Background: The identification of activating epidermal growth factor receptor (EGFR) mutations is essential for deciding therapy of non-small cell lung cancer (NSCLC) patients. Circulating cell-free tumor DNA (cftDNA) holds promise as a non-invasive methodology for tumor monitoring in solid malignancies. Among advanced NSCLC patients with an acquired resistance to EGFR-tyrosine kinase inhibitors (TKIs), about 50% carry T790M mutation, but its frequency in EGFR-TKI-naive patients and dynamic change during therapy remains unclear. We hypothesized that EGFR-mutation analysis detection in cftDNA for NSCLC may be feasible for monitoring treatment response to EGFR-TKIs and also predict drug resistance.

Methods: EGFR sensitive mutations and T790M were analyzed using digital PCR (d-PCR) (Quant studio 3D, life technologies) in longitudinally (at baseline, at 4, 8, 20, 60, 120, 180, 270, 360 days) collected plasma samples (n=50) from 8 tissue-confirmed EGFR-mutant NSCLC patients treated with an EGFR-TKI (Gefitinib N = 4; Erlotinib N = 1; Afatinib N = 3). DNA extracted from plasma of 8 healthy blood donors were used to detect the specificity of EGFR mutant assay. Tumor assessment was performed according to RECIST criteria 1.1 every two months.

Results: The sensitivity of d-PCR in plasma versus tissue was 71.4%. No EGFR mutation was present in the 8 control cases (specificity of 100%). Of four patients who developed progression disease (PD), in the samples of progression, T790M was detected in 75% of cases. The frequency of T790M in pre-TKI plasma samples was of 37.5%. EGFR sensitive mutations decreased at PD while T790M mutation increased in 75% of patients. Patients with concomitant pre-TKI EGFR 19 deletion and T790M showed a PD before of 12 months compared to those with L858R. T790M was frequently detected when new lesions were developed. Four patients had T790M level decreased to undetectable level with longer PFS than those with detectable T790M in blood.

Conclusion: Our results indicated that d-PCR was a highly sensitive and useful method for detecting the T790M mutation. Moreover, dynamically monitoring T790M change might help determining EGFR-TKI resistance. We thank Italian Association for Cancer Research (AIRC) for supporting the study.

Keywords: cftDNA, advanced NSCLC, digital PCR, resistance to EGFR-TKIs
(T) of HGF and its receptor c-MET were measured by immunohistochemistry.

Results: CgA, HGF, VEGF, and FGF plasma levels were statistically significantly higher in VS Poor subjects. High plasma HGF levels were associated with lower PFS (3.4 versus 2.0 months, HR 1.67; 95% CI 1.25-2.23; p<0.001) and OS (11.2 versus 6.4 months, HR 1.64; 95% CI 1.12-2.23 p=0.002). High PD-L1 tumor expression was associated with worse PFS (5.9 versus 1.9 months, HR 2.28; 95% CI 1.14-4.57; p<0.020) and a trend for lower OS (14.6 versus 6.7 months, HR 1.47; 95% CI 0.85-2.53; p=0.165), but not significantly associated with VS status (p=0.656). At the multivariate analysis, CgA, HGF and VEGF were independently associated with VS Poor status. When clinical variables were also included (histology and PS), multivariate analysis evidenced VEGF as the only independent biomarker associated with the VS Poor classification (p=0.0013). Plasma HGF levels (HR 2.083; 95% CI 1.306-3.321; p=0.0021) and tumor PD-L1 expression (HR 2.579; 95% CI 1.036-6.421; p=0.0417) remained independent prognostic biomarkers for shorter PFS.

Conclusion: Inflammation and angiogenesis appear to be associated with the complex processes at the base of the VeriStrat signature. Plasma HGF levels and tumor tissue PD-L1 are prognostic in terms of a worse PFS, but VeriStrat remains the only highly reproducible clinically relevant biomarker associated with OS. \(^1\)V Gregorc et al, The Lancet Oncology, p713, 15(7), 2014.

Keywords: NSCLC, VeriStrat, EGFR-TKIs

P3.02b-010

Urine Detection of EGFR T790M Mutation in Non-Small-Cell Lung Cancer: An Outcomes and Total Cost of Care Analysis

Topic: EGFR Biomarkers

Jacob Sands,\(^1\) John Hornberger\(^2\) \(^1\)Oncology, Lahey Hospital & Medical Center, Burlington/MA/United States of America, \(^2\)Cedar Associates Llc, Menlo Park/CA/United States of America

Background: Third-generation tyrosine kinase inhibitors (3rd-TKIs) have proven effective in patients with EGFR T790M who progress on prior EGFR TKI therapy. Median progression-free survival (PFS) on a 3rd-TKI was 9-10 months for T790M+ patients compared to 2-4 months for T790M- patients. PFS is similar regardless of the specimen used to assess T790M (tissue, plasma, or urine). Using simulation analytics, the primary study aim was to assess the cost effectiveness of a urine-testing strategy (UTS) versus a tissue-testing strategy (TTS) for T790M detection in patients with EGFR-positive lung adenocarcinoma and progression on prior TKI therapy.

Methods: Analytics followed International Society for Pharmacoeconomics and Outcomes Research (ISPOR) and Society for Medical Decision Making (SMDM) guidelines for Good Modeling Practices and Consolidedated Health Economic Evaluation Reporting Standards (CHEERS) for reporting findings. Outcomes and economic implications were assessed from the perspective of a third-party US payer, stratified by government versus commercial fee rates. Endpoints were PFS, overall survival (OS), direct medical resources used (biopsies, chemotherapy, post-progression) and related costs. Data sources were published reports of randomized drug trials and current data, which includes accuracy results of tissue versus urine testing (Trovagene, San Diego, CA), Medicare fee schedules, and available adjustments for fees in commercial markets. A state-transition analysis and Markov model tracked patients from stable disease, progression, and to death. Full univariate and multivariate sensitivity analyses were performed to assess the robustness of findings and factors that most influenced outcomes and costs.

Results: Median PFS after treatment with 3rd-TKI was 3.4 months if tumor testing is T790M- versus 9.7 months if T790M+. Because urine testing can be used in patients for whom biopsy cannot be performed or when tissue testing reveals indeterminate results, PFS and OS were slightly increased using the UTS. UTS resulted in avoidance of a biopsy procedure, potential complications, and tissue-based molecular testing in approximately 48% of patients, leading to a 2- to 10-fold total cost savings relative to the unit cost for a urine test. Within the robust variations in input parameters, the cost of a biopsy procedure/complications and tissue-based molecular testing were the most influential factors.

Conclusion: UTS is a dominant scenario to TTS by saving costs and improving patient experience (e.g., PFS/OS, and reduction in biopsy related complications). This result is based on LEVEL I evidence from a large, randomized trial that showed PFS is similar among patients regardless of urine versus tissue testing for T790M mutation status.

Keywords: NSCLC, T790M, liquid biopsy, Health Economics