Supplemental Information

Monte Carlo analysis of the oxygen knock-on effects induced by synchrotron X-ray radiation in the $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta}$ superconductor

Daniele Torsello,1,2,3 Lorenzo Mino,1 Valentina Bonino,1 Angelo Agostino,4,5 Lorenza Operti,4 Elisa Borfecchia,4 Ettore Vittone,1,3 Carlo Lamberti,4,5,6 Marco Truccato1,3,5,*

1Department of Physics, Interdepartmental Centre NIS, University of Torino, via P. Giuria 1, 10125 Torino, Italy.

2Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.

3Istituto Nazionale di Fisica Nucleare, Sez. Torino, via P. Giuria 1, 10125 Torino, Italy.

4Department of Chemistry, Interdepartmental Centre NIS, University of Torino, via P. Giuria 7, 10125 Torino, Italy.

5CrisDi Interdepartmental Center for Crystallography, University of Torino, Torino, Italy.

6IRC “Smart Materials”, Southern Federal University, Rostov-on-Don, Russia.

*E-mail: marco.truccato@unito.it

TABLE S1. Length (along z), thickness (along x) and width (along y) of the irradiated samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Length (μm)</th>
<th>Thickness (μm)</th>
<th>Width (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBAP13</td>
<td>701</td>
<td>13.55</td>
<td>1.59</td>
</tr>
<tr>
<td>WBAP14</td>
<td>750</td>
<td>5.10</td>
<td>1.40</td>
</tr>
<tr>
<td>WBVB05</td>
<td>700</td>
<td>8.20</td>
<td>0.51</td>
</tr>
<tr>
<td>WBVB10</td>
<td>710</td>
<td>7.20</td>
<td>0.45</td>
</tr>
</tbody>
</table>
FIG. S1. Four-probe *ab*-plane resistivity versus temperature behaviors of sample WBAP13 in as-grown conditions (black), after the first dose ($\Phi_{ph}=8.56\times10^{20}$ cm$^{-2}$ and $D=1.72\times10^{11}$ Gy, red), the second dose ($\Phi_{ph}=6.56\times10^{21}$ cm$^{-2}$ and $D=18.72\times10^{11}$ Gy, cyan) and the third one ($\Phi_{ph}=9.728\times10^{21}$ cm$^{-2}$ and $D=32.10\times10^{11}$ Gy, magenta), and of sample WBAP14 in as-grown conditions (blue), after the first dose ($\Phi_{ph}=3.946\times10^{21}$ cm$^{-2}$ and $D=16.41\times10^{11}$ Gy, green) and the second one ($\Phi_{ph}=7.413\times10^{21}$ cm$^{-2}$ and $D=25.90\times10^{11}$ Gy, orange). The inset shows a blow-up of the transition region for sample WBAP13. Doses have been calculated as specified in Ref.S1.

FIG. S2. Room temperature *ab*-plane resistivity ρ versus photon cumulative fluence Φ_{ph} corresponding to samples WBVB05 (circles) and WBVB10 (triangles). The data were acquired during the irradiation sessions: a current of 5 µA was set to pass through the crystals and the voltage drop was measured every 100 ms allowing to calculate the resistance of the sample while the beam was scanning the sample. The inset shows the typical time behavior of the sample resistance during irradiation, with the two non-constant sections corresponding to the completion of two subsequent irradiation rows.
FIG. S3. Seitz-Koehler cross section σ_{PKA} versus electron kinetic energy E_{kin} curves for threshold displacement energies $T_d = 0.93$ eV (blue) and $T_d = 0.073$ eV (red). It is clear that the value of T_d is critical, since the cross section increases by more than one order of magnitude at 17 keV for $T_d = 0.073$ eV compared to $T_d = 0.93$ eV. Moreover, large differences can be observed in the minimum kinetic energy required for the electrons not to have zero cross section: they are equal to less than 1 keV and about 7 keV for $T_d = 0.073$ eV and $T_d = 0.93$ eV, respectively. Since lower energy electrons have a larger lateral spread (see Fig. 3), lower T_d values could be responsible for both an increase of the oxygen removal and for a decrease of the lateral resolution of the nanopatterning technique.
FIG. S4. Interstitial oxygen content δ versus ab-plane resistivity at room temperature $\rho_{ab}(RT)$ according to Ref. S2. The solid line represents a fit to the exponential function $\delta = \delta_0 + A \exp\left(-\frac{\rho_{ab}(RT)}{B}\right)$, where $\delta_0=0.19589 \pm 0.0122$, $A=0.13590 \pm 0.0116$, $B=(0.427768 \pm 0.13605)$ mΩ cm. R-square of the fit is 0.97206.

References