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1 Introduction

The idea of a duality between gauge and string theory was put forward many years ago

by ’t Hooft [1], who noticed that the perturbative expansion in SU(Nc) Yang-Mills theory

in the large Nc limit naturally organizes in terms of the topology of Feynman diagrams,

mimicking the genus expansion of string theory.

The first concrete realization of the duality [2–4] conjectures the exact equivalence of

N = 4 super Yang-Mills (SYM) theory and type IIB string theory on AdS5×S5. The precise

identification of observables and parameters in the two theories relates the perturbative

region of each model to the deep non-perturbative regime of the other. For this reason,

the correspondence makes powerful predictions, but is also very difficult to test.

An important turning point in this field was the discovery of fingerprints of integra-

bility, at both weak and strong coupling [5, 6], in the planar limit of this duality. At

least in this limit, it is hoped that the theory will be exactly solved adapting integrable

model tools, and remarkable progress has been made on the study of various observables,

including Wilson loops and correlation functions.

In particular, the problem of computing the conformal spectrum of the theory was

tackled by tailoring integrable QFT techniques to this new setting, in particular the Bethe

Ansatz [5, 7, 8], the TBA, the Y and T-systems [9–15], leading to the discovery of the very

effective Quantum Spectral Curve (QSC) formulation [16, 17]. The latter is a very satisfac-

tory simplification and probably the most elementary formulation of the problem. Thanks

to the mathematical simplicity of the QSC, it appears that, in the near future, the spectral

problem may be completely solved also in a practical/computational sense. Already, the

QSC method allows to compute the spectrum numerically with high precision [18, 19] and

to inspect analytically interesting regimes such as the BFKL limit [20, 21] or the weak

coupling expansion [22–24]. It has also been generalized to so-called γ deformations [25]

and to the quark-antiquark potential [26, 27].
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Another remarkable example of AdS/CFT correspondence was introduced by Aharony,

Bergman, Jafferis and Maldacena (ABJM) in [28]. The gauge side of the duality corre-

sponds to the N = 6 superconformal Chern-Simons theory with gauge group U(N)×U(N),

with opposite Chern-Simons levels, k and −k, for the two U(N) factors. We will be con-

cerned with the planar limit, where k,N → ∞ with the ’t Hooft coupling λ = k
N kept

finite and the dual gravity theory becomes type IIA superstring theory on AdS4 × CP 3.

In this regime, integrability emerges, making the ABJM model the only known example of

3d quantum field theory which can be exactly solved [29–33] (see also the review [34]).

The spectral problem in ABJM theory was approached exploiting the experience gained

in AdS5/CFT4. Anomalous dimensions of single trace operators with asymptotically large

quantum numbers are described at all loop by the so-called Asymptotic Bethe Ansatz

equations, conjectured in [35] and derived from the exact worldsheet S-matrix of [36]. The

exact result, including all finite-size corrections for short operators, is formally described

by an infinite set of TBA equations, proposed in [37, 38]. These equations were solved

numerically for a particular operator in [39]. However, solving excited states TBA equations

with high precision is a challenging task already for very simple models [40–42]. Besides,

the form of the TBA equations depends on the state and possibly also on the range of the

coupling considered, so that they can be studied only on a case-by-case basis.

It is important to look for a simpler formulation which overcomes these problems.

Starting from a precise knowledge of the analytic properties of the TBA solutions [43],

the basic equations characterizing the Quantum Spectral Curve of the ABJM model were

obtained in [44]. These results were used to compute the so-called slope function in a near-

BPS finite coupling regime [45] and to develop a generic algorithm for the weak coupling

expansion in the SL(2)-like sector [46].

Although we stress that, as proved by the applications discussed above, the results

of [44] contain all the analytic information necessary to solve the spectral problem, several

important aspects of the full picture were still missing. First of all, the concrete recipe

to describe states within the QSC framework was discussed in [44] only for the SL(2)-

like sector. Secondly, the set of equations obtained in [44], the Pµ/Pν-system, can be

associated, in the classical limit, to degrees of freedom related to the CP 3 part of the

whole AdS4 × CP 3 target space. A dual system of equations, only briefly mentioned

in [44], may be instead associated to AdS4 classical degrees of freedom. The interplay

between the two systems is important for the development of the state-of-the-art solution

algorithm at finite coupling [18], as well as at weak coupling for generic states [21, 23].

Furthermore, the full algebraic structure was still not transparent, and for example the

link between the formulation of [44] and the Asymptotic Bethe Ansatz of [35] was difficult

to see. In this paper we will fill these gaps and present the necessary elements for the

quantitative solution of the spectral problem for an arbitrary operator at finite coupling.

Besides, we reveal an interesting underlying representation theory structure, which could

allow for generalizations and may in particular help in the solution of the spectral problem

for AdS3/CFT2 dualities (see [47] for a recent review).

To conclude this introduction, let us review an important fact. In contrast

with N=4 SYM, in ABJM theory integrability leaves unfixed the so-called interpo-
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lating function h(λ) [30, 48], which parametrizes the dispersion relation of elementary

spin chain/worldsheet excitations and enters as an effective coupling constant in the

integrability-based approach, in particular in the QSC equations. An important conjecture

for the exact form of this function, passing several tests at weak and strong coupling [49],

was made in [45] by a comparison with the structure of localization results. This conjecture

was extendend in [50] to encompass the ABJ model [51], which is based on a more gen-

eral gauge group U(N)× U(M) and possesses two ’t Hooft couplings λ1, λ2 in the planar

limit. According to the proposal of [50] (based on important observations of [52–55]), at

the level of the spectrum the only difference between the ABJM and ABJ theories lies in

the replacement of h(λ) with an explicitly defined hABJ(λ1, λ2) (see [50]). In the following

we will simply denote the ABJM/ABJ interpolating function as h.

The contents of this paper are presented in detail below.

In section 2, we discuss the bosonic symmetry underlying the problem, namely

SO(3, 2)× SO(6), the isometry group of AdS4 ×CP 3. We will introduce important vector

and spinor notation used in the rest of the paper. Besides, we comment on the interesting

fact that the isometry group of CP 3 effectively appears in the Quantum Spectral Curve as

SO(3, 3), rather than SO(6).

In section 3, we review the results of [44] and discuss how they reflect the CP 3 symme-

try. We discuss a subtle modification of the analytic properties (initially overlooked in [44]),

which is needed for the study of certain non-symmetric sectors of the theory. The modified

equations contain an extra nontrivial function of the coupling, which can be interpreted at

weak coupling as the momentum of a single species of magnons.

In section 4, we present an explicit construction of new variables, the functions QI , Q◦
and τi, which satisfy a dual system of Riemann-Hilbert equations reflecting the symmetry

of AdS4.

In section 5, we treat in full generality the boundary conditions which need to be

imposed on the solutions of the QSC at large value of the spectral parameter in order to

describe a physical state. This is the place where the quantum numbers of the state make

an appearance. We also discuss the correspondence between the functions P and Q and

quasi-momenta of the spectral curve in the classical limit.

In section 6, based on results obtained in [21, 56], we discuss a set of exact relations

which are perhaps the most convenient way to repack the analytic properties discussed in

sections 3, 4. It is also shown how these equations encode the quantization of the spin.

In section 7, we embed the previous results into a larger set of functional relations

which may be considered as (part of) a Q-system. Q-systems are familiar in the theory

of integrable models [57, 58] and in the ODE/IM framework [59]: they are powerful

sets of functional relations that, supplemented by simple analytic requirements, become

equivalent to exact Bethe equations. The structure of Q-systems is completely fixed by

symmetry: for example, the QQ relations appearing in the N=4 SYM case are the same as

the ones for SU(4|4) spin chains. For the OSp(4|6) superalgebra relevant to ABJM theory,

however, this algebraic construction was not known in the literature. While we do not treat

in full generality the representation theory aspects, we construct explicitly an enlarged

set of Q functions, and prove that they satisfy exact Bethe equations reflecting the full
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supergroup structure. Generalizing arguments of [17], we will show that, in the limit of

large volume, some of these exact Bethe equations reduce to the Asymptotic Bethe Ansatz.

The paper also contains five appendices: in appendix A, we discuss the details of

the derivation (already summarized in [44]) of the QSC from the analytic properties of

the T-system [43]. In appendix B, we list some useful algebraic identities used in the

derivation of the Q-system relations. In appendix C, we deduce some of the constraints

on the asymptotics of P and Q functions. In appendix D, we discuss the weak coupling

limit of the QSC and show the emergence of the 2-loop Bethe equations of [5]. We exploit

this link to prove the identification between the parameters entering the asymptotics of the

QSC and the quantum numbers. Finally, in appendix E we review the dictionary between

OSp(4|6) quantum numbers and number of Bethe roots appearing in various versions of

the (Asymptotic) Bethe Ansatz, which could be useful for the reader wanting to apply the

prescription of section 5 to concrete states.

2 Symmetries and conventions

ABJM theory is invariant under the supergroup OSp(4|6), whose bosonic subgroups are

associated to the isometries of AdS4 and CP 3. We will see that the Quantum Spectral

Curve equations encode elegantly this symmetry structure. Let us briefly introduce the

main group-theoretic constructions related to the bosonic symmetries.

• CP 3: the isometry group of CP 3 is the orthogonal group SO(6) ' SU(4). The invariant

6× 6 symmetric tensor naturally associated to this symmetry is the metric. This tensor

enters the QSC equations,1 and will be denoted in this paper as ηAB. Peculiarly, we will

see that it appears in the QSC with a (+ + + − −−) signature. The concrete form of

ηAB to be used in the rest of this paper is

ηAB = ηAB =



0 0 0 1 0 0

0 0 −1 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0


, (2.1)

where ηAB is the inverse matrix, i.e. ηAB η
BC = δCA . This particular choice for ηAB

emerged naturally from the derivation of the QSC, summarized in appendix A. As ex-

plained there, the specific form of ηAB in (2.1) is partly conventional, but its signature

cannot be modified without spoiling the reality properties of the system. The fact that

the CP 3 symmetry appears effectively as SO(3, 3) can be understood heuristically con-

sidering the classical limit, where the basic variables of the QSC are related to the

quasi-momenta of the algebraic curve (see section 5.2). The quasi-momenta describing

a string moving in CP 3 are defined through the diagonalization of a SO(6) block of the

1In [44], this tensor was denoted as χAB .
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classical monodromy matrix. An SO(2n) orthogonal matrix in general cannot be diago-

nalized with a real transformation, so that the signature of the metric is not preserved

in the eigenvectors basis; moreover, the signature changes precisely to the one typical of

SO(n, n).

Let us introduce some conventions. We will use different index labels for objects with

different symmetry properties. The indices A,B,C = 1, . . . , 6 will be assumed to carry

the vector representation of SO(3, 3), and will always be lowered and raised with the

metric ηAB and its inverse ηAB, respectively. It will be useful to consider also spinor

representations of SO(3, 3). The relevant 8× 8 gamma matrices are defined by{
ΓA8×8,Γ

B
8×8

}
= ηAB Id8×8. (2.2)

In even dimensions, gamma matrices can always be written in a chiral form:

ΓA =

(
0 σAab

(σ̄A)
ab

0

)
, (2.3)

where the matrices σAab and (σ̄A)
ab

satisfy

σAab (σ̄B)bc + σBab (σ̄A)bc = ηAB δca. (2.4)

While all our equations will be covariant, it is convenient to specify a concrete basis.

The matrices σAab and (σ̄A)
ab

are defined in our conventions by

VAσ
A
ab =


0 −V1 −V2 −V5

V1 0 −V6 −V3

V2 V6 0 −V4

V5 V3 V4 0

 , VA(σ̄A)
ab

=


0 V4 −V3 V6

−V4 0 V5 −V2

V3 −V5 0 V1

−V6 V2 −V1 0

 , (2.5)

for an arbitrary vector (V1, . . . , V6). Lower-case indices a, b, c will always be taken to run

over 1, . . . , 4 and will be reserved for the spinor representations. Note that there is a

distinction between upper and lower spinor indices, as they belong to the chiral and anti-

chiral spinor representations, respectively, which are equivalent to the representations 4

and 4̄ of SU(4) ' SO(6). Another natural tensor that will make an appearance in the

equations is the anti-symmetrized product of gamma matrices,

(σAB) ba ≡ −
1

2

(
(σA)ac(σ̄

B)
cb − (σB)ac(σ̄

A)
cb
)
. (2.6)

• AdS4: the isometry group of AdS4 is SO(3, 2) ' Sp(4). We will denote the metric of

this orthogonal group as ρIJ , and our concrete choice will be:

ρIJ =


0 0 0 1 0

0 0 −1 0 0

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 1
2

 , ρIJ ≡ (ρ−1)IJ =


0 0 0 1 0

0 0 −1 0 0

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 2

 . (2.7)

– 5 –
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In the following, we shall always reserve the indices I, J,K, running over 1, . . . , 5, for the

vector representation of SO(3, 2).

Let us remind the reader of the isomorphism between SO(3, 2) and Sp(4), the group of

linear maps preserving a 4× 4 anti-symmetric two-form. One way to see this is to view

SO(3, 2) as obtained from SO(3, 3) by reducing to the subspace orthogonal to a preferred

vector v, with v · v = −1.

Then we see that an anti-symmetric two-form naturally emerges: κij ≡ vA (σA)ij . Let

us denote a projection of the σ, σ̄ matrices on the subspace orthogonal to v as ΣI , Σ̄I ,

respectively, with I = 1, . . . , 5. By construction, they satisfy the intertwining relations

Σ̄ij
I = κii1 (ΣI)i1i2 κ

i2j , showing that there are in fact only five independent matrices ΣI .

The latter give a four dimensional representation of Clifford algebra:{
ΓI4×4,Γ

J
4×4

}
= ρIJ Id4×4, (2.8)

with

(ΓI4×4)ji ≡ (ΣI)ik κ
kj = κij(Σ̄

I)jk. (2.9)

In the following, we will use indices i, j, k, l, running over 1, . . . , 4, to refer to the four-

dimensional representation of SO(3, 2). Finally, one can introduce the anti-symmetric

combinations

(Σ̄IJ) ji ≡ −
1

2

(
(ΣI)ik(Σ̄

J)
kj − (ΣJ)ik(Σ̄

I)
kj
)
, (2.10)

which play the role of generators of SO(3, 2). By construction, these generators leave

invariant the two-form κij : therefore the spinor representation of SO(3, 2) is identified

with the fundamental representation of Sp(4).

In our concrete case, we see that the metric (2.7) is obtained from (2.1) by restricting to

the subspace orthogonal to v = (0, 0, 0, 0,−1, 1). Our choice for the Σ matrices will be

ΣI ≡
(
σ1, σ2, σ3, σ4, σ5 + σ6

)
, Σ̄I ≡

(
σ̄1, σ̄2, σ̄3, σ̄4, σ̄5 + σ̄6

)
, (2.11)

and the two-form κij reads

κij ≡ vA (σA)ij =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 . (2.12)

3 Formulation of the QSC from the TBA

In this section, we recall the first version of the QSC equations proposed in [44]. These

equations were obtained through a reduction of the T-system, supplemented by analyticity

properties extracted from the TBA [12, 44], and ultimately take the form of a nonlinear

Riemann-Hilbert problem defined on the complex domain of the spectral parameter u. In

the u-plane, the Q functions have a characteristic pattern of branch points, whose positions

depends on the coupling constant h as specified below. These branch points will all be of

– 6 –
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square-root type. This peculiar kind of analytic structure for the Q functions, beside

AdS5/CFT4, is also characteristic of some non-relativistic integrable systems such as the

Hubbard model [60]. The derivation of the QSC equations is discussed in appendix A.

3.1 Equations in vector form and analyticity conditions

In the first version of the equations derived from TBA, the basic variables are: six functions

{PA(u)}6A=1, and a 6 × 6 anti-symmetric matrix {µAB(u) = −µBA(u)}6A,B=1. They are

constrained by the following quadratic conditions:

P5P6 −P2P3 + P1P4 = 1, µAB η
BC µCD = 0, (3.1)

where ηAB is defined in (2.1). All these functions live on an infinite-sheet cover of the

u-plane, which, however, is built out of a simple set of rules. On what we will consider

the first Riemann sheet, the functions PA(u) have a single branch cut, running from −2h

to +2h, see figure 1. We assume that they have power-like asymptotics at large u, which

means that they can be written as a Laurent series in the Zhukovsky variable x(u):

PA(u) = (x(u))−MA

∞∑
n=0

cA,n
xn(u)

, x(u) =

(
u+
√
u− 2h

√
u+ 2h

)
2h

. (3.2)

The functions µAB(u) instead display an infinite ladder of branch cuts, at u ∈
(−2h , +2h) + iZ. They however have the following analyticity property (mirror peri-

odicity2):

µ̃AB(u) = µAB(u+ i), (3.3)

where the symbol tilde is used throughout the paper to denote analytic continuation around

any of the branch points at ±2h (see figure 1), while the shift on the r.h.s. is evaluated

avoiding all branch cuts.

Finally, the discontinuities of PA and µAB across the cut on the real u-axis are related

by

P̃A −PA = µAB η
BC PC , µ̃AB − µAB = PAP̃B −PBP̃A. (3.4)

In addition, as common for the Q functions in integrable models, we should impose a

regularity condition for the basic variables PA and µAB. The precise statement of this

condition, however, cannot be formulated in terms of the matrix entries µAB, but of more

fundamental building blocks which we introduce below.

2This property means that µAB is i-periodic on the long-cuts section of the Riemann surface, known as

the mirror sheet [16].
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Figure 1. Cut structure of the PA functions, with a single cut on the first sheet. We denote with

P̃A the analytic continuation to the next sheet, through the cut on the real axis.

Figure 2. The quasi-periodicity property of νa functions on a sheet with long cuts corresponds to

νa(u+ i) = e−iP ν̃a(u) on the defining sheet with short cuts.
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3.2 Equations in spinor form

As already discussed in [44], the matrix µAB can be decomposed in terms of 4+4 functions

νa, ν
a, as3

µAB=



0 ν1ν
4 −ν2ν

3 −ν3ν3−ν4ν4 −ν1ν
3 ν4ν2

−ν1ν
4 0 −ν3ν3−ν1ν

1 ν3ν
2 ν1ν

2 ν4ν3

ν2ν
3 ν3ν3+ν1ν

1 0 −ν4ν
1 ν3ν4 ν2ν

1

ν3ν3+ν4ν4 −ν3ν
2 ν4ν

1 0 −ν2ν4 ν3ν
1

ν1ν
3 −ν1ν

2 −ν3ν4 ν2ν4 0 −ν3ν3−ν2ν
2

−ν4ν2 −ν4ν3 −ν2ν
1 −ν3ν

1 ν2ν
2+ν3ν3 0


,

(3.5)

which, using the sigma matrices introduced in section 2, can be compactly written as

µAB = νa (σAB) ba νb. (3.6)

The constraint (µη)2 = 0 is now equivalent to the condition

νa νa = 0. (3.7)

Motivated by the weak coupling analysis of [44, 46], we will impose that the functions νa,

νa are analytic on any sheet of the Riemann surface, with the exception of the square-root

branch points at u ∈ iZ±2h, and that they remain bounded as these points are approached.

Besides, for physical values of the charges we assume that νa(u), νa(u) exhibit power-like

asymptotics for u→∞. Under these conditions, the splitting (3.6) contains nontrivial an-

alytic information, and may be argued to be essentially unique.4 The new functions νa and

νa should therefore be regarded as more fundamental objects than µAB. Indeed, at weak

coupling, ν1 and ν4 are proportional to the Baxter polynomials containing the two types

of momentum-carrying roots entering the 2-loop Bethe Ansatz of [29], see appendix D.1.

The weak coupling analysis also reveals that the periodicity of µAB on the mirror

sheet, equation (3.3), in general translates into quasi-periodicity for the basic functions

νa, ν
a (see figure 2). In the subsector considered in [46], these functions could be either

periodic or anti-periodic, and this is a general feature of a large sector of states discussed

in section 4.4. For a completely generic state, however, we have5

ν̃a(u) = eiP νa(u+ i), ν̃a(u) = e−iP νa(u+ i), (3.8)

where the phase P depends on the state under consideration and may be, in general, a

nontrivial function of the coupling constant h. We will make more comments on this

quantity in section 3.3 below.

3Notice that in [44] a different notation was used and the functions νa were labeled as ν̄, the precise

relation being
{
ν1, ν2, ν3, ν4

}here
= {−ν̄4, ν̄3,−ν̄2, ν̄1}[44].

4It is unique apart for trivial rescalings νa → νa z, ν
a → νa/z, where z is a constant independent of u.

This freedom is however removed by the choice of the normalization of equations (3.12), (3.13) below.
5Notice that P has to be the same for all the components of νa, due to the fact that in (3.5) all

combinations of νaν
b are present, for every a, b.
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It is now convenient to pack the six P functions into an anti-symmetric 4 × 4 tensor

Pab, defined as

Pab = PAσ
A
ab =


0 −P1 −P2 −P5

P1 0 −P6 −P3

P2 P6 0 −P4

P5 P3 P4 0

 , (3.9)

while the inverse matrix reads

Pab = PA(σ̄A)
ab

=


0 P4 −P3 P6

−P4 0 P5 −P2

P3 −P5 0 P1

−P6 P2 −P1 0

 . (3.10)

The constraint (3.1) can now be rewritten as the condition that Pab has unit Pfaffian:

Pf(Pab) = 1. (3.11)

Besides, it is possible to verify that the discontinuity equations (3.4) can be split nicely as

P̃ab −Pab = νaν̃b − νbν̃a, P̃ab −Pab = −νaν̃b + νbν̃a, (3.12)

ν̃a = −Pab ν
b, ν̃a = −Pab νb. (3.13)

As discussed in [44], in this form the equations are, from a purely algebraic point of view,

exactly the same as the Pµ-system of N = 4 SYM [16, 17], with the redefinitions

νa → (Pa)
SYM, νa → (Pa)SYM, Pab → (µab)

SYM. (3.14)

The analytic properties characterizing the AdS5/CFT4 case are however completely differ-

ent: the map between the two models in (3.14) requires to change all periodic functions

into single-cut functions, and viceversa.6

Equations (3.7), (3.11), (3.12) and (3.13) should be supplemented with the requirement

that all functions are bounded and free of singularities on every sheet of the Riemann

surface, and with some information on their large-u asymptotics, see section 5. This set

of conditions is in principle already constraining enough to determine the spectrum, but

it is difficult if not impossible to solve in practice at finite coupling. For this purpose it is

necessary to embed them in the wider set of equations derived in sections 4 and 6.

3.3 Interpretation of the phase P at weak coupling

The phase P appearing in (3.8) has an interesting interpretation at weak coupling. Recall

that the ABJM spin chain admits two types of momentum-carrying excitations [28, 36],

also known as A and B particles and corresponding to excitations of type 4 and 4̄ in our

notations. These pseudoparticles satisfy collectively the zero momentum condition:

K4∑
j=1

p4,j +

K4̄∑
j=1

p4̄,j = 0, mod(2π). (3.15)

6The very existence of this relation is naturally quite surprising and, on the level of pure speculation,

one may wonder if the two theories can somehow be connected through a continuous interpolation.
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The total momentum of a single type of excitations is instead in general a nontrivial function

of the coupling: it can be defined in the regime of validity of the Asymptotic Bethe Ansatz as

P
(4)
ABA = −P (4̄)

ABA =

K4∑
j=1

p4,j = −
K4̄∑
j=1

p4̄,j , mod(2π), (3.16)

where

ps,j = −i log(x+
s,j/x

−
s,j), x±s,j = x(us,j ± i/2), s = 4, 4̄, (3.17)

and {u4,j}K4

j=1,
{
u4̄,j

}K4̄

j=1
denote the momentum-carrying Bethe roots, see [35]. We will

show that the phase P agrees with (3.16) up to the first two orders at weak coupling,

P = P
(4)
ABA +O(h4). (3.18)

Notice that this also implies that at leading order P is quantized in units of the spin chain

length L: P +O(h2) ∈ 2πZ/L. This is a manifestation of the fact that at weak coupling A

and B particles are decoupled on the spin chain and their momenta must be independently

quantized.

At order O(h0), the identification (3.18) can be proved to follow directly the analytic

properties of the QSC. This is discussed in detail in appendix D.1, see equation (D.9) there.

Further, in section 7.3, we derive an explicit expression for P for finite h in the large volume

limit — equation (7.90) — which extends (3.18) up to the next order at weak coupling.

For a generic short operator at finite coupling, the above mentioned large-volume result

is not applicable, and therefore P is in principle an undetermined, state-dependent function

of the coupling. This could raise some questions on the completeness of the system of QSC

equations. It is part of our proposal that P should not be seen as an input, but is rather

fully fixed, for every state, from the self-consistency of the QSC. In particular, we expect

that this phase can be computed as an output, alongside the anomalous dimension, from

the numerical solution of the QSC using the method of [21].7 For instance, one method

to reconstruct P exactly in terms of quantities that are easily accessible for the numerical

algorithm is presented in appendix F. It would be interesting to clarify whether this phase

admits a meaningful physical interpretation at finite h.

4 Construction of the AdS4-related Q functions

As we will discuss in section 5.2, the equations presented above are associated, in the

classical limit, to the CP 3 degrees of freedom, and in particular the PA functions are

quantum versions of the classical quasi-momenta living in this part of the target space.

We shall now show how to construct an equivalent version of the QSC which is more

appropriate to the description of AdS4 degrees of freedom, and contains, in the classical

limit, the four quasi-momenta parametrizing the motion of a classical string solution in

AdS4. As in the case of AdS5/CFT4 considered in [17], this entails a swap between the

physical and the mirror section of the Riemann surface. In addition, we will see that this

alternative system naturally encodes the relevant symmetry group SO(3, 2), which was not

explicitly visible in the previous formulation.

7We plan to return on this issue shortly [56].
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4.1 The Qa|i and Qij functions

It is convenient to introduce the standard notation for shifts of the rapidity variable u:

F [±n] ≡ F
(
u± in

2

)
; F± ≡ F

(
u± i

2

)
; F±± ≡ F (u± i), (4.1)

where we will always assume that shifts are performed on the section of the Riemann

surface where all cuts are short.

The first step of our construction is the definition of a 4 × 4 matrix Qa|i, through the

4th order finite difference equation

Q+
a|i = Pab (Pbc)[−2]Q

[−3]
c|i . (4.2)

Notice that exactly the same equation is satisfied by ν+
a , as can be verified by combin-

ing (3.8) and (3.13):

ν[+2]
a = Pab (Pbc)[−2] ν[−2]

c . (4.3)

In particular, the index i in (4.2) does not enter the matrix structure of the equation.

We will take this index to run from 1 to 4, labelling a set of independent solutions of

this fourth-order equation, distinguished by different asymptotic behaviours at large u (see

section 5). Despite the fact that they satisfy the same finite-difference relation, the analytic

properties of νa and Qa|i will be different: we shall require that Qa|i(u) has no singularities

in the whole region Im(u) > 0. Notice that, because of the cut of Pab on the real axis, (4.3)

implies that Qa|i has an infinite ladder of short branch cuts in the lower half plane, starting

at Im(u) = −1/2.

It will be convenient to define Qa|i ≡ (Pab)− (Qb|i)
[−2], so that (4.2) can be split as

Q+
a|i = Pab (Qb|i)

−, (Qa|i)
+ = PabQ−b|i. (4.4)

Now, let us construct the tensor

kij ≡ Q+
a|i (Qa|j)

+ = Q+
a|i P

abQ−b|j . (4.5)

Using (4.4), it is simple to see that kij is invariant under a shift u→ u+2i, and, since by con-

struction it is free of cuts in the upper half plane and has power-like asymptotics, it must be

a constant matrix. In addition, notice that (4.4) implies more precisely that k+
ij = −k−ji, so

that kij is an anti-symmetric matrix, i.e. a symplectic form. This shows that the space of the

i-indices should be thought as carrying the fundamental representation of Sp(4) ' SO(3, 2),

the isometry group of AdS4. It is very pleasing that this symmetry, while completely hidden

at the level of the equations discussed in section 3, naturally emerges from the construction.

From (4.5) we see that the specific form of kij can be adjusted by taking different

linear combinations of the columns of the matrix Qa|i (we are allowed to do this since the

defining relation (4.2) is linear). We use this freedom to impose that kij = κij as defined

in (2.12). Note in particular that8 Pf(κij) = −1.

8This concrete choice is purely conventional, however notice that a different value for the Pfaffian of κij
would affect some of the equations below.
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Using (4.5), we can relate Qa|i to the inverse transposed matrix of Qa|i:

Qa|i = Qa|j κji, (4.6)

where Qa|i ≡ (Q−T )a|i, such that Qa|j Q
a|j = δji , Qa|iQ

b|i = δba. Another simple conse-

quence of (4.2) is that the determinant det(Qa|i) is invariant under shifts of +2i; by the

same arguments as above, it also must be a constant independent of u. Considering the

Pfaffian of equation (4.5) and using the property Pf(AtBA) = det(A) Pf(B), we see that

det
(
Qa|i

)
= det

(
Qa|i

)
= Pf (κij) = −1. (4.7)

We proceed now to construct an object whose indices live in the product of two Sp(4)

representations, as

Qij = (Qa|i)
+Q−a|j = (Qa|i)

+ Pab (Qb|j)
+. (4.8)

Let us discuss the algebraic properties of this tensor. First, from (4.8), we see immediately

that

Qij = −Qji, Pf(Qij) = −1. (4.9)

Being a 4 × 4 anti-symmetric matrix, Qij has six independent components. It will be

convenient to decompose it into 5+1-dimensional irreducible representations of SO(3, 2)

using the invariant tensor κ: the trivial representation is given by the trace

Q◦ = Qij κ
ij = Q−a|i (Qa|i)+, (4.10)

while the five dimensional vector representation is the traceless part:

Q5
ij = Qij +

1

4
κij Q◦. (4.11)

The inverse matrix Qij , satisfying Qij Qjk = δkj , can be computed as

Qij = κii1 κji2 (Qa|i1)+ Pab (Qb|i2)+ (4.12)

= −(Qa|i)−Pab (Qb|j)−, (4.13)

and it is simple to show (see appendix B.3) that the following identity holds

Qij = κii1 κji2 Qi1i2 −
κij

2
Q◦. (4.14)

Finally, the following relations constitute a natural counterpart of (4.4) involving the Sp(4)-

invariant indices:

Q+
a|i = −Q−a|j Qjk κki, (Qa|i)

+ = −(Qa|j)
− κjk Qki. (4.15)

Shortly, we will show that the elements Qij have very simple analytic properties: starting

from the upper half plane, they can be analytically continued to a Riemann section with

the only branch cuts being the semi-infinite segments (−∞,−2h) and (2h,∞).
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4.2 The τi functions

We now construct a new set of four functions, denoted as τi and defined as

τi = νaQ−a|i. (4.16)

Manifestly, these quantities exhibit an infinite series of short branch cuts. Applying (4.4)

and (3.8), we see that, under a shift u→ u+ i, they transform as

τ
[+2]
i = Q

[+]
a|i (νa)[+2] = Pab (Qb|i)

− (−eiP Pac νc) = eiP νa (Qa|i)
−, (4.17)

and shifting this expression once more we find that τi are 2i-periodic on the Riemann

section with short cuts:

τ
[+4]
i = τi. (4.18)

The τi functions may be seen as counterpart of the νa functions. Their analytic properties

are very similar, with a characteristic swap of short and long cuts. However, notice that,

while the functions νa and νa are distinct objects, carrying different irreps of SO(3, 3),

there are only four independent functions τi, corresponding to the spinor representation of

SO(3, 2).

4.3 The Qτ -system

The functions Qij(u) introduced above have, by their very definition, no singularities in

the upper half plane, with two branch points at u = ±2h and an infinite ladder of short

cuts further down in the lower half plane.

Let us study the analytic continuation of Qij and τi through the branch cut on the

real axis. Combining (4.18) and (4.17), we have

τi = eiP ν[+2]
a (Qa|i)

+ = ν̃a (Qa|i)
+, (4.19)

and, since Qa|i has no cuts in the upper half plane, we find

τ̃i = νa (Qa|i)
+ = −νa (Qa|j)

− κjk Qki, (4.20)

where we used (4.15) in the last step. By comparison with (4.19), we see that (4.20) can

be rewritten as τ̃i = −Qij τ
j , where we have defined

τ i ≡ e−iP κij τ [+2]
j . (4.21)

Let us now consider the discontinuity of Qij : we find

Q̃ij −Qij = (Qa|i)
+
(
P̃ab −Pab

)
(Qb|j)

+

=
(

(Qa|i)
+ νa

) (
ν̃b (Qb|j)

+
)
−
(

(Qa|i)
+ ν̃a

) (
νb (Qb|j)

+
)

= τ̃i τj − τ̃j τi. (4.22)

All in all, we see that the discontinuities (4.20) and (4.22) take the form

Q̃ij −Qij = τ̃i τj − τ̃j τi, τ̃i = −Qij τ
j . (4.23)
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Figure 3. Cut structure of the Q functions in the physical Riemann section. On the first (second)

sheet, Q is analytic in the upper (lower) half plane.

The second relation in (4.23) shows how the phase P appears in the Qτ -system,

through (4.21). Finally, contracting (4.16) and (4.17) with κij , we find the constraint

τi τ
i = e−iP τi κ

ij τ
[+2]
j = −νa νa = 0. (4.24)

Equations (4.23), with the constraints (4.24), (4.9) may be considered as a counterpart of

the Pν-system (3.7), (3.11)–(3.13). While the equations take a very similar form, they are

not identical from the algebraic point of view, due to the fact that the functions τi and τ i

are simply related, for a generic state, by a shift in the spectral parameter, as expressed

by (4.21). This distinction reflects the representation theory, as there is only one four-

dimensional representation of Sp(4). The difference can be fully appreciated by projecting

the Qτ equations on irreducible representations; this is discussed below in section 4.3.2.

4.3.1 Qij on the mirror sheet

Let us now prove that, when analytically continued from the upper to the lower half plane

passing through the cut (−2h, 2h), the matrix Qij is analytic in the whole lower half plane

(see figure 3). Therefore, on an appropriate Riemann section, it has only a pair of long

cuts stretching from ±2h to infinity (see figure 4). This is a very strong analogy with the

AdS5/CFT4 case considered in [16].

We start by observing that, using (4.24) and the second equation in (4.23), the dis-

continuity relation (4.22) can be put in the form

Q̃ij = Qmn (δmi − τi τm)
(
δnj − τj τn

)
≡ Qmn f

m
i fnj , (4.25)
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Figure 4. Gluing the two analyticity regions from the sheets 1 and 2 of figure 3, one defines the

mirror sheet, with a single long cut.

where we have defined a 2i-periodic matrix function f ji ≡ δji − τi τ j . This relation can be

recast as

Q̃ij =
(
Q−b|m PabQ−a|n

)
fmi fnj = Pab (QLHPA

b|i )− (QLHPA
a|j )−, (4.26)

where

QLHPA
a|i ≡ Qa|j (f ji )+ = Qa|i −Qa|j (τ j)+ τ+

i = Qa|i + ν+
a (νb)+Qb|i. (4.27)

We will now show that QLHPA
a|i has no branch cuts in the lower half plane (hence the

superscript LHPA — Lower Half Plane Analytic). Therefore, the representation (4.26)

manifestly shows that the same is true for Q̃ij , implying that Q has a single long cut on

the mirror Riemann sheet.

To prove that QLHPA
a|i has no cuts in the lower half plane, we can exploit the fact that,

due to the periodicity of f ji (u), it satisfies the same fourth order difference equation (4.2)

fulfilled by Qa|i. Therefore, it is sufficient to check that it has no cut on the lines Im(u) =

−1/2, −3/2: the difference equation (4.2) will then automatically imply that it is analytic

everywhere in the lower half plane. This leaves us with just two conditions to check. The

first discontinuity to study is

4( (QLHPA
a|i )− ) = 4(Q−a|i −Q

−
a|j τ

j τi ), (4.28)

where we are using the notation 4(G) = G − G̃. From the first relation in (4.15), we find

4(Q−a|i) ≡ Q−a|i − Q̃
−
a|i = −Q+

a|k κ
kl
(
Qli − Q̃li

)
(4.29)

= −Q+
a|k κ

kl (τl τ̃i − τi τ̃l) , (4.30)
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where we used (4.23) in the last step. We may now to use the following identities, found

by inverting (4.19), (4.20):

νa = −Q+
a|i κ

ij τ̃j , νa = −Q−a|iτ
i, (4.31)

to transform (4.30) into

4(Q−a|i) = ν̃a τ̃i − νa τi = −4(νa τi) = 4(Q−a|j τ
j τi). (4.32)

The last equality shows the vanishing of the discontinuity (4.28). A completely analogous

calculation would show that

4
[
(Qa|j)

− (f ji )[−2]
]

= 0, (4.33)

therefore also the next discontinuity is trivial

4
[

(QLHPA
a|i )[−3]

]
= P

[−2]
ab 4

[
(Qa|j)

− (f ji )[−2]
]

= 0, (4.34)

which concludes the proof.

4.3.2 Vector form of the Qτ -system

We may rewrite the discontinuity equations (4.23) in an alternative form, more similar to

the Pµ-system. To do this, let us rearrange the components of Q5
ij into a five-vector:

QI(u) ≡ −1

2

(
Q5
ij(u) Σ̄ij

I

)
, (I = 1, . . . , 5), (4.35)

or equivalently

Q5
ij(u) = (ΣI)ij ρ

IJ QJ(u), (4.36)

where we are using the matrices ΣI and the metric ρIJ defined in section 2. In components,

this definition reads

QI = −
(

Q12,Q13,Q24,Q34,
1

2
(Q14 + Q23)

)
, (4.37)

Q5
ij =


0 −Q1 −Q2 −Q5

Q1 0 −Q5 −Q3

Q2 Q5 0 −Q4

Q5 Q3 Q4 0

 . (4.38)

It is also convenient to define

ωIJ(u) ≡ τk(u) (ΣIJ) ik τi(u), ψI(u) ≡ τm(u)κmi Σ̄ij
I τj(u), (4.39)

or explicitly:

ωIJ =


0 τ1τ

4 −τ2τ
3 −τ3τ3−τ4τ4

1
2(τ2τ

4−τ1τ
3)

−τ1τ
4 0 −τ3τ3−τ1τ

1 τ3τ
2 1

2(τ1τ
2+τ3τ

4)

τ2τ
3 τ3τ3+τ1τ

1 0 −τ4τ
1 1

2(τ2τ
1+τ4τ

3)

τ3τ3+τ4τ4 −τ3τ
2 τ4τ

1 0 1
2(τ1τ3−τ2τ4)

1
2(τ1τ

3−τ2τ
4) −1

2(τ1τ
2+τ3τ

4) −1
2(τ2τ

1+τ4τ
3) 1

2(τ2τ4−τ1τ3) 0

,
(4.40)

ψI =
(
−τ1τ

3−τ2τ
4, τ1τ

2−τ3τ
4,−τ2τ

1+τ4τ
3,−τ2τ4−τ1τ3, τ2τ

2+τ3τ
3
)
. (4.41)
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From (4.18), (4.21), it is simple to prove that the components of ωIJ(u) are i-periodic

functions, while the components of ψI are anti-periodic under the same shift:

ω
[+2]
IJ = ωIJ , ψ

[+2]
I = −ψI . (4.42)

In terms of these new variables, the nonlinear constraints (4.9), (4.24) take the form

Q2
◦

16
− 1 = Q2

5 −Q2 Q3 + Q1 Q4 , ωIJ ρ
JK ωKL = −1

2
ψI ψL , ψI ρ

IJ ψJ = 0 ,

(4.43)

while the discontinuity equations (4.23) can be rewritten as

Q̃I −QI = −ωIJ ρJK QK +
1

4
ψI Q◦, ω̃IJ − ωIJ = QI Q̃J −QJ Q̃I ,

Q̃◦ −Q◦ = 2ψJ ρ
JK QK , ψ̃I − ψI =

1

2

(
QI Q̃◦ −Q◦ Q̃I

)
.

4.4 Reduction to 4↔ 4̄ symmetric states

In this section we consider the reduction of the QSC equations to a large subsector char-

acterized by perfect symmetry between the contributions of A- and B-type excitations. In

terms of the ABA, this subsector is characterized by the equality of the sets of momentum-

carrying Bethe roots, {u4,k}K4

k=1 =
{
u4̄,k

}K4̄

k=1
. As discussed in appendix A, this case is

selected by the conditions:

P5 = P6, νa = κabνb. (4.44)

In this case we have the relation Pab = κal Plm κ
mb and we see that necessarily, eiP is

either 1 or −1. By studying the large-u asymptotics of equation (4.2), we find that, in this

case, the elements of the matrices Qa|i, Q
a|i may be chosen as related by the symmetry:

Qa|i = −eiP κabQb|j K
j
i , (4.45)

with

Ki
j =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 . (4.46)

This means also that

Qa|i κ
abQb|k κ̂

kl = δ li , (4.47)

where κ̂ki ≡ −eiP (κK)ki = −eiP (Kκ)ki. The symmetry imposes the following condition:

Qij = −Kk1
i Qk1k2 K

k2
j −

κij
2

Q◦, (4.48)

which implies

Q5
ij = −Kk1

i Q5
k1k2

Kk2
j . (4.49)

Taking (4.44), (4.45) into account in (4.17), we see that in this subsector the periodicity of

τi is enhanced to

τ
[+2]
i = τkKk

i , (4.50)

– 18 –



J
H
E
P
0
9
(
2
0
1
7
)
1
4
0

which means that τ1 and τ4 are i-periodic, while τ2, τ3 are i-anti-periodic. Since we expect

all these functions to have power-like asymptotics for physical operators, we see, from the

condition of anti-periodicity, that

lim
u→±∞

τ2 = lim
u→±∞

τ3 = 0. (4.51)

This resut will be important in the following. Finally, in terms of the variables of sec-

tion 4.3.2, the reduction to the symmetric subsector can be obtained setting Q5 = ψ5 =

ω5I = ωI5 = 0.

5 Asymptotics and global charges

5.1 Large-u behaviour and quantum numbers

The Riemann-Hilbert type equations described in sections 3 and 4 have to be supplemented

with appropriate constraints on the large-u behaviour of the functions entering the QSC.

We will assume, in analogy with [17], that all the functions we have described scale as

powers of u for large values of the spectral parameter, in particular

PA(u) ∼ AA u−MA . (5.1)

An important observation is that, since the P functions have a single short cut on the first

Riemann sheet, they must have trivial monodromy around infinity, which forces MA ∈ Z.

For the spectrum problem, we found that these parameters should be paired up as9 M1 =

−M4, M2 = −M3, M5 = −M6. The three independent integer parameters contained in the

asymptotics (5.1) can be identified with the three SO(6) R-charges J1, J2, J3, corresponding

to three angular momenta parametrizing the motion of the string in CP 3:

MA = (J2 + 1, J1, −J1, −J2 − 1, −J3, J3) . (5.2)

The AdS4 charges ∆ and S, corresponding to the conformal dimension and spin of the gauge

theory operator, respectively, enter the QSC through the asymptotics of the νa functions.

Equivalently, they can be read off the coefficients AA in (5.1), which satisfy the constraints

AB AB = 2

∏5
I=1

(
MB − M̂I

)
∏6
C 6=B(MB −MC)

, (B = 1, . . . , 6), (5.3)

(with no summation implied on the index B), where the 5-vector M̂ is defined as

M̂I = (∆ + S + 1 , ∆− S , −∆ + S , −∆− S − 1 , 0) . (5.4)

The above identifications (5.2), (5.4) between parameters and quantum numbers will be de-

duced in appendix D considering the weak coupling limit of the QSC equations. Notice that

9This two-by-two pairing of the charges is equivalent to requiring that all terms in the equation (3.1)

are of the same order at large-u. We suspect that relaxing this condition, without modifying the power-like

character of the asymptotics, may lead only to trivial or singular solutions of the QSC equations.
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the charges (∆, S, J1, J2, J3) used above are defined relatively to the Dynkin diagram of fig-

ure 5. We remind the reader that, for supersymmetric algebras, the definition of the charges

depends on a choice of grading of the Dynkin diagram; if a different grading were chosen,

relations (5.2) and (5.4) would be slightly different. However, we stress that the parameters

MA and M̂I appearing in the asymptotics of the QSC are invariant under these changes,

and unambiguously associated to a given multiplet (see [17] for a detailed discussion). Con-

cretely, we may read the charges from the Asymptotic Bethe Ansatz description of the state:

J1 = L−K1, J2 = L−K4 −K4̄ +K3, J3 = K4 −K4̄, (5.5)

∆− S = L+K2 −K1 + γ, ∆ + S = L+K3 −K2 + γ, (5.6)

where L is the length parameter and Ki denotes the number of Bethe roots of type i in

the so-called η = +1 version of the ABA [35], while γ is the anomalous dimension. For

more details and a dictionary between different forms of the ABA, see appendix E.

The large-u asymptotics of the matrix Qa|i(u) may be determined by studying (4.2).

There are four possible asymptotic behaviours where Qa|i scales as a power of u,

parametrized in terms of the charges MA, M̂I entering the equation through (5.1), (5.3). By

choosing a suitable linear combination of solutions, we shall impose that different columns

of Qa|i have distinct leading asymptotics, ordered in such a way that |Qa|i| > |Qa|j | for

i < j for large u. To describe the possible scaling behaviours, it is convenient to introduce:

Na =

(
1

2
(−M1−M2−M5),

1

2
(−M1+M2+M5),

1

2
(M1−M2+M5),

1

2
(M1+M2−M5)

)
,

N a =

(
1

2
(M1+M2+M5),

1

2
(M1−M2−M5),

1

2
(−M1+M2−M5),

1

2
(−M1−M2+M5)

)
,

N̂i =

(
1

2
(M̂1+M̂2),

1

2
(M̂1−M̂2),

1

2
(M̂2−M̂1),

1

2
(−M̂1−M̂2)

)
. (5.7)

With these definitions, we have

Pab(u) ∼ uNa+Nb , Qa|i(u) ∼ uNa+N̂i , Qa|i(u) ∼ uNa+N̂i , (5.8)

while νa and νa have the same leading asymptotic behaviour as Qa|1, Qa|1, namely:

νa(u) ∼ uNa+N̂1 , νa(u) ∼ uNa+N̂1 . (5.9)

The asymptotics of Qij can be computed from the definition (4.8), and turn out to be, for

the vector components,

QI(u) '
(
B1 u

M̂1−1,B2 u
M̂2−1,B3 u

−M̂2−1,B4 u
−M̂1−1,

B5

u

)
, (5.10)

where the coefficients BI are constrained by consistency conditions similar to (5.3):

BI BI =
1

2

∏6
A=1

(
M̂I −MA

)
∏5
J 6=I(M̂I − M̂J)

, (I = 1, . . . , 5), (5.11)

B5 =
i

2

M1M2M5

M̂1 M̂2

, (5.12)
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(with no summation on the index I in (5.11)). The trace part satisfies

Q◦(u) = 4 +
2 C
u2

+O
(

1

u3

)
, (5.13)

where the constant C coincides with the value of the OSp(4|6) Casimir:

C =
1

4

(
M̂2

1 + M̂2
2 −M2

1 −M2
2 −M2

5

)
. (5.14)

A derivation of the constraints (5.3), (5.11)–(5.14) is discussed in appendix C. Finally, let

us comment on the asymptotics of the four functions τi(u). Since the latter are 2i-periodic,

and by construction grow less than exponentially for large u, they must approach a vector of

constants at infinity. There is a certain amount of freedom in normalizing these constants,

but we expect that for any physical state the components of τi with i = 2, 3 always vanish

at large u:

lim
u→±∞

τ2(u) = lim
u→±∞

τ3(u) = 0. (5.15)

In section 4.4 we established (5.15) for the class of 4 ↔ 4̄-symmetric operators. While we

do not have a fully rigorous argument, we postulate that (5.15) is true in general even for

nonsymmetric states. As we discuss in section 6, the asymptotics (5.15) implies the quan-

tization of the spin and is the main ingredient for deriving the so-called gluing conditions,

a powerful set of constraints encoding the main analytic properties of the system.

5.2 Classical limit

The algebraic curve describing IIA string solutions on AdS4 × CP 3 in the classical limit

where ∆, S, Ji = O(h), h ∼
√
λ/2→∞ was proposed in [33]. In particular, a monodromy

matrix was built on the basis of the Lax connection found in [31, 32] and its eigenvalues

λa ≡ eiqa were shown to define a ten-sheeted Riemann surface covering the domain of the

relevant strong coupling spectral parameter, the Zhukovsky variable x. It is convenient to

consider the logarithm of the eigenvalues, the so-called quasi-momenta, naturally grouped

as {q3, q4, q5,−q3,−q4,−q5} and {q1, q2,−q1,−q2}, corresponding respectively to the SO(6)

invariant CP 3 and the Sp(4) invariant AdS4 sectors of the monodromy matrix. The quasi-

momenta are connected by logarithmic cuts,10 which may be viewed as condensates of

Bethe roots. Classical string solutions can be studied by listing algebraic curves satisfying

appropriate analytic properties (see [33] for full details), and in particular the charges can

be read off the asymptotics of the curve at large values of the spectral parameter:
q1(x)

q2(x)

q3(x)

q4(x)

q5(x)

 ∼
1

hx


∆ + S

∆− S
J1

J2

J3

 , x ∼ ∞, (5.16)

10These cuts exist only in the classical limit and of course they should not be confused with the square-root

branch cuts at u = ±2h+ iZ considered in the rest of the paper for the QSC.
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where the quasi-momenta are ordered as in [33]. In the classical limit, we expect that some

of the P and Q functions of the QSC are related to the quasi-momenta as follows:

P1(u) ∼ e−h
∫ u/h q4(z)dz, P4(u) ∼ e+h

∫ u/h q4(z)dz, (5.17)

P2(u) ∼ e−h
∫ u/h q3(z)dz, P3(u) ∼ e+h

∫ u/h q3(z)dz, (5.18)

P5(u) ∼ e+h
∫ u/h q5(z)dz, P6(u) ∼ e−h

∫ u/h q5(z)dz, (5.19)

Q1(u) ∼ e+h
∫ u/h q1(z)dz, Q4(u) ∼ e−h

∫ u/h q1(z)dz, (5.20)

Q2(u) ∼ e+h
∫ u/h q2(z)dz, Q3(u) ∼ e−h

∫ u/h q2(z)dz, (5.21)

where we use the notation qi(z) ≡ qi(z/2 +
√
z − 2

√
z + 2/2) for the quasi-momenta

parametrized in terms of the rescaled spectral parameter z = u/h, which is the natu-

ral variable at strong coupling. Using (5.16), one can verify that (5.17)–(5.21 are nicely

consistent with our asymptotics (5.2)–(5.4).11

Some of the limits (5.21), particularly the ones for P1, P2, Q1, Q2, P5, P6, can be

derived from the large volume solution of the QSC, see the section 7.3 below. In the rest

of this section, we discuss other consistency checks of the semi-classical identifications, as

this will illustrate interesting analogies between classical and quantum curve (for a similar

treatment, see section 6 in [17]).

One of the important features of the classical curve is the inversion symmetry [33]:
q1(1/x)

q2(1/x)

q3(1/x)

q4(1/x)

q5(1/x)

 =


−q2(x)

−q1(x)

2πm− q4(x)

2πm− q3(x)

q5(x)

 , m ∈ Z (5.22)

which is inherited by the transformation property of the monodromy matrix under the

Z4 automorphism of OSp(4|6) [31, 32]. Let us discuss how this property is related to the

Riemann-Hilbert type equations (3.12), (4.23) valid for P and Q at finite coupling.

Consider first the case of P functions. Their values on the second sheet is parametrized

in terms of the matrix µAB which is i-periodic on the mirror section. In terms of the natural

variable z = u/h, this periodicity becomes i/h→ 0 at strong coupling. Therefore, assuming

that µAB admits a smooth classical limit, it must freeze to a constant value independent of

z [17], which can be normalized to be of order O(1). From two of the QSC equations (3.4),

we then find

P̃1 ∼ P3, P̃2 ∼ P4, (5.23)

where we have dropped all terms containing P1 and P2 on the rhs, since we see

from (5.17), (5.18) that they are exponentially suppressed as h→∞. On the other hand,

11Indeed this expected semi-classical relation was an important guiding principle in guessing the way

quantum numbers appear in the QSC. However, since the charges are large in the classical limit, this

reasoning only fixes the powers in the QSC asymptotics up to finite, state-independent shifts.
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analytically continuing to the second sheet the semi-classical expressions for P1 and P2,

and using the inversion symmetry (5.22), one finds (see [17] for details)

P̃1 ∼ e+h
∫ u/h q3(z)dz, P̃2 ∼ e+h

∫ u/h q4(z)dz. (5.24)

The comparison between (5.24) and (5.23) motivates the semi-classical identification for

P3 and P4.

This analysis cannot be straightforwardly repeated for the Q functions, since the func-

tions τi are periodic only on the short-cuts section, which becomes analytically disconnected

from the z-plane at strong coupling. However, the inversion symmetry has a quantum ana-

logue in the gluing conditions discussed in section 6, which connect Q̃ij and the complex

conjugate functions Qij . From the analytic continuation of (5.17)–(5.21), combined with

the inversion symmetry, we may infer that in the classical limit

Q̃3 ∝ Q1, Q̃4 ∝ Q2. (5.25)

This is indeed consistent with the results of section 6.

As a last comment, notice that there is no classical analogue for two of the components

of the matrix Qij , namely the functions Q5 and Q◦, which enter the basic Riemann-Hilbert

constraints at finite coupling, but appear to completely decouple from the dynamics in the

classical limit. This is a peculiar feature, as compared with the case of AdS5/CFT4, and

it would be important to find a proper interpretation. One may also speculate that there

is a connection with the fact that part of the classical string solutions in ABJM theory are

not captured by the classical spectral curve [61].

5.3 Unitarity conditions

The structure of the QSC also appears to automatically implement the unitarity bounds

satisfied by the charges of a physical state. The discussion here will be very similar to

the argument of section C.2 of [17], so we will only sketch the main points. From the

perspective of the QSC, the unitarity bounds arise from the requirement that the powers

appearing in the asymptotics of P and Q functions are all distinct. This condition is very

natural, since otherwise expressions like (5.3) and (5.11) for the coefficients AA, BI would

become singular. A further condition appears to be needed, namely that, for all consistent

solutions of the QSC, the powers entering the asymptotics of Q functions are greater than

the ones entering the asymptotics of P functions: precisely, |MA| < |M̂I |, I 6= 5. While

it is more difficult to motivate this bound from first principles, it can be verified that it

holds at weak coupling or in the large volume limit. Assuming a (purely conventional)

ordering of magnitude for the components of PA and QI , we can therefore argue that all

non-singular solutions of the QSC can be found restricting our attention to

M̂1 > M̂2 > M2 > M1 > |M5|. (5.26)

With the identification (5.2), (5.4), we find that these conditions coincide with the unitarity

bounds

J2 ≥ |J3|, J1 ≥ 2 + J2, S ≥ 0, ∆ > S + J1, (5.27)
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or equivalently, in terms of excitation numbers (see [53]12):

L+K3 − 2K4 ≥ 0, L+K3 − 2K4̄ ≥ 0, K4 +K4̄ −K3 ≥ 2 +K1, (5.28)

K3 +K1 ≥ 2K2, K2 + γ > 0. (5.29)

As a final comment, notice that, in principle, some of the inequalities (5.26) could be sat-

urated exactly in the weak coupling limit, where γ → 0. Since the parameters MA, as well

as M̂2− M̂1 (see section 6) are quantized, this is possible only for the condition M̂2 > M2.

The saturation of this bound for γ → 0 is equivalent to the multiplet shortening condition:

∆(0) − S − J1 = 0, (5.30)

where ∆(0) is the classical conformal dimension, or equivalently K2 = 0 in terms of

excitation numbers. The states satisfying (5.30) have a peculiar characteristic in the QSC,

namely they are the ones for which one of the P functions vanishes at weak coupling. This

is shown by the fact that for these operators A2A3 → 0 as M̂2 −M2 → 0 in (5.3).

6 Gluing conditions and spin quantization

We shall now derive an exact relation (valid for real values of the charges) connecting the

values of Qij on the second sheet to the values of the complex conjugate function Qij . A

similar result was first found in the AdS5/CFT4 context and exploited to solve the QSC in

various regimes [18, 21]. In particular the equations presented below13 may be used to solve

the QSC numerically at finite coupling [56]. For the derivation, we need an important tech-

nical assumption: we require that the matrix elements Qa|i can be expanded at large-u as

Qa|i(u) ∼ uNa+N̂i
∞∑
m=0

B(a|i),m

um
, u→ +∞. (6.1)

In words, (6.1) means that there is no mixing among the powers occurring in the asymp-

totics of different columns of Qa|i. This condition was dubbed “pure asymptotics” in [21],

and can always be enforced using the freedom to take linear combinations of the columns of

Qa|i. We also assume that, for real values of the charges and the coupling, Pab can be chosen

to be real.14 Under these conditions, the conjugate matrix elements Qa|i satisfy the same

difference equation (4.2) as Qa|i. This implies that the two matrices are related through

Qa|i(u) = Qa|j(u) (Ωj
i (u))+, (6.2)

12Notice that, in [53], the bounds are written in terms of the excitation numbers referring to a different

version of the Bethe Ansatz, associated to the distinguished grading of the Dynkin diagram. The rules to

convert between different conventions are reported in appendix E.
13The results presented in this section were also obtained independently by Riccardo Conti using a slightly

different argument [62].
14Throughout this section, reality and complex conjugation will be defined on the Riemann section with

short cuts. Concretely, the reality of PA means that all coefficients cA,n in (3.2) are real.
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where Ωj
i (u) is a 2i-periodic function of u: Ωi

j(u + 2i) = Ωi
j(u). The condition of pure

asymptotics (6.1) implies that, as u → ∞, the matrix Ωi
j becomes diagonal. Now, we

recall the discontinuity relation (4.25):

Q̃ij(u) = f li (u) Qlk(u) fkj (u), (6.3)

where f ji (u) = δji − τi(u) τ j(u), which, combined with (6.2), gives

Q̃ij = Lli κlk Q
km

κmn Lnj , (6.4)

with

Lil(u) = (f(u) Ω−1(u))ji . (6.5)

The crucial observation is now that Lij(u) must be a constant independent of u. In fact,

the definition (6.5) can be rewritten as

Lji = fki Q
−
a|k (Q

a|j
)− = (QLHPA

a|i )− (Q
a|j

)−,

and the last equality shows manifestly that Lji has no cuts in the upper half plane, since

this property is true for both QLHPA
a|i and Q

a|j
. Because of its 2i-periodicity, Lij is then

entire in u, and, since it does not grow exponentially, it must be a constant.

To determine the form of Lji , we can study its definition at large u, where Ωi
j becomes

diagonal and many of the matrix elements of f ij vanish due to the fact that τ2, τ3 → 0.

The structure is further specified by several consistency conditions. For instance, since L
does not depend on u, we should certainly impose the equality of the following limits:

Lji = lim
u→+∞

(
f(u) Ω−1(u)

)j
i

= lim
u→−∞

(
f(u) Ω−1(u)

)j
i
. (6.6)

To exploit this constraint, notice that the constant limits of Ω at ±∞ are related as follows:

lim
u→−∞

Ωi
i(u) =

(
lim

u→+∞
Ωi
i(u)

)
e−2πi(Na+N̂i). (6.7)

This condition can be obtained studying the definition (6.2) as u→ ±∞, using the fact that

the asymptotic behaviour of Qa|i(u) (Qa|i(u), respectively) as u→ −∞ must be connected

to the one for u→ +∞ through analytic continuation along a large semicircle in the upper

(lower) half plane, where this function is free of singularities. Considering relation (6.6) for

j = 2, 3, and using (6.7), we find

e2πi(Na+N̂i) = 1, (6.8)

for i = 2, 3, ∀a. This equation implies that M̂2 − M̂1 = 2S + 1 ∈ Z, namely the spin

is integer or half-integer. The other conditions in (6.6) constrain the asymptotics of the

non-zero components of τ . Denoting ti,± ≡ limu→±∞ τi, we have in particular

t1,± t4,± = ±i eiP tan(π M̂1). (6.9)
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Finally, evaluating L at large u and using (6.9), relation (6.4) leads to the gluing conditions:

Q̃1 = − eiπM̂1

y1 y2 cos(πM̂1)
Q1 + δ1 Q3, Q̃3 = − e−iπM̂1

y2 y4 cos(πM̂1)
Q3 +

y3

y2
δ2 Q1, (6.10)

Q̃2 = − eiπM̂1

y1 y3 cos(πM̂1)
Q2 +

y2

y3
δ1 Q4, Q̃4 = − e−iπM̂1

y4 y3 cos(πM̂1)
Q4 + δ2 Q2, (6.11)

Q̃◦ = Q◦, Q̃5 = −Q5, (6.12)

where we are using the vector notation defined in section 4.3.2, δ1 = e−iPt21,+/(y1y2),

δ2 = −e−iPt24,+/(y3y4), and yi ≡ limu→+∞Ωi
i(u). For completeness we point out that the

constants yi, δi may in general depend on the coupling and on various normalization choices.

For the implementation of the numerical method, it is only needed to know explicitly the

value of yi. These constants, which satisfy the consistency conditions y1 = 1/y4 = 1/(y∗1),

y2 = 1/y3 = 1/(y∗2), are simply related15 to the choice of normalization of the Qa|i(u)

functions, and can be determined as:

yi = (B(a|i),0)∗/B(a|i),0, ∀a. (6.13)

The relations (6.10)–(6.12) are similar to the ones obtained in [18, 21], but slightly

more complicated. Indeed, in the AdS5/CFT4 context a single Q function appears on the

r.h.s. of the gluing conditions, which are an almost direct lift of the inversion symmetry

connecting pairs of quasi-momenta in the classical limit. In the present case, the quantum

version is a bit more intricate. In particular, the explicit parametric dependence of the

gluing conditions on the charge M̂1 needs to be taken into account in order to develop a

numerical algorithm [56]. As a last comment, we observe that the quantization of the spin

is a direct consequence of the choice of vanishing asymptotics for two of the components of

τ . As shown in [18], it should be possible to relax this condition and consider continuous

values of S by admitting exponentially growing asymptotics in τ2 and τ3.

7 The Q-system

In this section we show how to embed the previous results into a larger set of functional

equations reflecting the OSp(4|6) symmetry. It is important to mention that, while the form

of Q-systems associated to GL(M |N)-type superalgebras is known (see e.g. [14, 25, 63]),

there appears to be no comprehensive understanding of this mathematical structure for

orthosymplectic superalgebras. Here we take a bottom-up approach to the problem and

try to construct the Q-system starting from the Q functions already introduced:16 PA,

15For real values of the coupling it is always possible to choose a normalization where B(a|i),0 ∈ R, so

that yi = 1.
16Starting from these functions, we will define a Q-system where the Q functions are free of cuts in the

upper half plane. An analogous construction, analytic in the lower half plane, could be performed starting

from the Q functions PA, Q̃I , and QLHPA
a|i defined in (4.27). Notice that the two systems are connected

through the ν or τ functions, which therefore play the role of a symmetry transformation of the Q-system

(for an interesting discussion see [17]).
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Figure 5. Chain of Q functions corresponding to the η = +1 grading of the Bethe Ansatz.

QI , Qa|i, Q
a
|i, together with the relations linking them, equations (4.4), (4.5), (4.8). We

will explicitly define new Q functions and prove the validity of a set of functional relations

which is rich enough to contain various forms of exact Bethe Ansatz equations (equivalent

to the absence of poles for the Q functions) related to the OSp(4|6) symmetry.

Before starting the construction, let us describe some of its main characteristics. Var-

ious types of Q functions will be assigned to particular nodes of the Dynkin diagram. We

will almost exclusively consider the two versions of the diagram shown in figures 5, 6,

which are the ones associated to the two known forms of Asymptotic Bethe Ansatz. The Q

functions will have the general index structure17 Q•|∗, where • and ∗ are (vector or spinor)

multi-indices carrying representations of SO(3, 3) and SO(3, 2), respectively, see section 2

for notations. Various arguments, and in particular the weak coupling analysis, suggest

that Q functions of types PA and QI carry Bethe roots associated to the first node of the

two diagrams, while the Q functions Qa|i, Q
a
|i should be linked to the nodes corresponding

to the spinorial representations, see figures 5, 6. The main task of this section is to complete

the picture by constructing Q functions and functional relations associated to the remaining

nodes. In analogy with the Q-system of [17], and in contrast to the case of standard Lie alge-

bras, for every node of the diagram one may define equations of two basic types — fermionic

or bosonic. This feature of supersymmetric Q-systems is known to be related to the exis-

tence of different gradings of the Dynkin diagram. Choosing different chains of Q functions,

we will recover different sets of exact Bethe equations. Finally, as a non-trivial check of the

construction, we will recover the two forms of the ABA equations in the large volume limit.

7.1 Construction of the Q-system

First step: identifying QA|I . We start the construction by some guesswork. From the

form of the Bethe Ansatz, and taking inspiration from [17], it is natural to expect that one

of the functional relations should read:

F1 : Q+
A|I −Q

−
A|I = PA QI . (7.1)

17Notice that also the Q functions PA and QI fit this pattern and we could identify them with PA ≡ QA|∅,
QI ≡ Q∅|I , where ∅ denotes the trivial representation.
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Figure 6. Chain of Q functions corresponding to the η = −1 grading of the Bethe Ansatz.

We have marked this equation with the symbol F1 to point out that it is a fermionic-type

Q-system relation, based at the first node of the Dynkin diagram. This equation might

be taken as a non-local definition of the 6 × 5 matrix18 QA|I . However, this new type of

Q functions can also be expressed as an explicit, local combination of the building blocks

Qa|i, Q
a
|i, through the following quadratic combinations:

Qab|ij = Qa|iQb|j −Qa|j Qb|i = det

(
Qa|i Qa|j
Qb|i Qb|j

)
, (7.2)

namely, the 2 × 2 minors of the 4 × 4 matrix
{
Qa|i

}
. Notice that Qab|ij is antisymmetric

in both (ab) and (ij), and therefore has 6 × 6 independent components. To match the

6 × 5 components of QA|I we need of course to project the (ij) indices on the vector

representation. The correct identification, which will be important for the derivation of

the rest of the Q-system, is simply:

QA|I ≡ −
1

4
Qab|ij σ̄

ab
A Σ̄ij

I . (7.3)

We will show below that this definition implies the validity of (7.1).

One could also consider the complementary projection on the singlet representation

for the (ij) indices, and define:

QA|◦ = −1

4
Qab|ij κ

ij σ̄abA . (7.4)

However, it turns out that all Q functions carrying the singlet representation of SO(3, 2),

such as QA|◦ and Q◦, drop out of the functional relations needed for the derivation of exact

Bethe equations. It would be interesting to understand from the algebraic point of view

whether they should be considered as part of the Q-system.

18Notice that we are denoting Q functions carrying capital indices such as A ∈ {1, . . . , 6} or I ∈ {1, . . . , 5}
with the calligraphic font Q in order to avoid possible confusion with Qa|i when the indices take some

concrete value. So, for example, notice that Q1|2 6= Q1|2!
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7.1.1 Q-system relations for the nodes 1, 2, 3

To prove the validity of (7.1), we start by rewriting the constraint Pf(Pab) = 1 as:

Pab Pcd −Pcb Pad −Pac Pbd = εabcd, (7.5)

where εabcd denotes the completely antisymmetric Levi-Civita tensor. Using this identity,

it is immediate to prove that19

Q+
a| [i Q

+
b| j] = Paa1 Pbb1

(
Qa1

| [i Q
b1
|j ]

)−
(7.6)

=
1

2
εaa1bb1

(
Qa1

| [ iQ
b1
|j ]

)−
+

1

2
Pab

(
Pa1b1(Qa1

|[ i)
− (Qb1|j ])

−
)
,

and, inserting (4.14), we obtain

Q+
ab|ij +

1

2
εabcd (Qcd|ij)

− = −Pab

(
Qij +

κij
2

Q◦

)
. (7.7)

Projecting on vector indices as in (7.3) and taking into account simple algebraic identities

(see (B.24)), (7.7) yields precisely the fermionic equation (7.1):

F1 : Q+
A|I −Q

−
A|I = PA QI . (7.8)

For completeness, we report also the identity obtained by tracing over (ij):

Q+
A|◦ +Q−A|◦ =

1

2
PA Q◦. (7.9)

As anticipated, (7.9) is apparently decoupled from the rest of the Q-system and will not

play a role in the following considerations. Bosonic-type Q-system relations for the first

node can be introduced straightforwardly. They take the standard form:

B1 : P+
A P−B −P−A P+

B = QAB|∅, (7.10)

B1∗ : Q+
I Q−J −Q−I Q−J = Q∅|IJ , (7.11)

which can be interpreted as definitions of the new two-index objects QAB|∅ and Q∅|IJ .

These Q functions do not sit on the diagrams in figures 5, 6, but appear in other choices

of gradings, such as the distinguished one (see discussion below).

The construction of functional relations for the second and third nodes is standard and

follows the usual fusion rules, cf [17]. In particular, associated to the third node we define

the Q functions

QA|IJ ≡ QI Q−A|J −QJ Q−A|I = QI Q+
A|J −QJ Q+

A|I , (7.12)

QAB|I ≡ PAQ−B|I −PB Q−A|I = PAQ+
B|I −PB Q+

A|I , (7.13)

which satisfy bosonic-type relations for the second node:

B2 : QA|IJ PA = Q+
A|I Q

−
A|J −Q

+
A|J Q

−
A|I , (7.14)

B2∗ : QAB|I QI = Q+
A|I Q

−
B|I −Q

+
B|I Q

−
A|I . (7.15)

19We are using the standard notation [ , ] for the antisymmetrization of indices, e.g. H[i ,j] ≡ Hij −Hji.
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Using equation F1 (7.8), we can also straightforwardly establish the following fermionic-

type functional relations for the second node:

F2 : QA|I QAB = Q+
AB|I P−A −P+

AQ
−
AB|I , (7.16)

F2∗ : QA|I QIJ = Q+
A|IJ Q−I −Q+

I Q
−
A|IJ . (7.17)

Now let us derive the relations centered around the third node. Using (7.12)–(7.13), it is

simple to obtain the bosonic-type equations

B3 : QAB|IJ QAB|∅ = Q+
AB|I Q

−
AB|J −Q

−
AB|I Q

+
AB|J , (7.18)

B3∗ : QAB|IJ Q∅|IJ = Q+
A|IJ Q

−
B|IJ −Q

−
A|IJ Q

+
B|IJ , (7.19)

while the definitions (7.12), (7.13) and relation (7.8), imply the validity of the fermionic

identity

F3 : QA|IJ QAB|I = Q+
AB|IJ Q

−
A|I −Q

−
AB|IJ Q

+
A|I , (7.20)

where

QAB|IJ ≡ QA|I QB|J −QB|I QA|J . (7.21)

As we may expect from the Dynkin diagram, the newly defined object in (7.21) represents

the fusion of the spinorial Q functions Qa|i and Qa|i. Indeed, let us prove that it can be

rewritten as:

QAB|IJ = (σAB)ba Q
a
|iQb|j Σij

IJ , (7.22)

where Σij
IJ ≡

1
2 (Σ̄I κ Σ̄J − Σ̄J κ Σ̄I)

ij . This equation will be crucial for the derivation of

closed sets of exact Bethe equations. To derive (7.22), start from the definition of QA|I
in (7.3) and rewrite (7.21) as

QAB|IJ =
1

4

(
Qa|iQ

b
|j Qc|kQd|l

) (
(σA)ab (σ̄B)cd − (σB)ab (σ̄A)cd

)
Σ̄ij
I Σ̄kl

J . (7.23)

Using formula (B.8) for the commutator of sigma matrices appearing in (7.23), we find

QAB|IJ =
(
Qa|iQc|k (σAB) ca

)
Σ̄ij
I

(
Qb|j Qb|l

)
Σ̄kl
J =

(
Qa|iQc|k (σAB) ca

)
Σ̄ij
I κjl Σ̄

lk
J

=
(
Qa|iQc|k (σAB) ca

)
Σ̄ik
IJ , (7.24)

where, in the last step, we have used the anti-symmetry in (IJ) of the whole expression by

definition of QAB|IJ .

7.1.2 Q-system relations for the nodes 4 and 4̄

Let us now derive the functional relations centered at the spinor nodes. The two bosonic

Q-system equations (centered at nodes 4 and 4̄, respectively) are:

B4 : (σ̄A)ab
(
Q+
a|i Q

−
b|j

)
(ΣIJ)ij = QA|IJ , (7.25)

B4̄ : (σA)ab

(
(Qa|i)

+ (Qb|j)
−
)

(ΣIJ)ij = QA|IJ , (7.26)
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while the fermionic-type relations, which cross the two spinor nodes, read

F4 : (σAB) ba

(
(Qa|i)

+ Q−b|j

)
(Σ̄I)

ij = QAB|I , (7.27)

F4̄ : (σAB) ba

(
(Qa|i)

− Q+
b|j

)
(Σ̄I)

ij = QAB|I . (7.28)

To prove (7.25), start from the combination(
Q+
a|i Q

−
b|j −Q

+
b|i Q

−
a|j

)
(ΣIJ)ij . (7.29)

Using (4.15), (4.14), (4.11), we can eliminate all positive shifts through

Q+
a|i =

1

4
Q−a|i Q◦ +Q−a|m

(
κml QI ΣI

li

)
, (7.30)

and we find:20(
Q+
a|i Q

−
b|j −Q

+
b|i Q

−
a|j

)
(ΣIJ)ij = Q−ab|mj

(
κml QK ΣK

li

)
(ΣIJ)ij (7.31)

=
1

2
Q−ab|mj

(
QI (Σ̄J)mj −QJ (Σ̄I)

mj
)

= Q−ab|I QJ −Q−ab|J QI , (7.32)

where we have used identity (B.11) to simplify the product of Σ matrices in (7.31). Con-

tracting with (σ̄A)ab and comparing with (7.12) yields (7.25). Similarly, to prove (7.27),

we consider (
(Qa|i)

+ Q−b|j − (Qa|j)
+ Q−b|i

)
(σAB) ba , (7.33)

and replace all Q functions with positive shifts using (Qa|i)
+ = Paa1 Q−a1|i:(

(Qa|i)
+ Q−b|j − (Qa|j)

+ Q−b|i

)
(σAB) ba = −Q−a1b|ij Pa1a (σAB) ba (7.34)

=
1

2
Q−a1b|ij (σ̄C σA σ̄B − σ̄C σB σ̄A)a1b PC

= −PA Q
−
B|ij + PB Q−A|ij = −QAB|ij ,

where we have used (3.10) in the second equality and identity (B.4) in the third. Finally,

projecting on the vector component out of the antisymmetric indices (ij), we get (7.27).

7.2 Exact Bethe equations

Let us now show how to obtain exact Bethe equations for the zeros of Q functions. We will

obtain equations formally identical to the various versions of 2-loop Bethe Ansatz proposed

in [29], based on the underlying OSp(4|6) symmetry, with the important difference that,

at finite coupling, Q functions are nontrivial functions of the spectral parameter living on

infinitely many sheets (and, in general, with infinitely many zeros). In the weak coupling

limit, the branch cuts shrink to zero size and are usually replaced by poles. However,

20Notice that the terms proportional to Q◦ cancel out of the equation due to the symmetry (ΣIJ)ij =

(ΣIJ)ji, see appendix B.
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for particular choices of indices the Q functions reduce to polynomials at weak coupling,

and the exact equations discussed here reduce to the 2-loop Bethe Ansatz of [29]. This is

discussed in detail in appendix D.

To derive a version of the Bethe Ansatz related to the η = 1 grading of the Dynkin

diagram, we need to consider a chain of functional relations made of equations of type

F1 (7.8), B2 (7.14) and F3 (7.20) for the first, second and third nodes respectively, and

B4 (7.25) and B4̄ (7.26) for the nodes at the bifurcation. For concreteness, let us make a

specific choice of indices, and consider the following sequence of Q-system relations

F1 : Q+
2|2 −Q

−
2|2 = P2 Q2, (7.35)

B2 : Q+
2|1Q

−
2|2 −Q

+
2|2Q

−
2|1 = Q2|12 P2, (7.36)

F3 : (Q1|1Q
4
|1)+ Q−2|2 − (Q1|1Q

4
|1)− Q+

2|2 = Q12|2Q2|12, (7.37)

B4 : (Q1|1)+Q−3|1 − (Q3|1)+Q−1|1 = Q2|12, (7.38)

B4̄ : (Q4
|1)+ (Q2

|1)− − (Q2
|1)+ (Q4

|1)− = Q2|12, (7.39)

where we used (7.22) to evaluate

Q12|12 = Q1|1Q
4
|1. (7.40)

Relations (7.35)–(7.39), supplemented with the requirement that no Q functions have poles,

imply a set of exact BA equations for the zeros of the Q functions

P2, Q2|2, Q2|12, Q1|1, Q4
|1. (7.41)

Let us denote the zeros of these functions as {us,k}, with s = 1, 2, 3, 4, 4̄, respectively (where

the index k runs over different zeros of a given Q function).

Taking the ratio of (7.38) evaluated at points u4,k + i/2 and u4,k − i/2, where u4,k is

a generic zero of Q1|1, gives the massive node Bethe equation

− 1 =
Q++

1|1

Q−−1|1

Q−2|12

Q+
2|12

∣∣∣∣∣
u4,k

, with Q1|1(u4,k) = 0, (7.42)

and similarly from (7.39) one gets

− 1 =
Q4|++

|1

Q4|−−|1

Q−2|12

Q+
2|12

∣∣∣∣∣
u4,k

, with Q4
|1(u4̄,k) = 0. (7.43)

Auxiliary equations for the fermionic nodes are obtained simply by evaluating (7.35)

and (7.37) at the respective zeros u1,k and u3,k of their rhs:

1 =
Q−2|2
Q+

2|2

∣∣∣∣∣
u1,k

, with P2(u1,k) = 0, (7.44)

1 =
Q+

1|1

Q−1|1

Q4|+|1
Q4|−|1

Q−2|2
Q+

2|2

∣∣∣∣∣
u3,k

, with Q2|12(u3,k) = 0, (7.45)
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while the Bethe equation for the second node is obtained by taking the ratio of (7.36)

computed at u2,k + i/2 and u2,k − i/2:

− 1 =
Q−−2|2

Q++
2|2

Q+
2|12

Q−2|12

P+
2

P−2

∣∣∣∣∣
u2,k

, with Q2|2(u2,k) = 0. (7.46)

In section 7.3, we will show that in the large volume limit these equations reduce to the

η = 1 form of the ABA [35]. We can describe an alternative grading by using relation

B2∗ (7.15) instead of B2 for the second node and the fermionic-type equations (7.27), (7.28)

for the nodes 4 and 4̄. Consider for example the chain of Q functions

Q2, Q2|2, Q12|2, Q1|1, Q4
|1, (7.47)

connected by the Q-system relations

F1 : Q+
2|2 −Q

−
2|2 = P2 Q2, (7.48)

B2∗ : Q+
1|2Q

−
2|2 −Q

+
2|2Q

−
1|2 = Q12|2 Q2, (7.49)

F3 : (Q1|1Q
4
|1)+ Q−2|2 − (Q1|1Q

4
|1)− Q+

2|2 = Q12|2Q2|12, (7.50)

F4 : (Q4
|1)+Q−1|3 − (Q4

|3)+Q−1|1 = Q12|2, (7.51)

F4̄ : (Q4
|1)−Q+

1|3 − (Q4
|3)−Q+

1|1 = Q12|2. (7.52)

Using the pole-free condition, they straightforwardly lead to exact BA equations corre-

sponding to the Dynkin diagram of figure 6:

1 =
Q4|++

|1

Q4|−−|1

Q−12|2

Q+
12|2

∣∣∣∣∣
u4,k

, with Q1|1(u4,k) = 0, (7.53)

1 =
Q++

1|1

Q−−1|1

Q−12|2

Q+
12|2

∣∣∣∣∣
u4̄,k

, with Q4
|1(u4̄,k) = 0, (7.54)

1 =
Q+

1|1

Q−1|1

Q4|+|1
Q4|−|1

Q−2|2
Q+

2|2

∣∣∣∣∣
u3̃,k

, with Q12|1(u3̃,k) = 0, (7.55)

−1 =
Q−−2|2

Q++
2|2

Q+
12|2

Q−12|2

Q+
2

Q−2

∣∣∣∣∣
u2,k

, with Q2|2(u2,k) = 0, (7.56)

1 =
Q−2|2
Q+

2|2

∣∣∣∣∣
u1̃,k

, with Q2(u1̃,k) = 0. (7.57)

The main difference with respect to the derivation in the η = +1 case concerns the equations

for the momentum-carrying nodes: for instance, (7.53) is obtained by taking the ratio of

equation (7.51) evaluated at u4,k + i/2 and equation (7.52) at u4,k − i/2. As shown in the

next section 7.3, equations (7.53)–(7.57) reduce to the η = −1 version of the ABA of [35]

in the large-L limit.
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We may also consider subsets of Q functions whose zeros satisfy exact Bethe equations

related to the so-called “distinguished” grading of the Dynkin diagram. An example of

such a chain is:

Q2, Q∅|12, Q2|12, Q1|1, Q4
|1. (7.58)

The Bethe equations associated to the momentum-carrying nodes are (7.42), (7.43). To

constrain the remaining Q functions, we may use B1∗ (7.11), F2∗ (7.17) and B3∗ (7.19) with

indices A, I = 1; B, J = 2. Employing standard arguments, we find the Bethe equations:

−1 =
Q+
∅|12

Q−∅|12

Q−−2

Q++
2

∣∣∣∣∣
u1̃,k

, with Q2(u1̃,k) = 0, (7.59)

1 =
Q+

2|12

Q−2|12

Q−2
Q+

2

∣∣∣∣∣
ud2,k

, with Q∅|12(ud2,k) = 0, (7.60)

−1 =
Q++

2|12

Q−−2|12

(Q1|1Q
4
|1)−

(Q1|1Q
4
|1)+

Q−∅|12

Q+
∅|12

∣∣∣∣∣
u3,k

, with Q2|12(u3,k) = 0. (7.61)

At the leading weak coupling order these equations reduce to one of the variants of the

2-loop Bethe Ansatz of [29]. However, it is well known that this grading is impractical when

considering the large-volume limit and does not lead to simple Asymptotic Bethe equations.

7.3 The ABA limit

Let us now argue that in the large volume limit a subset of Q functions — in particular,

the ones appearing in the chains (7.41) and (7.47) — reduces to a simple explicit form

parametrized by a finite set of Bethe roots living on two sheets only. The exact BA

equations (7.42)–(7.46) and (7.53)–(7.57) will then be shown to reproduce the Asymptotic

Bethe Ansatz of [35]. The following argument is very similar to the one presented in [17].

The main origin of the simplification occurring in the large volume limit is that some of the

Q functions vanish at an exponential rate at large L. To keep track of the scaling of different

quantities with L, we can rely heuristically on the asymptotics discussed in section 5.

From (5.5), (5.6), we see that the charges scale as ∆, J1, J2 ∼ L, while S, J3 ∼ O(1) at

large L, from which we get for example that

νa ∼ (1, 1/ε, 1/ε, 1/ε2), νa ∼ (1/ε2, 1/ε, 1/ε, 1), (7.62)

where ε ∼ u−L represents a quantity exponentially suppressed in L. Similarly, we have

Qa|i ∼


1 ε ε ε2

1/ε 1 1 ε

1/ε 1 1 ε

1/ε2 1/ε 1/ε 1

 , Qa|i ∼


1 1/ε 1/ε 1/ε2

ε 1 1 1/ε

ε 1 1 1/ε

ε2 ε ε 1

 , (7.63)

P1,P2 ∼ ε, P3,P4 ∼ 1/ε, P5,P6 ∼ 1, (7.64)

Q1,Q2 ∼ 1/ε, Q3,Q4 ∼ ε, Q5,Q◦ ∼ 1. (7.65)
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Moreover, since the functions τi(u) approach constants at large u, we deduce that they

scale as O(1) in the large volume limit. Using this information, we obtain some simplified

relations. Let us list the ones most relevant for the derivation of the ABA. First, from the

scaling (7.63) we find that (4.31) reduces to:

νa ' Q−a|1 τ
1, νa ' (Qa|4)− τ4. (7.66)

Second, from (3.12) we find, for α = 1, 2,

P̃α ∼ (σ̄α)ab ν̃a νb ∼ (σ̄α)ab (Q+
a|1Q

−
b|1) τ1 τ4 = Qα|12 ω

12, (7.67)

where we used also the identity (7.25) in the last step, and we recall that ω12 = τ1 τ4.

Similarly, in the large volume limit we have

µ12 ' Q−12|12 ω
12. (7.68)

Finally, it will be useful to consider the relation between Q functions analytic in the up-

per/lower half plane, which simplifies in the large volume limit. In particular, we have

(QLHPA
a|i )− ' Q−a|1

(
δ1
i − τ1 τi

)
, (7.69)

from which we see that equation (7.67) can be rewritten as

P̃α ∼ (σ̄α)ab (QLHPA
a|4 )+ (QLHPA

b|4 )−
1

ω12
=
QLHPA
α|34

ω12
. (7.70)

Computing µ12, ω12 and Q12|12. The first part of the argument is essentialy the same

as in [17]. We shall assume that ν1 and ν4 have each a finite number of zeros on the first

sheet in physical kinematics, which we denote as {u4,j}K4

j=1,
{
u4̄,j

}K4̄

j=1
respectively. We

start by defining

F 2 ≡ µ12

µ̃12

∏
s=4,4̄

Q+
s

Q−s
, (7.71)

where we remind the reader that µ12 = ν1 ν
4 and

Q4 =

K4∏
j=1

(u− u4,j) , Q4̄ =

K4̄∏
j=1

(
u− u4̄,j

)
. (7.72)

We will be concentrating on the case of real charges, so that we can take these Baxter

polynomials to be real. The function F (u) defined above is manifestly free of poles on the

first sheet. Further, we can show that it has only a single branch cut. Indeeed, using (7.66),

we can rewrite this quantity as

F 2 =
Q−12|12

Q+
12|12

∏
s=4,4̄

Q+
s

Q−s
, (7.73)

where the contribution of ω12 cancels due to its i-periodicity. The expression (7.73) shows

that, within this approximation, F 2 is built out of quantities that have manifestly no cuts
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in the upper half plane. On the other hand, using (7.69) we see that F 2 could equivalently

be rewritten in terms of LHPA Q functions only. We therefore conclude that it must have

no singularities apart from a short branch cut running on the real axis. The discontinuity

across the latter can be determined from equation (7.71), and reads

FF̃ =
∏
s=4,4̄

Q+
s

Q−s
. (7.74)

Besides, from (7.73) we deduce that F (u)→ 1 as u→∞. Supplementing equation (7.74)

with the large-u behaviour F (u) ∼ u0 already fixes this function in terms of the Bethe

roots (but for a sign):

F = ±
∏
s=4,4̄

Bs(+)

Bs(−)
, (7.75)

where

Bs(±)(u) =

Ks∏
j=1

√
h

x∓s,j

(
1

x(u)
− x∓s,j

)
, x∓s,k = x(us,k ∓ i/2), (7.76)

Rs(±)(u) = B̃s(±)(u) =

Ks∏
j=1

√
h

x∓s,j

(
x(u)− x∓s,j

)
. (7.77)

Plugging (7.75) into (7.73), we can now solve for Q−12|12. Imposing the correct analyticity

in the upper half plane, we find

Q12|12 = Q1|1Q
4
|1 ∝

∏
s=4,4̄

Qs (f [+]
s )2, (7.78)

where the functions f4(u), f4̄(u) are defined as solutions of the difference equations

fs

f
[+2]
s

=
Bs(+)

Bs(−)
, (7.79)

analytic in the upper half plane and with power-like asymptotics. Apart for an overall

factor, they are uniquely fixed by the following integral representation:

fs(u) ∝ exp

(
−
∫ 2h

−2h

dz

2πi
log

Bs(+)(z)Rs(−)(z)

Rs(+)(z)Bs(−)(z)
∂z log Γ(i(z − u))

)
. (7.80)

Finally, one can determine µ12 imposing that it has the right discontinuity given by (7.71)

and that it satisfies µ12 ' Q−12|12 ω
12, where ω12 should be an i-periodic function. The

result is

µ12 = ν1ν
4 ∝

∏
s=4,4̄

fs f̄
[−2]
s Q−s , ω12 = τ1 τ4 ∝

∏
s=4,4̄

f̄
[−2]
s

fs
. (7.81)

Indeed, one can easily verify that ω12 in (7.81) is i-periodic due to the reality of the set of

Bethe roots.
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Zero momentum condition and anomalous dimension. Already at this stage, we

can prove that the zero momentum condition (3.15) is contained in the QSC equations.

Indeed, from (7.81) we have:

µ̃12

µ12
=
∏
s=4,4̄

Rs(+)Bs(−)

Bs(+)Rs(−)
, (7.82)

in the ABA limit. Due to the mirror i-periodicity of µ12, the l.h.s. of (7.82) should approach

1 at large u. Expanding the rhs, we findK4∏
j=1

x+
4,j

x−4,j

 K4̄∏
j=1

x+
4̄,j

x−
4̄,j

 = 1, (7.83)

which coincides with the zero-momentum condition (3.15) taking into account the relation

between rapidity and momentum p4,j = −i log(x+
4,j/x

−
4,j), p4̄,j = −i log(x+

4̄,j
/x−

4̄,j
). The

next order in the large-u expansion can be compared with the asymptotics (5.7)–(5.8), and

fixes the ABA limit of the anomalous dimension:

γ = 2hi

K4∑
j=1

(
1

x+
4,j

− 1

x−4,j

)
+ 2hi

K4̄∑
j=1

(
1

x+
4̄,j

− 1

x−
4̄,j

)
. (7.84)

Computing ν1, ν4. We now notice that the ratio between Q1|1 and Q4
|1 must be, in the

large-L limit, a meromorphic function without branch cuts. Indeed, equation (7.69) shows

that

Q1|1/Q
4
|1 ' Q

LHPA
1|1 /(Q4

|1)LHPA. (7.85)

Taken together, the regions of analyticity of the two sides of (7.85) cover all the complex

plane, showing that this ratio indeed has no cuts. Therefore, Q1|1/Q
4
|1 must be a rational

function of u. Combined with (7.78), this shows that

Q1|1 ∝ Q4 f
+
4 f+

4̄
, Q4

|1 ∝ Q4̄ f
+
4 f+

4̄
. (7.86)

Let us now introduce the following parametrization

ν1 ∝ Q−4

 ∏
s=4,4̄

fs f̄
[−2]
s

 1
2

F e−iP/2, ν4 ∝ Q−
4̄

 ∏
s=4,4̄

fs f̄
[−2]
s

 1
2

F−1 e+iP/2, (7.87)

for some function F which should be free of zeros on the first sheet. The factors e±iP/2 ,

with P defined in (3.8), have been introduced for future convenience. To fix the form of

the splitting factor F we should enforce the properties ν̃1 = eiP ν
[+2]
1 , (τ1)[+2] = −e−iP τ4,

and using (7.66), (7.86) we obtain the conditions

F [+2] = F−1, FF̃ =

(
Q+

4

Q−4

Q−
4̄

Q+
4̄

) 1
2

eiP . (7.88)
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The solution of the constraints (7.88) may be found in terms of an integral representation:21

logF(u)=
√
e2πu−e4πh

√
e2πu−e−4πh

∫ 2h

−2h

log(
Q+

4 (z)

Q−4 (z)

Q−
4̄

(z)

Q+
4̄

(z)
e2iP)eπ(u+z)√

(e2πz−e4πh)(e2πz−e−4πh)(e2πz−e2πu)

dz

2i
.

(7.89)

We should also impose that logF(u) has the correct bounded asymptotic behaviour as

u→ +∞, which leads to the condition

P = − 1

4π E(h)

∫ 2h

−2h

log(
Q+

4 (z)

Q−4 (z)

Q−
4̄

(z)

Q+
4̄

(z)
) eπz√

(e2πz − e4πh) (e2πz − e−4πh)
dz, (7.90)

where

E(h) ≡ − 1

2πi

∫ 2h

−2h

dz eπz√
(e2πz − e4πh) (e2πz − e−4πh)

. (7.91)

Expanding (7.90) for small h, we see that it confirms the identification (3.18) up to or-

der O(h2). Indeed, notice that the ABA expression for the total momentum of a single

excitation species is given by:

P
(4)
ABA =

1

2
(P

(4)
ABA − P

(4̄)
ABA) =

1

2

 K4∑
i=1

pABA
4,i −

K4̄∑
i=1

pABA
4̄,i



= − i
2

 K4∑
i=1

log
x+

4,i

x−4,i
−

K4̄∑
i=1

log
x+

4̄,i

x−
4̄,i

 =
1

2πi

∫ 2h

−2h

log

(
Q+

4 (z)

Q−4 (z)

Q−
4̄

(z)

Q+
4̄

(z)

)
√

4h2 − z2
dz,

which agrees with the r.h.s. of (7.90) at the first two orders at weak coupling. Further,

one can verify that the lowest transcendentality part of (7.90), seen as a function of the

positions of the Bethe roots, exactly agrees with P
(4)
ABA.

As already discussed in section 3.3, (7.90) is expected to hold only in the large-L

limit, or at the first ∼ L orders at weak coupling. A general exact integral formula for P,

expressed in terms of quantities computable form the numerical solution of the QSC, can

be found in appendix F.

Computing Pα, Qα|12 andQα|β. Let us now derive the ABA limit of Pα, with α = 1, 2

(again, we follow [17] closely). Apart for an irrelevant factor, we define two functions σ4,

σ4̄ through

σs σ̃s ∝ f̄ [−2]
s f [+2]

s , s = 4, 4̄, (7.92)

with the requirement that they have a single short cut connecting ±2h and no other

singularities on their defining sheet, and are bounded at infinity. Notice that equation (7.92)

can be recognized as one of the crossing equations, and in particular σ4, σ4̄ are simply

related to the Beisert-Eden-Staudacher dressing factor [8] as in:

σ+
s (u)/σ−s (u) =

Ks∏
j=1

σBES(u, us,j), s = 4, 4̄. (7.93)

21A detailed derivation of essentially the same formula is given in another context in [45].
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Let us consider the quantity Pα/(σ4 σ4̄), which by construction has a Laurent series expan-

sion in 1/x(u). Using (7.67), (7.78), we see that, on the second sheet, it may be written as

P̃α/(σ̃4 σ̃4̄) ∼ Qα|12 ω
12/(σ̃4 σ̃4̄) ∝ Qα|12

∏
s=4,4̄

σs/(fs f
[+2]
s ), (7.94)

which has no cuts in the upper half plane, or alternatively from (7.70) as

P̃α/(σ̃4 σ̃4̄) ∝ QLHPA
α|34

∏
s=4,4̄

σs/(f̄s f̄
[−2]
s ), (7.95)

which has no cuts in the lower half plane. Hence, we find that Pα/(σ4 σ4̄) must have a

single cut also on the second sheet. Therefore, it is a two-sheeted function with power-like

asymptotics everywhere, which implies that it can be written as a rational function in the

Zhukovsky variable x(u). Moreover, this function cannot have any poles at finite u. All

these constraints fix

Pα ∝ x−LBα|12Rα|∅ σ4 σ4̄, α = 1, 2, (7.96)

where the x−L prefactor is fixed by the large-u asymptotics (5.1), and the factors Rα|∅(u)

and Bα|12(u) denote generic polynomials in x(u) and 1/x(u), respectively. By consistency

with (7.67), we then find:

Qα|12 ∝ x+LRα|12Bα|∅
∏
s=4,4̄

fs f
++
s /σs , α = 1, 2 , (7.97)

where Rα|12(u) = B̃α|12(u) and Bα|∅(u) = R̃α|∅(u) are obtained through analytic continu-

ation, which sends x(u) → 1/x(u). At this stage, we have computed four of the functions

entering the chain (7.41); to complete the picture we still need to compute the Q functions

corresponding to the second node. We start from relation

Q−1b|1j = (QLHPA
1b|1j )−

(
1− τ1τ1

)
, ∀b, j, (7.98)

which is a consequence of (7.69), and implies that ratios of the form22

Qα|β/Qα′|β′ = QLHPA
α|β /QLHPA

α′|β′ , α, β, α′, β′ ∈ {1, 2} , (7.99)

have no cuts and are therefore ratios of polynomials. We have therefore a parametrization

Qα|β = Qα|β f
+
4 f+

4̄
, α, β ∈ {1, 2} , (7.100)

where Qα|β is a polynomial function of u, and the f4 f4̄ factor was fixed by comparison

with (7.78).

22Notice the restriction of the indices to the set {1, 2}. This ensures that the ratios in (7.99) are of order

O(1) for large L, which is a prerequisite condition for obtaining nontrivial information in the asymptotic

limit.

– 39 –



J
H
E
P
0
9
(
2
0
1
7
)
1
4
0

Asymptotic Bethe ansatz in η = +1 grading. Generalizing the arguments of sec-

tion 7.2, we see that the Q functions

Pα, Qα|β , Qα|12, Q1|1, Q4
|1, (7.101)

for any choice of α, β ∈ {1, 2}, satisfy exact Bethe equations of the form (7.42)–(7.45).

Using (7.86), (7.96), (7.97), (7.100), it is straightforward to verify that, in the large volume

limit, these Bethe equations reduce precisely to the ABA of [35] in η = +1 grading (see ap-

pendix E). In each of these four equivalent sets of ABA equations, the role of roots of types

1,2,3, is played by the zeros of the following polynomials in u: Qα|∅(u) = Rα|∅(u)Bα|∅(u),

Qα|β(u), Qα|12(u) = Rα|12(u)Bα|12(u), respectively. With our conventions for the ordering

of asymptotics, the chain of Q functions with α = β = 2 in (7.101) gives the simplest

representation of the state, since it contains the least number of Bethe roots on each node.

Computing Q1 and Q2. The large volume limit of Qβ with β = 1, 2, may be computed

from the Q-system relation F1, namely:

Pα Qβ = Q+
α|β −Q

−
α|β , (7.102)

for α, β ∈ {1, 2}. Similarly, Q12|β may be determined from the F3 equation:

Qα|12Q12|β = (Q1|1Q
4
|1)+Q−α|β − (Q1|1Q

4
|1)−Q+

α|β . (7.103)

Using the large-L expressions (7.96), (7.97) and (7.100), these relations yield

Qα ∝ xLR∅|αB12|α
∏
s=4,4̄

f++
s

Bs(−) σs
, Q12|α ∝ x−LB∅|αR12|α

∏
s=4,4̄

σs f
++
s Bs(+), (7.104)

where the functions R∅|α and R12|α (B∅|α and B12|α, respectively) are polynomials in x(u)

(1/x(u)) defined by

Rα|∅R∅|β B12|β Bα|12 ∝
(
Q+
α|β B4(−)B4̄(−) −Q−α|β B4(+)B4̄(+)

)
, (7.105)

Bα|∅B∅|β R12|β Rα|12 ∝
(
Q+
α|β R4(−)R4̄(−) −Q−α|β R4(+)R4̄(+)

)
. (7.106)

Notice that the fact that the newly defined R and B functions have no poles is a conse-

quence of the ABA. Equations (7.106)–(7.106) are the well-known fermionic duality rela-

tions, which allow to switch between the η = ±1 versions of the ABA, see section E.2.

Using (7.86), (7.100), (7.96), (7.104), we may indeed check that the exact Bethe Ansatz

satisfied by the chains of Q functions

Qβ , Qα|β , Q12|β , Q1|1, Q4
|1, (7.107)

which in particular involves the fermionic form of the massive node equations, (7.53), (7.54),

reduce precisely to the η = −1 ABA equations.
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Classical limit from the large-volume solution. Let us briefly discuss how the large

volume solution can be used to obtain the semi-classical approximation (5.17)–(5.21) (here,

we follow closely section 6 of [17]). To this end, we exploit the important fact that the

classical spectral curve emerges from a continuum limit of solutions of the ABA, where the

length and the number of Bethe roots scale with the coupling as L ∼ Ks ∼ h → ∞, and

the roots condense on a finite number of contours in the x-plane; the quasi-momenta are

explicitly parametrized in terms of the root densities [64–66]. The ABJM case is discussed

in detail in [35].

Following [17], we will study this limit starting from the large-volume identity

P+
2 (u)

P−2 (u)
'
(
x−(u)

x+(u)

)L R+
2|∅(u)B+

2|12(u)

R−2|∅(u)B−2|12(u)

σ+
4 (u)σ+

4̄
(u)

σ−4 (u)σ−
4̄

(u)
. (7.108)

At strong coupling, the natural variable is z = u/h. Sending u ∼ h → ∞ with z finite,

the l.h.s. of (7.108) can be approximated as i∂z log P2/h. To treat the r.h.s. we use x± ∼
x ± ix2/(x2 − 1)/h, and the strong coupling limit of the dressing factor described by the

AFS phase [66]. Introducing the resolvents Hs(x) =
∑Ks

j=1
x2

h(x−xs,j) (x2−1)
, which remain

finite in the classical limit, we find

i∂z log P2/h ∼ −i
L/h x− 2πm

(x2 − 1)
+ i (H1(x) +H3(1/x)−H4(1/x)−H4̄(1/x)) +O(1/h),

(7.109)

where m ∈ Z is same integer appearing in (5.22), related to the total momentum 2πm ≡
P

(4)
ABA+P

(4̄)
ABA, and we are labelling the roots appearing in (7.108) as u(2|∅),j ≡ u1,j , u(2|12),j ≡

u3,j according to their role as solutions of the ABA in η = 1 grading. Comparing with [35],

we see that the r.h.s. of (7.109) is one of the quasi-momenta. Therefore we have

i∂z log P2/h ∼ −iq3(x) +O(1/h), (7.110)

which establishes one of the relations in (5.21).

The above reasoning can be repeated for the other Q functions that we have determined

in the large-volume limit, such as P1, Q1 and Q2, and confirms the corresponding semi-

classical approximations in (5.21). As a technical comment, we point out that each of these

functions is parametrized in terms of a different equivalent set of auxiliary Bethe roots;

however, using duality equations such as (7.105), (7.106), it is straightforward to convert

all classical expressions in terms of the same solution of the ABA, so that they can be

compared with the resolvent expressions e.g. in [35]. Indeed, it is well-known that duality

transformations in the ABA simply amount to a relabelling of the sheets of the classical

curve (see [65, 67]).

Finally, let us briefly discuss the proof of the semi-classical limit of P5 (the case of P6

is analogous). We start from one of the equations in (3.12):

P5 = ν̃1/ν
4 −P1 ν

2/ν4 −P2 ν
3/ν4. (7.111)

In the classical limit, the last two terms on the r.h.s. of this identity are suppressed, since P1

and P2 are exponentially small and the ratios νa/νb, being i-periodic on the mirror section,
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are constants by the argument described in section 5.2. Therefore, in this limit we have23

P5 ∼ ν̃1/ν
4. (7.112)

We can now evaluate the classical scaling of the r.h.s. of (7.112) starting from its

large-volume approximation. This finally yields:

i/h ∂z log P5 ∼ i/h ∂z
(
ν̃1/ν

4
)

classical
= i/h ∂z log

(
R4(+)B4(−)

R4̄(−)B4̄(+)

)
classical

(7.113)

= i (H4(x) +H4(1/x)−H4̄(x)−H4̄(1/x)) = iq5(x). (7.114)

8 Conclusions

In this paper, besides a detailed derivation of the equations proposed in [44], we presented

several new results on the Quantum Spectral Curve associated to the AdS4/CFT3 duality,

deepening our understanding of the basic integrable structures underlying this theory.

There are many directions for future work. First of all, the results of this paper make it

possible to develop a high-precision numerical algorithm for the computation of anomalous

dimensions at finite coupling, inspired by [18]. We already have partial results [56, 68]

confirming the TBA data of [39]. The QSC method however allows us to move deeper in

the strong coupling region, and therefore to test more accurately the AdS/CFT predictions.

Secondly, we expect from the example of AdS5/CFT4 [26, 69, 70] that the QSC may

be used, with minimal modifications, to describe also various open string configurations.

In particular, it would be very interesting to find an integrable description of some kind of

generalized cusp anomalous dimension, such as the one described in [71]. This would give

a direct way to test the proposals of [44, 45] for the ABJM/ABJ interpolating functions,

by comparison with localization results for the Brehmsstrahlung function [72–75].

Third, these results should allow to extend the weak coupling algorithm of [46] to a

generic operator.

It would be very interesting to gain a complete understanding of the algebraic struc-

tures underlying our results. Especially, it would be desirable to understand the interpre-

tation of the Q-system described in section 7 in terms of representation theory of the full

supergroup OSp(4|6).

We hope that the results presented in this paper, which exhibit some interesting differ-

ences from the AdS5/CFT4 case, will also help to extend the QSC method to the integrable

examples of AdS3/CFT2 and AdS2/CFT1, see e.g. [47, 76–78]. These cases are less su-

persymmetric, and the construction may be expected to be even more complicated. It

is important to stress that, since a TBA formulation for these models is at present still

missing (and even the structure of the Asymptotic Bethe Ansatz is quite intricate and fully

23By a slightly more refined analysis, one can argue that (7.112) is not only valid classically, but also in

the large-volume limit. In fact, all terms on the r.h.s. of (7.111) scale with the same power of u at large

value of the spectral parameter, multiplied by a coefficient which can be determined in terms of the charges.

Inspecting these coefficients one finds that the last two terms on the r.h.s. are suppressed by a power of

1/L at large volume.
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known only in one case, see [79]), there is presently no way to rigorously derive the QSC for

these theories. However, the two examples at hand, AdS5/CFT4 and AdS4/CFT3, show

that the structure of the QSC is, in the end, quite universal and rigidly constrained by the

symmetry. It would be very nice if these examples could help to develop a classification of

several types of QSC corresponding to different gauge and string theories.
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A Derivation of the QSC from the analytic properties of T functions

In this appendix we present in detail the derivation of the QSC equations from the TBA/T-

system framework, which was already outlined in [44]. In particular, we will obtain the

QSC equations in the “Pµ” vector form presented in section 3.1.

A.1 Summary on the properties of T functions

Let us briefly summarize the starting point of the derivation (see [43] for more details).

The discrete Hirota equation, or T-system, is the following difference equation for a set of

T functions defined on the nodes of the “T-hook” diagram shown in figure 7:

T (+1)
a,s T (−1)

a,s =
∏

(a′∼a)l

Ta′,s +
∏

(s′∼s)↔

Ta,s′ , for s > 0, (A.1)

(Tα)
(+1)
a,0 (T β)

(−1)
a,0 = Tαa+1,0 T

β
a−1,0 + Ta,1 T

β
a,−1, α, β ∈ {I, II} , α 6= β, (A.2)

(Tα)
(+1)
a,−1(T β)

(−1)
a,−1 = Tαa+1,0 T

β
a−1,0 + Ta,1 T

β
a,−1, α, β ∈ {I, II} , α 6= β, (A.3)

where T functions with indices outside the diagram are taken to be zero and the products

in (A.1) are over horizontal (↔) and vertical (l) neighbouring nodes, with the subtlety

that, for s = 0,−1, the two wings of the diagrams need to be crossed.24 Notice that

T (n) = T (u + i
2n) denotes shifts on a specific section of the u domain where all cuts are

long, connecting ±2h + iZ to infinity. This is called the mirror section and is the one

where the Y-system and T-system are naturally defined [12]. Throughout this appendix

24This subtlety was not reported in [44] but was fully explained in [43].
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s

a

I

II
(0,1)

Figure 7. Domain of definition of the T-system (A.1)–(A.3). In our notations, T functions be-

longing to the two wings of the diagram are distinguished by the superscript α ∈ {I, II}.

we will use the special notation f (n)(u) ≡ f(u+ in/2) to denote a function shifted on this

particular sheet.

T functions are related to Y functions, the objects appearing in the TBA formulation,

by

Ya,s =

∏
(s′∼s)↔ Ta, s′∏
(a′∼a)l

Ta′,s
, s > 0, Y α

a,0 =
Ta,1 T

β
a,−1

Tαa+1,0 T
β
a−1,0

, α, β ∈ {I, II} , α 6= β. (A.4)

This parametrization is not unique: there is a vast “gauge” freedom (which we will exploit)

in choosing a set of T functions corresponding to a given solution of the TBA. In order to

furnish a complete formulation of the spectral problem, the T-system must be supplemented

by some information on its analytic dependence on the spectral parameter. As learnt in

the AdS5/CFT4 case, this extra input can be expressed in terms of discontinuity relations

for the Y (u) functions across their branch cuts in the u-plane [12], but can be simplified

and much better understood in the T-system framework [15]. In the case of AdS4/CFT3,

similar analytic constraints on the T functions were identified in [43]. They are expressed

in terms of two special gauges, denoted as T and T. The properties of the T gauge needed

in the following derivation are:

(i) Analyticity strips : denoting as An the class of functions free of branch point singular-

ities in the strip |Im(u)| < n
2 , we have

(Tα
n,0) ∈ An+1, (Tn,1) ∈ An, (Tn,2) ∈ An−1, n ∈ N, α ∈ {I, II} . (A.5)

Besides, on the leftmost edges of the diagram: Tα
n,−1 = 1.

(ii) The two functions TI
0,0, TII

0,0 are equal, and periodic on the mirror section:

(TI
0,0)(+1)(u) = (TII

0,0)(+1)(u) ≡ µ̌12, (A.6)

µ̌
(+1)
12 = µ̌

(−1)
12 . (A.7)
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The function µ̌12 defined above will eventually be identified with an element of the

µAB matrix appearing in the QSC equations. The notation µ̌12 signals that, through-

out this appendix, we will consider µ̌12(u) as a function defined on the mirror Riemann

section with long cuts, where it is i-periodic. This function agrees with µ12(u) used

in the rest of the paper in the strip 0 < Im(u) < 1/2, and elsewhere is obtained by

analytic continuation keeping all cuts long. Notice that the mirror i-periodicity of

µ̌(u) is equivalent to the property (3.3).

(iii) Finally, the T functions enjoy the following group-theoretical properties :

T0,n = (µ̌
(n)
12 )2, Tn+1,2 = T2,n+1, n ∈ N+. (A.8)

We expect that the T gauge defined by these properties is essentially unique (apart from

rescalings by constants independent of u). The T gauge may be defined by a transformation:

Tn,s(u) = Tn,s(u)
(
µ̌

(n+s−1)
12 (u)

)2−n
, s ∈ N+, n ∈ N, (A.9)

Tα
n,0(u) = Tαn,0(u)

(√
µ̌

(n−1)
12 (u)

)2−n
(d(n)(u))sα n, α ∈ {I, II} , n ∈ N (A.10)

Tα
n,−1(u) = Tαn,−1(u) = 1, α ∈ {I, II} , n ∈ N, (A.11)

where sI = −sII = +1, and d(u) = d(+2)(u) is a mirror i-periodic function, representing

an additional degree of freedom in the definition which will be practically irrelevant for

our derivation.25 It is simple to check that (A.9)–(A.11) leave invariant the form of the

T-system due to the mirror periodicity of µ̌12 and d(u).

In general, we expect both the T and T functions to exhibit an infinite ladder of branch

points for u ∈ ±2h+ iZ/2. From the TBA analysis, we know that these singularities are all

of square-root type and that analytic continuation around branch points symmetric with

respect to the imaginary axis leads to the same sheets. This structure is further specified

by the property (i) above: some of the potential branch points in the T functions fall inside

the analyticity strips and therefore they must have trivial monodromy.

Besides, the T functions enjoy some special properties when continued to the short-cut

section of the Riemann surface (also known as the physical sheet). We will denote their

values on this section as T̂: in analogy with the case of µ̌ and µ, the convention is that T
and T̂ are the same in the analyticity strip immediately above the real axis, while in the

rest of the complex plane, they are defined by analytic continuation keeping long cuts for

T and short cuts for T̂. The T̂a,s functions have the following nontrivial properties:

(a) the functions T̂1,n with n ≥ 1 have only two short branch cuts: (−2h, 2h)± in/2,

(b) the functions T̂2,m with m ≥ 2 have only four short branch cuts, lying at (−2h, 2h)±
i(m− 1)/2, (−2h, 2h)± i(m+ 1)/2.

25In [43, 44], a different convention was taken with a specific constant choice for d(u). Here, we keep this

degree of freedom explicit since it is relevant for discussing the regularity properties of the T gauge (see the

explanation at the end of this section).
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The goal of the following derivation is to obtain the Riemann-Hilbert type equations char-

acterizing the QSC. We will see that the whole structure can be derived by imposing the

consistency of the conditions (i), (ii) , (iii) and (a), (b).

Let us make an additional comment. Here, we do not aim to derive the regularity

properties of the QSC, namely the statement that P(u) and ν(u) functions are entire on

the Riemann surface defined by the branch points at u ∈ ±2h±iZ. However, it is natural to

expect that this condition is equivalent to the requirement that the T functions are regular

in appropriate gauges, and indeed one can verify a posteriori that, picking appropriately the

function d(u) in (A.9) and assuming the regularity of the QSC, all the T and T functions

can be chosen to be regular. For instance, it is possible to identify26 TI
1,0(u) = ν1(u) ν̃1(u),

TII
1,0(u) = ν4(u) ν̃4(u). Therefore, choosing d(u) ∝ (ν1(u)/ν4(u))

1
2 , one can set TI1,0(u) ∝

ν̃1(u), TII1,0(u) ∝ ν̃4(u), from which we have a clear indication that the regularity properties

of the ν and T functions are equivalent. This example also illustrates the fact that a require-

ment of regularity for the T gauge specifies the function d(u) uniquely, apart for an overall

constant.27 However, we remark that, for the purposes of the following derivation, the pre-

cise form of d(u) is irrelevant: this function cancels out of all the equations reported below.

A.2 Strategy of the derivation

The main tactic of the derivation is to choose a parametrization of the T functions that

makes (a), (b) explicit; we will then reconstruct the T functions through (A.9) and impose

the validity of (i), (ii), (iii).

To start, we notice that the properties (a), (b) presented above can be encapsulated

by the following parametrization (see section 4.2 in [15]):

T̂1,s = P
[+s]
1 P

[−s]
2 −P

[+s]
2 P

[−s]
1 , T̂2,s+1 = T̂[+s+1]

1,1 T̂[−s−1]
1,1 , s ∈ N+, (A.12)

T̂α0,0 = 1, T̂0,s = 1, s ∈ N+, α ∈ {I, II} , (A.13)

where P1, P2 are functions with a single short cut. Notice that this parametrization covers

only the right tail of the T-hook diagram. To reach the rest of the diagram using the

T-system relation (A.1), we need one more constraint involving at least one node outside

this domain. For this purpose we may use

T3,2/T2,3 = µ̌12, (A.14)

which follows from the transformation (A.9) combined with the property (iii). We then

see that, applying Hirota equation starting from any point in the right band, we may

parametrize any of the T functions in terms of only three building blocks, the functions

P1, P2, µ12, which as we will see will be evaluated on various Riemann sheets. The T

functions, defined through (A.9), can be expressed in terms of the same data, and one

26These expressions for Tα
1,0 follow from the comparison between equation (A.28) below and the Pν-

system.
27In fact, from (A.9) it is evident that this function must be chosen in such a way that it cancels the extra

singularities in Tαa,0 introduced by the square root factors
√
µ̌12 in (A.9). For states with 4↔ 4̄-symmetry,

we can simply set d(u) = 1, since in that case µ12 has only double zeros.
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can check that they satisfy the constraints (ii), (iii) by construction. However, it is not

obvious that they have the correct analyticity strips described by condition (i); we still

need to impose an infinite ladder of relations:

4
(

(Tα
n+1,0)(+n)

)
= 4

(
T

(+n)
n+2,1

)
= 0, (A.15)

where we use the symbol 4 for the discontinuity 4f ≡ f − f̃ expressing the monodromy

around any of the branch points at ±2h on the real axis. The conditions (A.15) place

further constraints on P1, P2 and µ̌12 and will lead us to the QSC equations.

As a convenient notation, we will introduce a splitting function g(u), defined through

g2 ≡
TI

1,0

TII
1,0

=
TI1,0
TII1,0

d2. (A.16)

In particular, in the 4 ↔ 4̄-symmetric subsector in which TI
n,0 = TII

n,0, one has simply

g(u) = 1.

A.3 Details

Before discussing the derivation in detail, let us mention a technical point. In the following

paragraphs, we will find relations between functions which are defined, by default, on differ-

ent sections of the Riemann surface covering the u plane. To remove possible ambiguities,

we specify that all the equations below are valid for u in a strip slightly above the real axis.

With this understanding, we will use interchangeably µ̌12 and µ12 in the following equations.

First level n = 0. The first constraint coming from (A.15) is that T2,1 = T2,1 has no cut

on the real axis. The consequences of this requirement were already discussed in [44]. Using

Hirota equation and carefully continuing the expressions (A.12) to the mirror sheet, we find

T2,1 =
T(+1)

2,2 T(−1)
2,2 − T1,2T32

T23
(A.17)

= (P
[+2]
1 P2 −P

[+2]
2 P1)(P̃1P

[−2]
2 − P̃2P

[−2]
1 )− µ12 T1,2. (A.18)

Imposing the absence of a cut on the real axis, we obtain

4 (T2,1) = T1,2

(
µ̃12 − µ12 −P1P̃2 + P2P̃1

)
= 0, (A.19)

and, since T1,2 cannot be zero everywhere, we get a first relation of the Pµ-system (3.4):

µ12 + P1 P̃2 −P2P̃1 = µ̃12. (A.20)

Using the Hirota equation centered at the node (1, 1), we can also compute

TI
1,0 TII

1,0 = µ12

T(+1)
1,1 T(−1)

1,1 − T2,1

T1,2
= µ12 (µ12 + P1P̃2 −P2P̃1) = µ12 µ̃12, (A.21)

which means we can parametrize

TI
1,0(u) =

√
µ12(u)µ̃12(u) g(u), TII

1,0(u) =

√
µ12(u)µ̃12(u)

g(u)
. (A.22)

The requirement that Tα
1,0 have no cuts on the real axis then imposes 4(g(u)) = 0.
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General level. As illustrated in the previous example, the functions Ta,s with a > s,

computed using the T-system relations, will depend not only on the values of P1, P2 and

µ12 on their defining sheet, but also on their shifted values on the second sheet: this is

due to the fact that Hirota equation is defined on the mirror section, while the cut in the

definition of P1 and P2 is short. In general, the constraints (A.15) can be translated as

conditions on the monodromies of P̃1, P̃2 and g around the branch points lying further

and further from the real axis. Remarkably, the content of (A.15) can be recast in a very

simple form: the constraints on the cuts in the upper half plane yield28

µ12
˜

(P̃A)(2n) = +P
(2n)
1 4(P2 PA)−P

(2n)
2 4(P1 PA) + (P̃A)(2n) µ̃12 + 24(PA) ηn, (A.23)

for n ∈ N+, A ∈ {1, 2}, with

ηn ≡
1

2

(
g(+2n)

g
+

g

g(+2n)

) √
µ̃12 (µ̃12)(2n) + P̃1P

(2n)
2 − P̃2P

(2n)
1 , (A.24)

together with the condition that

4

(
g(+2n)

g

√
(µ̃12)(2n)

µ12

)
= 4

(
g

g(+2n)

√
(µ̃12)(2n)

µ12

)
. (A.25)

One obtains very similar but not identical equations describing the discontinuities in the

lower half plane. For conciseness, we will only refer to (A.23) in the following arguments.

Remarkably, the form of these relations contains already the full structure of the QSC.

Constructing the Pµ-system. The equations in (A.23) can be rewritten as

− µ̃12µ12 4
(

P̃
(2n)
A

µ12

)
= +P

(2n)
1 4(P2 PA)−P

(2n)
2 4(P1 PA) + 24(PA) ηn, (A.26)

for A ∈ {1, 2}. Considering the discontinuity of these relations on the real axis, we see that

4(ηn) = 0. Inspecting expression (A.24), we then see that(
−P

(+2n)
1 4(P2) + P

(+2n)
2 4(P1)

)
√
µ̃12 µ12

= 4

(
g

(+2n)
α

gα

√
(µ̃12)(2n)

µ12

)
, α ∈ {I, II} , (A.27)

with gI = g, gII = 1/g. We will exploit (A.27) to construct two new functions with a

single short cut, which we denote as P5 and P6 in anticipation of their role in the QSC

equations. They are defined through

P5 ≡
√
µ̃12√
µ12

g −P2 φ1,I + P1 φ2,I , P6 ≡
√
µ̃12√
µ12 g

−P2 φ1,II + P1 φ2,II , (A.28)

28We verified the form of these equations for the first few values of n, and conjecture that the pattern is

general.
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where the functions φA,α, with indices A ∈ {1, 2}, α ∈ {I, II}, are defined from the

requirement that they are periodic on the mirror section, with power-like asymptotics and

with discontinuities29√
µ̃12µ12 4(φA,α) = 4(PA) gα, A ∈ {1, 2} , α ∈ {I, II} . (A.29)

Combining (A.29) and (A.28), we can indeed verify that the newly constructed functions

have vanishing discontinuities in the upper half plane 4(P
(+2n)
5 ) = 4(P

(+2n)
6 ) = 0, ∀n ∈

N+. A simple extension of this analysis shows that (A.28) defines a function with only a

single short cut on the real axis.

Let us point out that, when g = 1 (which is appropriate for 4↔ 4̄-symmetric states),

by definition we have P5 = P6, in agreement with the rules described in section 4.4. As

another side remark, notice that the definitions (A.28) can be recognized as two equations

of the Pν-system (3.12) provided the mirror-periodic functions φA,α are identified as ratios

of ν functions, and g(u) is identified as

g2 =
ν1 ν̃1

ν4 ν̃4
. (A.30)

In the rest of this appendix, for simplicity we will concentrate solely on obtaining the “Pµ”

vector form of the equations.

Using (A.28), (A.24), equations (A.26) becomes

−µ̃12µ12 4
(

P̃
(2n)
A

µ12

)
= +P

(2n)
1

4(PA P2)− 24(PA)

P̃2 +
√
µ̃12µ12

∑
α=I,II

φ2,α

2gα


−P

(2n)
2

4(P1 PA)− 24(PA)

P̃1 +
√
µ̃12µ12

∑
α=I,II

φ1,α

2gα


+4(PA)

(
P5

(2n)

√
µ̃12µ12

g
+ P

(2n)
6 g

√
µ̃12µ12

)
, (A.31)

with A ∈ {1, 2}. Let us now introduce four functions ΦAB, periodic on the mirror sheet,

ΦAB = Φ
(+2n)
AB , for A,B ∈ {1, 2}, whose (periodically repeated) discontinuities are

µ12µ̃124(ΦAB) = 4(PAPB)− 24(PA)

P̃B +
√
µ̃12µ12

∑
α=I,II

φB,α
2gα

 . (A.32)

Then, defining the functions P3 and P4 as

−P3 ≡
P̃1

µ12
+ Φ12 P1 − Φ11 P2 + φ1,II P5 + φ1,I P6, (A.33)

−P4 ≡
P̃2

µ12
+ Φ22 P1 − Φ21 P2 + φ2,II P5 + φ2,I P6, (A.34)

29These requirements specify φA,α uniquely apart from an additive constant independent of u.
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we see that, due to (A.31),

4(P
(2n)
3 ) = 4(P

(2n)
4 ) = 0, n ∈ N+, (A.35)

therefore P3 and P4 are free of branch points in the upper half plane and, by a small

additional effort, we can show that they have just a single short cut on the real axis.

Let us summarize the situation: by a scrutiny of the equations, we have so far found six

functions with a single short cut, and eight mirror-periodic functions ΦAB , φA,α. It remains

only to check that the relations between their monodromies can be written in a closed form.

The fifteen components of the antisymmetric matrix µAB can be defined in terms of

the periodic functions introduced above. Indeed, setting

µ14 = −Φ12 µ12 − 1, µ13 = −Φ11 µ12, µ15 = −φ1,I µ12, µ16 = −φ1,II µ12, (A.36)

µ24 = −Φ22 µ12, µ23 = −Φ21 µ12 + 1, µ25 = −φ2,I µ12, µ26 = −φ2,II µ12, (A.37)

we immediately recognize that (A.33), (A.34) are two equations of the Pµ-system. Besides,

the form of these relations implies the existence of three quadratic constraints among the

matrix elements defined in (A.36); let us discuss in detail how these conditions emerge.

Consider the following equation:

µ13 − µ̃13 + P1P̃3 −P3P̃1 = −2 (µ12 − µ̃12) (Φ11 − φ1,I φ1,II), (A.38)

which can be derived from (A.33) and its analytic continuation to the second sheet using the

monodromy rules (A.20), (A.29), (A.32). The form of (A.38) implies that the combination

of mirror-periodic functions Φ11 − φ1,I φ1,II must be free of cuts. Due to its power-like

asymptotics, it must be a constant independent of u and, using the freedom to redefine the

Φ’s by a constant shift, we will assume that Φ11 − φ1,I φ1,II = 0. Therefore, (A.38) can be

recognized as another equation of the Pµ-system. Moreover, the quadratic constraint we

have just found can be rewritten as µ12µ13−µ15µ16 = 0, which is one of the components of

the matrix equation (µη)2 = 0. By similar reasoning, we can impose two more constraints

and all in all we can set

Φ11−φ1,I φ1,II = 0, Φ22−φ2,I φ2,II = 0, Φ12 +Φ21 +φ1,Iφ2,II +φ2,Iφ1,II = 0. (A.39)

The rest of the derivation goes along the same lines. The remaining independent entries

of µAB are defined as:

µ35 = φ1,I (µ23 − µ12 φ1,II φ2,I), µ36 = φ1,II (µ23 − µ12 φ1,I φ2,II), (A.40)

µ45 = φ2,I (µ23 − µ12 φ1,II φ2,I), µ46 = φ2,II (µ23 − µ12 φ1,I φ2,II), (A.41)

µ34 =
µ35 µ36

µ12 φ1,I φ1,II
, µ56 = −µ12(φ1,II φ2,I − φ1,I φ2,II), (A.42)

and it is possible to verify that all equations of the Pµ system, including the quadratic

constraints on the P and µ functions, follow from the relations listed above (and their

analytic continuation through the branch cut on the real axis).
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The specific form of the matrix ηAB entering the Pµ-system equations does depend

on the normalization of our definitions (A.28), (A.33), (A.34), (A.36)–(A.42), and could

be changed by rescaling some of the µ or P functions, or by a more general linear change

of basis, PA(u) → HB
A PB(u), µAB(u) → HC

A H
D
B µCD(u), which would transform ηAB →

HC
A H

D
B ηCD. However, ηAB is clearly always a symmetric tensor, and besides its signature

(+ + + − −−) is invariant under all linear transformations with H ∈ R6×6. This reality

restriction is meaningful since it preserves the following property: for real values of the

coupling, all the functions PA(u) can be chosen to be real30 on the Riemann section with

short cuts. This property is verified with our choice of conventions, and follows from the

reality of the solutions of the TBA.

B Algebraic identities

B.1 Identities for gamma matrices

In this appendix we collect some useful algebraic identities, descending from the properties

of gamma and sigma matrices for SO(3, 3) and SO(3, 2). The defining relation for the

SO(3, 3) sigma matrices is

(σA)ac (σ̄B)cb + (σB)ac (σ̄A)cb = δba ηAB, (B.1)

and we recall that (σAB)ba is defined through

(σA)ac (σ̄B)cb − (σB)ac (σ̄A)cb = −2 (σAB)ba, (B.2)

so that we have

(σA)ac (σ̄B)cb =
1

2
δba ηAB − (σAB)ba. (B.3)

A useful property, specific to orthogonal groups in six and five dimensions, is the fact

that gamma matrices are anti-symmetric: (σA)ab = −(σA)ba. This allows us to prove the

following very useful relation:

(σ̄C σA σ̄B − σ̄C σB σ̄A)ab = ηAC (σ̄B)ab − ηBC (σ̄A)ab, (B.4)

and its consequence

Tr
(
σAB σ

CD
)

= δDA δ
C
B − δCA δDB . (B.5)

Another identity that is specific to this dimension is

σ̄ab = −1

2
εabcd σcd, (B.6)

which implies in particular that (σAB) is traceless: (σAB)aa = 0, and moreover that, for any

anti-symmetric matrix 4 × 4 matrix Gab:

2 Pf(Gab) = GA η
AB GB, (B.7)

30Correspondingly, one can choose all functions µ+
AB(u) to be purely imaginary on the real axis.
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where the corresponding vector {GA}6A=1 is defined by Gab = GA (σA)ab. Another useful

formula is:

(σA)ab(σ̄B)cd − (σB)ab(σ̄A)cd = (σAB)ca δ
d
b − (σAB)cb δ

d
a − (σAB)da δ

c
b + (σAB)db δ

c
a. (B.8)

All the properties listed above are independent on for any choice of chiral representation

of the gamma matrices. The situation is analogous for the representations of SO(3, 2).

In that case we recall that we use the symbols (ΣI)ij , (ΣIJ)ji , and denote the metric as

ρIJ ≡ 1
2 Tr(ΣI Σ̄J). In particular the defining relation for the matrices ΣI and ΣIJ is:

(ΣI)ki (Σ̄J)il =
1

2
δlk ρIJ − (ΣIJ)lk, (B.9)

with ΣIJ = −ΣJI . On top of these properties, in the SO(3, 2) case the matrices Σ and Σ̄

are related by a similarity transformation:

(ΣI)ij =
(
κik (Σ̄I)

kl κlj

)
, (B.10)

where κij is an anti-symmetric 4 × 4 matrix. Equation (B.10) can be used to prove the

additional symmetry property (ΣIJ)ij = +(ΣIJ)ji. Finally, the analogue of (B.5), (B.4) are

Tr
(
ΣIJ ΣKL

)
= δLI δ

K
J − δKI δLJ , (B.11)(

Σ̄K ΣI Σ̄J − Σ̄K ΣJ Σ̄I

)ij
= ρIK (Σ̄J)ij − ρJK (Σ̄I)

ij . (B.12)

Finally, we report below some useful identities for a generic antisymmetric 4×4 matrix

Gab = −Gba:

GabGcd −GcbGad −GacGbd = εabcd Pf(G), (B.13)

−1

2
εijklGklGjm = δim Pf(G), (B.14)

Gik Gjl ε
klmn = −Pf(G)

(
Gij G

mn + δmi δ
n
j − δni δmj

)
, (B.15)

Gij = −1

2
εijklG

kl Pf(G), (B.16)

where we recall that the Pfaffian is defined as

Pf(G) =
1

8
εabcdGabGcd = G12G34 +G14G23 −G13G24. (B.17)

In particular:

κik κjl ε
klmn =

(
κij κ

mn + δmi δ
n
j − δni δmj

)
. (B.18)

B.2 Relation between Qab|ij and Qab|ij

In section 7.1, we have defined the objects Qab|ij as subdeterminants of the 4 × 4 matrix{
Qa|i

}
. Notice that, in principle, one can also define

Qab|ij = Qa|iQ
b
|j −Q

a
|j Q

b
|i. (B.19)
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However, a simple linear algebra identity relates the minors of a matrix and its inverse,

and shows that the two definitions are algebraically related:

Qab|ij =
1

2

(
det(Q∗|∗)

)
εabcd εijkl Q

c|kQd|l = −1

2
εabcd εijkl Q

c|kQd|l. (B.20)

From (B.20), we see that

Qab|ij = −1

2
εabcdQ

c
|j1 Q

d
|j2 εijkl κ

kj1 κlj2 , (B.21)

and using (B.18) we find

Qab|ij = −1

2
εabcd

(
Qcd|ij + κij Q

cd
◦

)
. (B.22)

Let us define the projections:

Qab|◦ ≡
1

2
Qab|ij κ

ij , Q
ab|(ij) ≡ Qab|ij +

1

2
κij Qab|◦, (B.23)

where Q
ab|(ij) denotes the traceless part and satisfies Q

ab|(ij) κ
ij = 0. Identity (B.22) then

splits as

Qab|◦ =
1

2
εabcdQ

cd
|◦, Q

ab|(ij) = −1

2
εabcdQ

cd
|(ij). (B.24)

B.3 Relation between Qij and its inverse

From (B.16), we have

Qij =
1

2
εijkl Qkl, (B.25)

and, using (B.13), we immediately find

Qij = κii1 κjj1 Qi1j1 − 1

2
κij Q̂◦, (B.26)

where

Q̂◦ = Qmn κmn. (B.27)

Contracting (B.26) with κij , we find that in fact Q̂◦ = Q◦ = Qij κ
ij , so that (B.26) reduces

to equation (4.14) presented in the main text.

C Derivation of constraints on large-u asymptotics

Here we derive the constraints (5.3), (5.11) on the asymptotics of P and Q functions using

the QQ-relations derived in section 7. In order to find (5.3), we start from relation (7.8).

At large u, its r.h.s. is given by

PA(u) QI(u) ' AA BIuM̂I−MA−1 , (C.1)

which constrains the asymptotic behaviour of QA|I to be

QA|I(u) ' −iAABIu
M̂I−MA

M̂I −MA

. (C.2)

– 53 –



J
H
E
P
0
9
(
2
0
1
7
)
1
4
0

We may now use the following relation, which is a consequence of the Q-system:

QI = ±PAQ±A|I , (C.3)

and gives, using the aymptotics (C.2), the constraint

∑
A

AAAA

M̂I −MA

= 0, I = 1, . . . , 5. (C.4)

These relations, together with the constraint Pf (Pij) = 1, may be solved for the terms

AAAA, giving precisely (5.3). To derive (5.11), it will be convenient to use the following

equaton, which can be obtained with simple manipulations from the Q-system relations:

PA = QI Q−A|I +
Q◦Q

−
A|◦

4
. (C.5)

The large-u asymptotics of Q◦ can be fixed using the first constraint in (4.43), which yields

Q◦(u) = 4 +
2 C
u2

+O
(

1

u3

)
, C = B1B4 − B2B3 + B2

5. (C.6)

We will also need

PA(u) ' u−MA

[
AA +

Asub
A

u
+O

(
1

u2

)]
, (C.7)

and, from (7.9),

QA|◦(u) = u−MA

[
AA +

Asub
A

u
+O

(
1

u2

)]
. (C.8)

Expanding (C.5) at NLO, we find, using (C.6), (C.7), (C.8),

5∑
I=1

BIBI
M̂I −MA

=
MA

2
, A = 1, . . . , 6. (C.9)

The solution of these equations finally yields (5.11) and fixes the coefficient C as in (5.14).

Finally, for the reader’s convenience, we report more explicitly the con-

straints (5.3), (5.11):

A1A4 =
(M2

1−M̂2
1 )(M2

1−M̂2
2 )

(M2
1−M2

2 )(M2
1−M2

5 )
, A2A3 =

(M2
2−M̂2

1 )(M2
2−M̂2

2 )

(M2
1−M2

2 )(M2
2−M2

5 )
,

A5A6 =
(M2

5−M̂2
1 )(M2

5−M̂2
2 )

(M2
5−M2

1 )(M2
5−M2

2 )
,

B1B4 =
(M̂2

1−M2
1 )(M̂2

1−M2
2 )(M̂2

1−M2
5 )

4M̂2
1 (M̂2

1−M̂2
2 )

, B2B3 =
(M̂2

2−M2
1 )(M̂2

2−M2
2 )(M̂2

2−M2
5 )

4M̂2
2 (M̂2

1−M̂2
2 )

,

B2
5 =−M

2
1M

2
2M

2
5

4M̂2
1 M̂

2
1

. (C.10)
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D Asymptotics and charges: consistency checks at weak coupling

In this section we show the emergence of a polynomial Bethe Ansatz in the weak coupling

limit and use it to match the parameters entering the asymptotics of the QSC with the quan-

tum numbers of the state, proving (5.2), (5.4). The discussion presented below may also

be useful for developing an analytic weak coupling solution algorithm valid in every sector.

We shall start from the following large-u asymptotics

PA ∼
(
u−M1 , u−M2 , uM2 , uM1 , u−M5 , uM5

)
, (D.1)

QI ∼
(
uM̂1−1, uM̂2−1, u−M̂2−1, u−M̂1−1, u−1

)
, (D.2)

where, for the moment, we view the five charges {M1, M2, M5} ∈ Z3,
{
M̂1, M̂2

}
∈ R2 as

generic parameters. Choosing a conventional ordering, we assume that, at weak but finite

coupling, they are ordered as

M̂1 > M̂2 > M2 > M1 > |M5|. (D.3)

Since they are not quantized in integers, the charges M̂i will depend on the coupling. We

make the further assumption that, as h → 0, M̂2 and M̂1 have integer limiting values:31

limh→0+ M̂i ∈ Z, with deviations of order O(h2). This property will play an important role

since it implies that the powers in the asymptotics (D.1) are integer for h ∼ 0. Therefore,

at leading order in h any Q functions which turns out to be free of singularities must reduce

to a polynomial function of u.

D.1 Generic features of the weak coupling expansion

We now discuss some general features of the weak coupling limit (see also [22]).

1) Properties of P functions. As h→ 0+, the branch cuts of the QSC shrink to zero

size; each of these cuts is in general replaced by a pole.

For a generic Q function analytic in the upper half plane, we may expect a string of

poles for −u ∈ iN at weak coupling. However, since the P functions originally had only a

single cut on the first sheet, at each order in the weak coupling expansion they are rational

functions of u, with no singularities apart for a multiple pole at u = 0.

Consistently with relations (C.10), we will choose a normalization so that the P’s scale

like O(h0) at weak coupling: PA(u) = P
(0)
A (u)+O(h2). Let us now introduce an important

parameter: we denote as ` the order of the strongest pole occurring among all the functions

P
(0)
A (u) at u = 0, and we will write

P
(0)
A (u) = u−` ppol

A (u), (D.4)

where ppol
A (u) are polynomials in u. Notice that we must have ` ≥M1 > 0, since otherwise

P
(0)
1 (u) would not have decreasing asymptotics at infinity, contradicting (D.3). We will see

eventually that ` can be identified with the spin chain length entering the Bethe Ansatz

equations at weak coupling.

31While we do not have a rigorous proof, we expect that this is true for all solutions of the QSC equations

with power-like asymptotics (D.1). Notice that it is enough to impose this condition on only one of the two

charges M̂i, since we proved in section 6 that their difference M̂1 − M̂2 is integer.
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2) Properties of ν functions. In the leading approximation at weak coupling all func-

tions νa(u), νa(u) are necessarily polynomials in u. Let us review the argument leading to

this conclusion, following [22]. We start noticing that, at finite h, the functions

νa(u) + ν̃a(u),
ν̃a(u)− νa(u)√

u2 − 4h2
(D.5)

do not have cuts on the real axis. Therefore, when expanded at weak coupling these

particular combinations of ν functions should have no pole at u = 0, at every loop order.

Combining this observation with the mirror-periodicity ν̃a(u) = eiPνa(u + i) shows that,

at the leading order at weak coupling, νa(u) cannot have a pole neither at u = 0 nor

at u = i; further, the difference equation (4.3) shows that these functions cannot have

singularities anywhere else. Therefore, at leading order in the weak coupling expansion

they must reduce to polynomial functions of u.

Studying the large-u asymptotics, we can also deduce that the components of νa(u)

must have the same scaling at weak coupling. Furthermore, by an appropriate normaliza-

tion, we can impose that νa and νa have the same scaling behaviour. Thus, we can write:

νa(u) = h−`∗ (ν(0)
a (u) +O(h2)), νa(u) = h−`∗ (νa(0)(u) +O(h2)), (D.6)

where ν
(0)
a (u), νa(0)(u) are polynomials of u. We will prove below that `∗ ≥ `. We will see

that the zeros of the polynomials ν
(0)
1 (u+ i/2), ν4(0)(u+ i/2) can be identified with 4 and

4̄-type Bethe roots entering the 2-loop Bethe Ansatz:

ν
(0)
1 (u) ∝

K4∏
j=1

(u− u(0)
4,j − i/2), ν4(0)(u) ∝

K4̄∏
j=1

(u− u(0)

4̄,j
− i/2). (D.7)

Finally, let us study the regularity of the combinations (D.5) at leading order at weak

coupling: imposing the absence of a pole at u = 0 we find the useful equations

(ν(0)
a (0)− eiP(0)

ν(0)
a (+i)) = (νb(0)(0)− e−iP(0)

νb(0)(+i)) = 0, ∀a, b, (D.8)

where P(0) = limh→0 P. From (D.8), we see that

eiP +O(h2) =
ν

(0)
1 (0)

ν
(0)
1 (i)

=

K4∏
j=1

(
u

(0)
4,j + i/2

u
(0)
4,j − i/2

)
= exp

i K4∑
j=1

p4,j

+O(h2), (D.9)

which proves the statement anticipated in section 3.3: at leading order, P can be identified

with the total momentum of a single species of spin chain magnons.

3) Properties of P̃. Important information on the weak coupling behaviour of P̃A can

be obtained studying the properties of the 1/x(u) expansion (3.2), which is valid at finite h.

Consider one of the PA functions which exhibits a pole of order ` in u = 0. In order

to be more explicit, we will take this function to be P1(u). Write its 1/x expansion as:

P1(u) =
∞∑

n=M1

b1,n
(hx(u))n

, (D.10)
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then, taking into account that x(u) ∼ u/h+O(h), we deduce that the coefficients scale as

b1,n ∼ O(h0) for n ≤ ` at weak coupling, and at the very least32 b1,n ∼ O(h2) for n > `.

Sending x(u)→ x̃(u) = 1/x(u) in (D.10), we obtain the expansion

P̃1(u) =
∞∑

n=M1

b1,n x
n(u)

(h)n
, (D.11)

which converges in a finite region described by |x(u)| < |x(2h + i/2)| [22]. For u in this

region, we can safely re-expand the series at weak coupling. Examining (D.11), we can

make the following observations:

1. The term with n = ` in (D.10), at leading weak coupling order, generates

b1,` h
−2` (u` +O(h2)), (D.12)

where, by our assumption on the pole of P
(0)
1 (u), we have b1,` 6= 0 for h = 0. The

scaling of the coefficients b1,n discussed above reveals that there is no way that other

terms in the expansion would precisely cancel the contribution (D.12) and produce

a milder behaviour for P̃1(u) as h ∼ 0. The only still conceivable possibility is that

some term with n > ` would produce an even more singular scaling at weak coupling.

From this we learn that33 P̃1(u) = O(h−2`∗) with `∗ ∈ N and `∗ ≥ `.

2. The scaling h−`∗ is the same as the one introduced in (D.6) for the νa(u) functions.

Indeed, the two are related by equation (3.12), which at leading order becomes

P̃
(0)
A (u) = −eiP(0)

(
ν(0)
a (u) ν

(0)
b (u+ i)

)
σ̄abA , (D.13)

with34

P̃A(u) ∼ h−2`∗P̃
(0)
A . (D.14)

Notice that we have dropped the term PA from the l.h.s. of (D.13) since it is sublead-

ing at weak coupling. Equation (D.13) also shows that all functions P̃A must have

the same scaling at weak coupling, since all components of νa scale in the same way.

3. Equation (D.13) also shows that P̃
(0)
A (u) must be a polynomial in u. Besides, this

polynomial must have a multiple zero in u = 0 of order exactly `∗:

P̃
(0)
A (u) ∼ u`∗ , u ∼ 0. (D.15)

This follows, again, from considering the expansion (D.10) (and similar for the other

P̃’s). Indeed, the only terms that can contribute to P̃
(0)
1 (u) at the leading order

O(h−2`∗) are the ones with n ≥ `∗, and each of them produces a positive power of un

which is subleading in (D.15).
32Actually, coefficients with large index n must decrease much faster with the coupling, since the radius

of convergence of the 1/x expansion scales like 1/h at h ∼ 0 (see [22]).
33In all examples we have studied, for instance for all states in the SL(2)-like sector, we have precisely

` = `∗. We do not know whether this is a general rule. However for the following argument it is sufficient

to work on the assumption that `∗ ≥ `.
34Notice that the function P̃

(0)
A is defined by (D.14) and does not imply any analytic continuation of

P(0)(u). The two branches cannot be related by analytic continuation, since at weak coupling the cut has

disappeared.
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4) Properties of τ and Qa|1. At leading order at weak coupling, the functions τi must

be constants independent of u. Indeed, they can be computed through the definition

τi = νaQ−a|i. (D.16)

Since νa(0)(u) is a polynomial, and Qa|i(u) cannot have singularities in the upper half plane,

the 2i-periodic function τi(u) must be analytic everywhere at the leading weak coupling

order, and it is then a constant.

We can compute the value of these constants studying the large u-behaviour: first,

from (5.15) we know that components i = 2, 3 must vanish. Further, νa is proportional

to (Qa|1)− at large u, and this implies that the limiting value of τ4(u) must be nonzero for

consistency with Qa|4Q
a
|1 = κ41 6= 0. Finally, (6.9) shows that the components τ1 must be

subleading at weak coupling since τ1τ4 ∼ O(h2). Therefore, using a normalization where

Qa|i(u) ∼ O(1) at weak coupling, we find

(τ1(u), τ2(u), τ3(u), τ4(u)) ∝ h−`∗ (0, 0, 0, 1) +O(h2−`∗). (D.17)

Finally, from (D.17) and (D.16) we discover that, at leading order, the first columns35 of

the matrices Qa|i, Q
a
|i are polynomial in u and proportional to ν

(0)
a (u+ i/2), νa(0)(u+ i/2),

respectively:

Qa|1(u) ∝ ν(0)
a (u+ i/2) +O(h2), Qa1(u) ∝ νa(0)(u+ i/2) +O(h2). (D.18)

5) Properties of Q1 and Q2. Finally, in order to show that part of the Q-system reduces

to polynomials at leading order at weak coupling, we need to prove the polynomiality of

some of the Q functions. Only two of these functions have nice properties at weak coupling,

namely Q1 and Q2. We will show that they reduce to polynomials with a multiple zero of

order ` at u = 0.

First, we need to make some conventional choice: we pick a normalization such that

all components of Qa|i(u) = O(h0). Consequently, we will also have QI(u) ∼ O(h0) at

weak coupling.

Then, let us prove a preliminary result: all functions Q̃I(u) behave as

Q̃I(u) ∼ h−2`∗(u`∗ PolI(u) +O(h2)), (D.19)

where PolI(u) are polynomials. This follows from considering the definition (4.8) at weak

coupling:

Q̃
(0)
I (u)ΣI

ij = (Q
a(0)
|i (u))+ P

(0)
A (u) (Q

b(0)
|j (u))+ σAab, (D.20)

where we denote Q̃I(u) = h−2`∗ Q̃
(0)
I (u) + O(h2−2`∗). Due to the cut structure of Q̃,

the l.h.s. could possibly have poles only for u ∈ iN. However, P
(0)
A (u) is a polynomial,

while Q+
a|i(u) is always analytic in the upper half plane: therefore at the leading order the

r.h.s. of (D.20) is regular at all these dangerous positions. This shows that Q̃(0) has no

35The other elements of these matrices will in general be more complicated and have an infinite string of

poles even at the leading weak coupling order.
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singularities at all, so that it is a polynomial, and moreover it must factorize the multiple

zero (D.15) as in (D.19).

We now wish to use the gluing conditions of section 6 to deduce some properties of

QI(u). First, however, we need to understand the scaling of the constants δ1, δ2 appearing

in these equations. Choosing a convenient normalization where yi = 1, and using (D.17)

and (6.9), we find

δ2 = e−iP lim
u→∞

( τ4(u) )2 = O(h−2`∗) , δ1 =
tan2(πM̂1)

δ2
= O(h2`∗+4). (D.21)

Considering the two gluing equations in (6.10) and (6.11) where δ2 appears and dropping

subleading terms we find:

Q2(u) ∝ h2`∗ ˜̄Q4(u) +O(h2), Q1(u) ∝ h2`∗ ˜̄Q3(u) +O(h2), (D.22)

and recalling (D.20) we see that

Qα(u) = u`∗ qpol
α (u) +O(h2), α = 1, 2, (D.23)

with qpol
α (u) polynomials in u. The rest of the gluing condition also contain some informa-

tion,36 but we will not need to use them in the following.

D.2 Recovering the 2-loop Bethe ansatz

Let us show that, at leading order, a subset of the Q functions can be parametrized in

terms of polynomials of u at leading order at weak coupling, namely at order O(h0).

For the following argument, it is convenient to first restrict to the case where

limh→0 M̂2 −M2 ∈ N+. From the constraints (C.10), we see that this condition ensures

that no P’s or Q’s are vanishing at leading order, and this will make it simpler to draw

conclusions from the Q-system equations.

The main observation is that, due to (D.4) and (D.23), the products P
(0)
α Q

(0)
β with

β ∈ {1, 2} are polynomials in u. The QQ relation (7.16) then implies that, at weak

coupling, Qα|β is also a polynomial in u for β ∈ {1, 2}. At the same time, we have shown

the polynomiality for the Q functions Qa|1(u) at leading order. Using the QQ relations, we

can then prove the following polynomial parametrization for a set of Q functions:37

P(0)
α (u) = u−` ppol

α (u), Q(0)
α (u) = u` qpol

α (u), Q(0)
α|β(u) = qpol

α|β(u), (D.24)

Q(0)
12|α(u) = u−` qpol

12|α(u), Q(0)
α|12(u) = u` qpol

α|12(u), (D.25)

Q
(0)
1|1(u) ∝ ν(0)

1 (u), Q
4(0)
|1 (u) ∝ ν4(0)(u), (D.26)

where qpol
∗|∗ (u) denotes a polynomial of u and indices are restricted to the set α, β ∈

{1, 2}. We then see that exact Bethe equations such as (7.42)–(7.46) reduce to the 2-loop

36In particular, they imply the scaling Q̃I(u) = O(h0) for I = 1, 2, 5, so that for these Q functions several

cancellations must occur in (D.20).
37These are precisely the chains of Q functions for which we computed the ABA limit, and indeed at

weak coupling the large-volume expressions are consistent with (D.26).
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polynomial Bethe equations of [5]. In particular, notice that ` plays the role of spin chain

length parameter L, entering the equations as in (E.1)–(E.5). Indeed, the presence of the

terms u±` in (D.25) produces momentum factors such as
(
u4,j+i/2
u4,j−i/2

)`
= eip4,j` in the Bethe

equations for the massive nodes.

The degree of the polynomials in (D.24)–(D.26), hence the number of Bethe roots,

is related to the large-u asymptotics of the Q functions (D.1). For instance, picking the

simplest38 sequence of Q functions leading to the Bethe equations in η = 1 grading, we

find, from the Q-system, the large-u scaling:

ppol
2 (u) ∼ u−M2+`, qpol

2|2 (u) ∼ u−M2+M̂2 , qpol
2|12(u) ∼ uM2+M̂2+M̂1−1−`, (D.27)

ν
(0)
1 (u) ∼ u

1
2

(−M1−M2−M5+M̂1+M̂2), ν4(0)(u) ∼ u
1
2

(−M1−M2+M5+M̂1+M̂2). (D.28)

Identifying the degrees of these polynomials with the excitation numbers K1, K2, K3, K4,

K4̄ establishes the map between quantum numbers and the asymptotics of the QSC. More

precisely, we have now obtained the limit of this map for h = 0. However, on the assumption

that the powers in the asymptotics can be written as a linear combination of the quantum

numbers, it is unambiguous how to extend this prescription to finite coupling including

the anomalous dimension γ. Rigorous tests of this prescription can be obtained using the

connection with TBA as explained in [17] or comparing with the large volume limit.

For completeness, let us make a final comment on the case where limh→0 M̂2−M2 = 0,

which corresponds to states with K2 = K1 = 0. In this subsector, A2A3 ∼ B2B3 ∼ 0 at

weak coupling, and it is most natural to choose a normalization where P
(0)
2 = Q

(0)
2 = 0.

Rigorously speaking, some of the very last steps of the proof presented above need to

be modified since some of the polynomials in (D.24)–(D.26) now vanish. An alternative

argument valid for this case is presented below, and shows that the map between QSC

asymptotics and quantum numbers (5.2), (5.4) holds unchanged in this subsector as well.

The only peculiarity of this case is that, while the parametrization (D.24)–(D.26) is

perfectly valid, the polynomial qpol
2|12(u) always factors a zero at u = 0. This adds one unit of

length in the η = 1 Bethe Ansatz, and yields a more refined identification of the parameter `:

` = L− δK2,0 = L̃, (D.29)

where L, L̃ are the natural length parameters appearing in the Bethe equations in η = 1

and η = −1 gradings, respectively (see equations (E.1)–(E.10) and the following appendix

for more details). To prove the above statements, consider the following equations:

P
(0)
1 P̃

(0)
2 = (ν

(0)
1 ν4(0))[+2] − ν(0)

1 ν4(0) (D.30)

∝ (Q
(0)
1|1Q

4(0)
|1 )[+1] − (Q

(0)
1|1Q

4(0)
|1 )[−1] (D.31)

= (Q(0)
12|12)+ − (Q(0)

12|12)− ∝ Q(0)
2|12Q

(0)
12|2, (D.32)

where we have started from one of the Pµ-system equations setting P
(0)
2 = 0 and the sub-

sequent lines follow from the Q-system and (D.18). From (D.13), we see that P̃
(0)
2 ∝ Q(0)

2|12,

38This is the simplest such sequence since, given the ordering of charges (D.3), it involves the least number

of roots for every node of the diagram.
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and from (D.30)–(D.32) we then find that Q(0)
12|2 ∝ P

(0)
1 , confirming the parametrization of

this function in (D.25). Besides, from (D.8) we see that the r.h.s. of (D.30) is a polynomial

with a zero at u = 0. This implies that the parametrization (D.25) is correct, and that,

as stated above, the polynomial qpol
2|12(u) always has a zero at u = 0 in this subsector.

E State/charges dictionary

The purpose of this appendix is to review the different versions of the Asymptotic Bethe

Ansatz existing in the literature, and provide a practical dictionary between excitation

numbers and the parameters appearing in the QSC in these different conventions.

E.1 Asymptotic Bethe ansatz equations

In [35] two equivalent versions of the ABA were introduced, characterized by the gradings

η = ±1. The ABA equations in η = +1 grading read

1 =
Q+

2 B4(−)B4̄(−)

Q−2 B4(+)B4̄(+)

∣∣∣∣∣
u1,j

, j = 1, . . . ,K1, (E.1)

−1 =
Q−−2 Q+

1 Q+
3

Q++
2 Q−1 Q−3

∣∣∣∣
u2,j

, j = 1, . . . ,K2, (E.2)

1 =
Q+

2 R4(−)R4̄(−)

Q−2 R4(+)R4̄(+)

∣∣∣∣∣
u3,j

, j = 1, . . . ,K3, (E.3)

−1 =

(
x−4,j

x+
4,j

)−L
Q[−2]

4

Q[+2]
4

B+
1 R

+
3

B−1 R
−
3

σ−4 σ
−
4̄

σ+
4 σ

+
4̄

∣∣∣∣∣
u4,j

, j = 1, . . . ,K4, (E.4)

−1 =

(
x−

4̄,j

x+
4̄,j

)−L
Q[−2]

4̄

Q[+2]

4̄

B+
1 R

+
3

B−1 R
−
3

σ−4 σ
−
4̄

σ+
4 σ

+
4̄

∣∣∣∣∣
u4̄,j

, j = 1, . . . ,K4̄, (E.5)

while the η = −1 grading version is

1 =
Q+

2 B4(−)B4̄(−)

Q−2 B4(+)B4̄(+)

∣∣∣∣∣
u1̃,j

, j = 1, . . . , K̃1, (E.6)

−1 =
Q−−2 Q+

1̃
Q+

3̃

Q++
2 Q−

1̃
Q−

3̃

∣∣∣∣∣
u2,j

, j = 1, . . . ,K2, (E.7)

1 =
Q+

2 R4(−)R4̄(−)

Q−2 R4(+)R4̄(+)

∣∣∣∣∣
u3̃,j

, j = 1, . . . , K̃3, (E.8)

1 =

(
x−4,j

x+
4,j

)L̃
Q[−2]

4̄

Q[+2]

4̄

B+
1̃
R+

3̃
B+

4(+)B
+
4̄(+)

B−
1̃
R−

3̃
B−4(−)B

−
4̄(−)

σ+
4 σ

+
4̄

σ−4 σ
−
4̄

∣∣∣∣∣
u4,j

, j = 1, . . . ,K4, (E.9)

1 =

(
x−

4̄,j

x+
4̄,j

)L̃
Q[−2]

4

Q[+2]
4

B+
1̃
R+

3̃
B+

4(+)B
+
4̄(+)

B−
1̃
R−

3̃
B−4(−)B

−
4̄(−)

σ+
4 σ

+
4̄

σ−4 σ
−
4̄

∣∣∣∣∣
u4̄,j

, j = 1, . . . ,K4̄, (E.10)
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for a different set of Bethe roots. The precise relation between the two sets of roots is

reviewed in section E.2 below. Above and in the main text, we have used the notations:

Qs(u) =

Ks∏
j=1

(u− us,j), (E.11)

Rs(u) =

Ks∏
j=1

√
h

xs,j
(x(u)− xs,j) , Bs(u) =

Ks∏
j=1

√
h

xs,j
(1/x(u)− xs,j) , (E.12)

Rs(±)(u) =

Ks∏
j=1

√
h

x∓s,j

(
x(u)− x∓s,j

)
, Bs(±)(u) =

Ks∏
j=1

√
h

xs,j

(
1/x(u)− x∓s,j

)
, (E.13)

σ+
s (u)

σ−s (u)
=

Ks∏
j=1

σBES(u, us,j), x±s,j = x(us ± i/2), xs,j = x(us,j), (E.14)

where σBES(u, v) is the Beisert-Eden-Staudacher dressing factor [8].

E.2 Fermionic duality: from η = +1 to η = −1

It is expected that every state (or, more precisely, every multiplet) can be represented by a

regular solution of the Asymptotic Bethe Ansatz, where regular means that for every type

of root xi we have xi 6= 0, xi 6= ∞. Let us now review (see appendix A in [35]) how to

switch from a regular solution of the η = +1 ABA, characterized by the roots

{u1,j}K1

j=1 , {u2,j}K2

j=1 , {u3,j}K3

j=1 , {u4,j}K4

j=1 ,
{
u4̄,j

}K4̄

j=1
, (E.15)

to a regular solution of the η = −1 ABA. This type of duality transformations is well

known from the N=4 SYM case [7]. Following the standard argument, we consider the

polynomial in x(u):

P (x) =

K4∏
j=1

(x− x+
4,j)

K4̄∏
j=1

(x− x+
4̄,j

)

K2∏
j=1

(x− x−2 ) (x− 1/x−2 ) (E.16)

−
K4∏
j=1

(x− x−4,j)
K4̄∏
j=1

(x− x−
4̄,j

)

K2∏
j=1

(x− x+
2 ) (x− 1/x+

2 ). (E.17)

Due to the ABA equations (E.1), (E.3), we see that this polynomial has zeros at all roots

of type x = x(u3,j) and x = 1/x(u1,j); besides, due to the zero momentum condition, it

vanishes for x = 0. One may then write

P (x) = x

K1∏
j=1

(x− 1/x1,j)

K̃1∏
j=1

(x− 1/x1̃,j)

K3∏
j=1

(x− x3,j)

K̃3∏
j=1

(x− x3̃,j), (E.18)

where
{
x3̃,j

}K̃3

j=1
and

{
1/x1̃,j

}K̃1

j=1
label the extra zeros of P (x) outside/inside the unite

circle, respectively. By considering the weak coupling limit of P (x), and considering that

xs,j ∼ h−1, one may count the two new types of roots:

K4 +K4̄ +K2 − 1− δK2,0 = K3 + K̃3, K2 − 1 + δK2,0 = K1 + K̃1. (E.19)
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We have then found the fermionic duality equation:39

R4(−)R4̄(−) Q+
2 −R4(+)R4̄(+) Q−2 ∝ x

δK2,0 R3R3̃B1B1̃, (E.20)

with an inessential proportionality factor independent of u. It is now standard to verify

that the set of roots{
u1̃,j

}K̃1

j=1
, {u2,j}K2

j=1 ,
{
u3̃,j

}K̃3

j=1
, {u4,j}K4

j=1 ,
{
u4̄,j

}K4̄

j=1
, (E.21)

satisfy the η = −1 ABA, where the spin chain length parameter is

L̃ := Lη=−1 = Lη=+1 − δK2,0. (E.22)

E.3 Asymptotics of the QSC and excitation numbers

The charges entering the asymptotics of the QSC are, in terms of the number of Bethe

roots in η = +1 grading:

M1 = L+K3 −K4 −K4̄ + 1, M2 = L−K1 M5 = K4 −K4̄, (E.23)

M̂1 = γ + L+K3 −K2 + 1, M̂2 = γ + L+K2 −K1. (E.24)

Using the rules (E.19) and (E.22), (E.23)–(E.24) can be rewritten as

M1 = L̃− K̃3 +K2, M2 = L̃+ K̃1 −K2 + 1, M5 = K4 −K4̄ (E.25)

M̂1 = γ +K4 +K4̄ + L̃− K̃3, M̂2 = γ + L̃+ K̃1 + 1, (E.26)

where we have denoted L̃ = Lη=−1.

E.4 Important subsectors

In what follows we list a set of special cases corresponding to different subsectors of the

theory, described by different values of excitation numbers and subsets of BA equations in

η = ±1 gradings.

SL(2|1) sector. This sector can be represented by operators made of scalars Y 1Y †4 ,

covariant derivatives and fermions ψ4+, ψ1†
+ . The corresponding large-volume spectrum is

described by the solutions of the ABA equations (E.6)–(E.10) in η = −1 grading without

any auxiliary root, namely K̃3 = K̃1 = K2 = 0. The classical dimensions of these operators

as realized in the η = −1 grading is ∆(0) = L̃ + 1
2(K4 + K4̄), and their spin is Sη=−1 =

1
2(K4 +K4̄). The corresponding subset of ABA equations in η = −1 grading is

1 =

(
x−4,k

x+
4,k

)L̃
Q[−2]

4̄

Q[+2]

4̄

B+
4(+)B

+
4̄(+)

B−4(−)B
−
4̄(−)

σ+
4 σ

+
4̄

σ−4 σ
−
4̄

∣∣∣∣∣
u4,k

, with Q4(u4,k) = 0, (E.27)

1 =

(
x−

4̄,k

x+
4̄,k

)L̃
Q[−2]

4

Q[+2]
4

B+
4(+)B

+
4̄(+)

B−4(−)B
−
4̄(−)

σ+
4 σ

+
4̄

σ−4 σ
−
4̄

∣∣∣∣∣
u4̄,k

, with Q4̄(u4̄,k) = 0, (E.28)

39Notice that the prefactor xδK2,0 appears here due to the fact that we insisted on enumerating only

regular Bethe roots in both gradings.
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and the asymptotics of the corresponding QSC solution is parametrized by:

M1 = L̃, M2 = L̃+ 1, M5 = K4 −K4̄, (E.29)

M̂1 = L̃+K4 +K4̄ + γ, M̂2 = L̃+ γ + 1. (E.30)

In the grading η = +1, the description of this sector involves some of the auxiliary roots:

K3 = K4 +K4̄ − 2, while K̃1 = 0.

SL(2)-like sector. Rather than a sector, this is a subset of states belonging to the

SL(2|1) sector, which satisfy the condition K4 = K4̄ and {u4,j} =
{
u4̄,j

}
(see [80] and [34]

for a detailed discussion). In this case M5 = 0 and the ABA equations reduce to the

following single equation:

1 =

(
x−4,k

x+
4,k

)L̃
Q[−2]

4

Q[+2]
4

(
B+

4(+)

B−4(−)

σ+
4

σ−4

)2
∣∣∣∣∣∣
u4,k

, with Q4(u4,k) = 0. (E.31)

This set of states were studied at weak coupling using the QSC in [46].

SU(4) sector. The operators belonging to this sector are made of all the complex scalars

of the theory: Y a, Y †b , a, b = 1, . . . , 4. The corresponding scaling dimensions are described

most conveniently by the ABA equations in η = +1 grading (E.1)–(E.5), where only Bethe

roots of type 4, 4̄ and 3 are excited:

−1 =

(
x−4,k

x+
4,k

)−L
Q[−2]

4

Q[+2]
4

σ−4 σ
−
4̄

σ+
4 σ

+
4̄

R+
3

R−3

∣∣∣∣∣
u4,k

, with Q4(u4,k) = 0, (E.32)

−1 =

(
x−

4̄,k

x+
4̄,k

)−L
Q[−2]

4̄

Q[+2]

4̄

σ−4 σ
−
4̄

σ+
4 σ

+
4̄

R+
3

R−3

∣∣∣∣∣
u4̄,k

, with Q4̄(u4̄,k) = 0, (E.33)

1 =
R4(−)R4̄(−)

R4(+)R4̄(+)

∣∣∣∣∣
u3,k

, with Q3(u3,k) = 0, (E.34)

and the excitation numbers are constrained by the conditions

L+K3 − 2K4 ≥ 0, L+K3 − 2K4 ≥ 0, K4 +K4̄ ≥ 2K3, (E.35)

(which are stricter than the general unitarity constraints). In this case the parameters

entering the asymptotics of the QSC read

M1 = L+K3 −K4 −K4̄ + 1, M2 = L, M5 = K4 −K4̄, (E.36)

M̂1 = L+K3 + 1 + γ, M̂2 = L+ γ. (E.37)

In the η = −1 grading, these states are represented with K̃3 = K4 + K4̄ −K3 − 2, K2 =

K̃1 = 0.
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SU(2) × SU(2) sector. This can be realized considering only scalars Y 2 and Y †3 as

excitations on top of the vacuum tr [(Y 1Y †4 )L]. The corresponding Bethe Ansatz solutions

have only massive Bethe roots excited in η = +1 grading, with K3 = 0.

E.5 Distinguished grading

Finally, a further very common form of the Bethe Ansatz equations is the one related to

the distinguished Dynkin diagram. This is the form in which the 2-loop BA was originally

written in [29]; it is known that it does not admit an all-loop generalization in terms of

explicit functions of the Bethe roots. At two loops, one can relate the roots appearing

in this version of the BA to the ones featuring in the other two versions by a chain of

fermionic dualities (see [80], appendix A). The relation between the excitation numbers

in the distinguished-grading Bethe Ansatz, denoted as Kd
s for s = 1, 2, 3, 4, 4̄, and the

excitation numbers in the η = −1 grading, is

Kd
1 = K̃1, Kd

2 = K4 +K4̄ + K̃1 − K̃3 − 2, Kd
3 = K4 +K4̄ +K2 − 1− K̃3, (E.38)

Kd
4 = K4, Kd

4̄ = K4̄,

and the length entering this version of the BA is the same as in the η = −1 grading, Ld = L̃.

The translation between excitation numbers of distinguished and η = +1 gradings can be

obtained comparing equations (E.38) and (E.19):

Kd
1 = K2 −K1 − 1 + δK2,0, Kd

2 = K3 −K1 − 2 + 2δK2,0, Kd
3 = K3 + δK2,0, (E.39)

while Ld = Lη=+1 − δK2,0.

Finally, let us make contact with the Dynkin labels [∆, j; p1, q, p2] defined in relation

to the distinguished diagram, which are widely used in the literature, e.g. [80]. In terms of

these charges, the parameters entering the asymptotics of the QSC are given by

M1 = 1 + r2, M2 = 2 + r1, M5 = r3, (E.40)

M̂1 = ∆ + j + 2, M̂2 = ∆− j + 1, (E.41)

where

r1 =
1

2
(p1 + p2 + 2q), r2 =

p1 + p2

2
, r3 =

p2 − p1

2
. (E.42)

F An integral formula for P

In this appendix we prove an exact integral formula for P, which could be useful for

computing this quantity from the numerical solution of the QSC. The expression is

P =
1

2π E(h)

∫ 2h

−2h

dz eπz log
(
−τ4(z)
τ1(z)

)
√

(e2πz − e4πh) (e2πz − e−4πh)
(F.1)

=
1

4π E(h)

∫ 2h

−2h

dz eπz log
(
τ4(z) τ̃4(z)
τ1(z) τ̃1(z)

)
√

(e2πz − e4πh) (e2πz − e−4πh)
, (F.2)
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where E(h) is an elementary function of h defined in (7.91). To prove (F.1), we use (4.21)

to write

log

(
−τ4(z)

τ1(z)

)
= iP +A(z), A(z) = log

τ4(z)

τ4(z + i)
, (F.3)

where A(z + i) = −A(z). Assuming that A(z) has no singularities on the first sheet, we

can open up the integration contour circling the cut to a couple of infinite horizontal lines

lying at Im(z) = ±i/2. Thus we see that the integral over A(z) exactly cancels due to the

periodicity of the integrand, leading to (F.1). Notice that the ABA expression (7.90) for

P is just a an application of this formula where τ4/τ
1 takes its large volume value, which

can be read from (7.66), (7.86), (7.87), (7.89).
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[56] D. Bombardelli, A. Cavaglià R. Conti and R. Tateo, Exploring the spectrum of planar

AdS4/CFT3 at finite coupling, in progress.

[57] I. Krichever, O. Lipan, P. Wiegmann and A. Zabrodin, Quantum integrable systems and

elliptic solutions of classical discrete nonlinear equations, Commun. Math. Phys. 188 (1997)

267 [hep-th/9604080] [INSPIRE].

[58] G.P. Pronko and Yu. G. Stroganov, The complex of solutions of the nested Bethe ansatz. The

A2 spin chain, J. Phys. A 33 (2000) 8267 [hep-th/9902085] [INSPIRE].

[59] P. Dorey, C. Dunning, D. Masoero, J. Suzuki and R. Tateo, Pseudo-differential equations and

the Bethe ansatz for the classical Lie algebras, Nucl. Phys. B 772 (2007) 249

[hep-th/0612298] [INSPIRE].
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