Feature Selection Method Accuracy

PGS 82 %

MRMD 75%

Random Forest 74%

F.test 69%

T.test 69%

Limma 68%

Welch 68%

Boosting 66%

Golub 66%

Kruskal Polynomial 66%

Wilcox 66%

Lasso 64%

Elastic Net 62%

Recursive Feature Elimination 59%

https://doi.org/10.1371/journal.pone.0177475.t006
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factor, p-value <0.05 but not for KRAS. Significant enrichments were detected for genes up-

regulated during early stages of differentiation of embryoid bodies from embryonic stem cells

or embryonic fibroblasts (ESC V6.5 UP EARLY.V1 UP, NFE2L2.V2, PRC2 SUZ12 UP.V1 UP,

ESC V6.5 UP LATE.V1 UP). The results of GO performed on the oncogenic database are

showed in Table 8.

Classification results. We applied PGS method to the cancer data set and compared the

results with those obtained by using the CMA package with all the feature selection methods

available. For this data set no parameter tuning was necessary: the optimal results were

obtained by using the default settings of the SVM classifier, choosing a polynomial kernel: the

default degree is 3, the initial coefficient is 1. The optimal cost here is, again, 0.1. The perfect

balance between the two classes size lead to the logical choice of a weight vector whose compo-

nents are equal (i.e. w0 = w1 = 1).

Fig 5. Histogram showing the predictive power distribution of all DEGs. The 99th percentile of the distribution, in black,

represents the number of genes selected as good predictors.

https://doi.org/10.1371/journal.pone.0177475.g005

Table 7. GO using oncogenic signature database.

Oncogenic Signature Adjusted p-value

Epidermal Growth Factor Receptor (EGFR) 0.007

Kirsten rat sarcoma viral oncogene (KRAS) 0.01

https://doi.org/10.1371/journal.pone.0177475.t007
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Fig 6. Number of genes shared by the signatures selected from the different feature selection methodologies.

https://doi.org/10.1371/journal.pone.0177475.g006

Table 8. GO using oncogenic signature database.

Oncogenic Signature Adjusted p-value

ESC V6.5 UP EARLY.V1 UP 0.046

NFE2L2.V2 0.046

EGFR 0.046

PRC2 SUZ12 UP.V1 UP 0.046

ESC V6.5 UP LATE.V1 UP 0.046

https://doi.org/10.1371/journal.pone.0177475.t008
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Table 9 shows the mean results obtained applying our classification method with a 10-fold

cross-validation, whereas Table 10 shows the CMA performances.

Discussion

The advent of HT technologies are fostering the implementation of different computational

approaches for classification tasks. However, intrinsic characteristics of the data set, such the

imbalance between the size of the classes, still represent an issue for the classification purpose.

In this paper we present a new feature selection method in 3 steps, called Peculiar Genes

Selection, for the analysis of high dimensional data sets. The proposed pipeline detects the fea-

tures that characterize the two classes and use them as a biomarker for predicting the class

label of new inputs.

We applied PGS on two different data sets and then compared the classification perfor-

mances with those obtained using other features selection methods already implemented in

the CMA package and MRMD software. Following the recent literature about classification

tasks with biological data, we decided to use as classifier an SVM. However, the presented

pipeline can be used in combination with any other classifier that better suits the researcher

purposes.

Two case study are considered, both concerning microarray experiments: one from a vacci-

nation trial, the other from a cancer study. Despite all data come from microarray experi-

ments, the two data sets have different characteristics that impact on the classification task. In

the vaccination case, the blood samples come from healthy subjects who probably already

encountered influenza virus before being enrolled for the trial; this situation is clearly reflected

Table 9. Transcription factors enriched in S.

Metric Kernel Degree Coefficient Cost Class Weight Accuracy

Overall Accuracy Polynomial 3 1 0.1 wC0
¼ 1,wC1

¼ 1 98.5%

Sensitivity Polynomial 3 1 0.1 wC0
¼ 1,wC1

¼ 1 1

https://doi.org/10.1371/journal.pone.0177475.t009

Table 10. Accuracy on validation data set.

Feature Selection Method Accuracy

PGS 98.5%

Boosting 99%

Elastic Net 99%

F.test 99%

Golub 99%

Kruskal Test 99%

Lasso 99%

Limma 99%

Random Forest 99%

Recursive Feature Elimination 99%

T.test 99%

Welch 99%

Wilcox 99%

MRMD NA

The ‘NA’for the MRMD method means that the machine run out of memory for this data set.

https://doi.org/10.1371/journal.pone.0177475.t010
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by the baseline effect underlined in Results section. Additionally, the vaccination data set

required a first step of analysis to assign the class label to samples, step that was unnecessary

for the cancer data set. In such a scenario we have to consider also the noise present in the

data, explained by the across-subjects variability and by the fact that the expression of tran-

scripts in the whole blood is a surrogate tissue to measure the immune response.

Second, the strong imbalance in the two classes size prevent the correct classification of

both classes simultaneously: either the SVM privileges the overall accuracy penalizing the

underrepresented class or it can detect all the underrepresented class but does not correctly

classify the other one.

For this case study, the classification results reported in Tables 5 and 6 show that it is not

possible to reach an overall accuracy higher than 82% using PGS as feature selection method

and an averaged overall accuracy of 66.4% using the features selection methods included in the

CMA package. PGS detected a signature of 14 genes belonging to G0 and 17 genes belonging

to G1. The GO of the resulting signature S showed enrichments in response to virus and in

cytokines-mediating signaling pathways, confirming the biological meaning of the proposed

procedure.

In the cancer case-study PGS detected a signature of 40 genes, 27 in G0 and 13 in G0, whose

GO on an Oncogenic Signature database shows enrichment in epidermal growth factor recep-

tors accordingly to recent literature [40]. The biological processes enriched are related to DNA

replication processes in sprouting angiogenesis, but they are not associated with significant

adjusted p-values, see S3 File.

In the conclusions reported in [22], the authors underline the significant role of the axons sig-

naling pathway in the survival analysis; interestingly, we found an enrichment in the axon guid-

ance signaling pathway as well, but it wass not associated with a significant adjusted p-value.

The overall accuracy in this case is around 99% for all the feature selection methods tested,

result that can be explained with the absolute absence of imbalance in the experimental design

along with the fact that the gene expression was taken from normal and tumor tissues, in other

words it is a direct measure.

Conclusion

Microarray experiments measuring gene expression levels are source of important biological

informations. Machine-learning algorithms are used to build predictive models and to find

biomarker for classification tasks from data sets coming from microarray experiments. The

high dimensionality of these technology outputs requires a first step of dimensionality reduc-

tion and the necessity of not losing important information gave rise to lots of feature selection

approaches.

However, the characteristics of the data set analyzed, such as the biological conditions

tested, the source of the genetic material and the human gene expression variability, still have

a strong impact on the algorithms affecting their classification performances. When the sam-

ples are taken from direct sites of the considered conditions, the available computational

approaches are capable of shrink the information contained in the microarray in a small set of

genes and detect a biomarker as proved in the cancer related case-study. In vaccine-related

studies we need to be more careful and deal with the fact that people undergoing vaccination

are healthy, condition that makes difficult to detect a real significant gene expression change.

The proposed procedure improve the classification performances in case of imbalanced data

sets by selecting genes that are predictive for the two classes separately, reducing the risk of a

loss of information about the underrepresented class when compared to other feature selection

methods.
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