
18 October 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Characterization of four wild edible Carduus species from the Mediterranean region via
phytochemical and biomolecular analyses

Published version:

DOI:10.1016/j.foodres.2017.07.071

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1657772 since 2023-06-05T15:25:30Z



iris-AperTO 
University of Turin’s Institutional Research Information System and Open Access Institutional 

Repository 

 
 
 
 
 
This is the author's final version of the contribution published as: 

 

[A. Marengo, A. Maxia, C. Sanna, C.M. Bertea, C. Bicchi, M. Ballero, C. Cagliero, P. 
Rubiolo, Characterization of four wild edible Carduus species from the 
Mediterranean region via phytochemical and biomolecular analyses, Food 
Research International, 100 (2017) 822-831, 
http://dx.doi.org/10.1016/j.foodres.2017.07.071] 

 
 
The publisher's version is available at: 
[https://www.sciencedirect.com/science/article/pii/S0963996917304106?via%3Dih
ub] 
 
 
When citing, please refer to the published version. 
 
 
Link to this full text:  
[http://hdl.handle.net/2318/1657772] 
 
 
This full text was downloaded from iris-Aperto: https://iris.unito.it/  

https://iris.unito.it/


1 
 

Characterization of four wild edible Carduus species from the Mediterranean 

region via phytochemical and biomolecular analyses 

 

Arianna Marengoa,b,c, Andrea Maxiaa, Cinzia Sannaa, Cinzia M. Berteab*, Carlo Bicchic, Mauro 

Balleroa, Cecilia Caglieroc, Patrizia Rubioloc* 

 

aDipartimento di Scienze della Vita e dell’Ambiente, sezione di Botanica, Università di Cagliari, 

Viale Sant’Ignazio da Laconi 13, 09123 Cagliari, Italy 

bDipartimento di Scienze della Vita e Biologia dei Sistemi, Unità di Fisiologia Vegetale, Università di 

Torino, via Quarello 15/A, 10135 Torino, Italy 

cDipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, I-10125 

Torino, Italy  

 

*Corresponding authors 

Prof. Dr. Patrizia Rubiolo  

Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, I-10125 

Torino, Italy, e-mail: patrizia.rubiolo@unito.it, tel:+39 011 670 7173 fax: +39 011 236 7661 

Prof. Dr. Cinzia M Bertea  

Unità di Fisiologia Vegetale, Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di 

Torino, via Quarello 15/A, 10135 Torino, Italy,  

e-mail: cinzia.bertea@unito.it, tel: +39 011 670 6360 fax: +39 011 236 6360 

 

 

 

mailto:patrizia.rubiolo@unito.it
tel:+39
mailto:cinzia.bertea@unito.it


2 
 

Abstract  

Carduus species (Compositae) are widely distributed in the Mediterranean area, and traditionally 

used for both food and medicinal purposes. 

The hydroalcoholic extracts of four wild edible Carduus species collected in Sardinia (Carduus 

argyroa Biv., Carduus nutans subsp. macrocephalus (Desf.) Nyman, Carduus pycnocephalus L., 

Carduus cephalanthus Viv.) were analyzed and characterized by HPLC-PDA-MS/MS and PCR-RFLP 

of the nrDNA internal transcribed spacer (ITS). 

Flavonoids and caffeoylquinic acid derivatives were the predominant classes of secondary 

metabolites characterizing the extracts. The ITS region was sequenced in parallel, and a PCR-RFLP 

method was applied with three selective restriction enzymes. Statistical analyses, on both 

chemical and biomolecular results, revealed that individuals clustered according to their 

taxonomic classification. 

The combination of the two techniques discriminates the four species within the genus, giving 

further information on these little-investigated plants, traditionally used in the Mediterranean 

area and in Sardinia. 

 

Keywords: Carduus spp., flavonoids, caffeoylquinic acids, HPLC-PDA-MS/MS, PCR-RFLP, ITS 

sequence 
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1. Introduction 

Wild edible species are traditionally consumed mainly for their taste, as well as for their healthy 

and nutritional properties. Many popular dishes prepared with wild plants are still consumed, 

nowadays increasingly so with the return to traditions, with the primary aim of finding healthy 

alternatives to commercial foods (Guarrera & Savo, 2016). This is part of a trend aiming at re-

discovering local products, often offered as culinary specialities in fairs and markets. Further, 

several edible plants are traditionally used as depuratives or to treat trivial illnesses. These species 

may potentially play an important role as functional foods, thanks to the great variety of 

physiologically-active components providing health benefits (Guarrera & Savo, 2016; Lentini & 

Venza, 2007; Pardo-de-Santayana et al., 2007; Ranfa, Maurizi, Romano, & Bodesmo, 2014). 

Species from the genus Carduus (Compositae family), known in English as thistles, are traditionally 

consumed for their taste and biological effects. They are annual or perennial plants, 0.5 -2 m high, 

with lance-shaped, spiny-toothed leaves, spiny-winged stems and white-to-purple flowers. The 

genus includes approximately 100 species worldwide, which are widely distributed over the 

Mediterranean area (Al-Shammari, Hassan, & Al-Youssef, 2015; Dimitrova-dyulgerova, Zhelev, & 

Mihaylova, 2015; Lahaye et al., 2008; Thao et al., 2011; Tutin et al., 1968). They are consumed as 

raw or cooked, and are used as medicinal plants for the treatment of liver disorders or, more in 

general, for their diuretic and digestive properties (Al-Shammari et al., 2015; Atzei, 2003; 

Dimitrova-dyulgerova et al., 2015; Guarrera & Savo, 2016; Lentini & Venza, 2007; Rinchen & Pant, 

2014; Signorini, Piredda, & Bruschi, 2009; Tardío, Pardo-de-santayana, & Morales, 2006). Several 

classes of secondary metabolites, chiefly flavonoids, phenolic acids, lignans, coumarins, alkaloids, 

sterols, and triterpenes, have been found in these species (Al-Shammari et al., 2015; Cardona, 

García, José R., & Pérez, 1992; Dimitrova-dyulgerova et al., 2015; Fernández, Garcia, Pedro, & 

Varea, 1991; Jordon-Thaden & Louda, 2003). The presence of these compounds may be associated 
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to the documented wide range of biological and nutraceutical properties that are associated to 

Carduus species: liver tonicity, anti-inflammatory, antioxidant, antispasmodic, anticancer, antiviral, 

and antibacterial activity (Al-Shammari et al., 2015; Jordon-Thaden & Louda, 2003; Koc et al., 

2015; Slavov, Mihayloiva, & Dimitrova-dyulgerova, 2014). 

This study aims to verify similarities and dissimilarities in the chemical and biomolecular profiles of 

four wild edible Carduus species (Carduus argyroa Biv., Carduus nutans subsp. macrocephalus 

(Desf.) Nyman, Carduus pycnocephalus L., Carduus cephalanthus Viv) growing in the 

Mediterranean area and in particular in Sardinia, where these species are traditionally consumed. 

Little has been published on these species, in particular on those growing in Sardinia. Some data 

on the characteristic compounds (mainly flavonoids) of C. pycnocephalus and C. nutans L. (Al-

Shammari et al., 2015; Bain & Desrochers, 1988; Jordon-Thaden & Louda, 2003; Marrelli, Loizzo, 

Nicoletti, Menichini, & Conforti, 2013) and on the polyacetylenes of C. argyroa extracts are 

available (Harborne, Baxter, & Moss, 1999; Jordon-Thaden & Louda, 2003). To the best of the 

authors’ knowledge, no information is available on C. cephalanthus and C. nutans subsp. 

macrocephalus. At the same time, because of their relevance as traditional foods and remedies, it 

is of interest to learn more about these species, to verify the presence of compounds with 

nutraceutical properties, and to identify them in their extracts. The identification and 

discrimination of these closely-related species were approached by combining high performance 

liquid chromatography with diode array and mass spectrometry detectors (HPLC-PDA-MS/MS) and 

Restriction Fragment Length Polymorphism (PCR-RFLP) analysis of the nuclear ribosomal DNA 

(nrDNA) internal transcribed spacer (ITS) sequences, together with unsupervised multivariate data 

analysis and cluster analysis (PCA, HCA, Neighbor Joining, UPGMA). ITS gene as a DNA barcode 

marker is a useful tool to authenticate raw herbal materials, and in particular when (dried or 

processed) closely related species show similar chemical compositions. DNA barcoding has 
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successfully been applied to authenticate plant and animal samples, also in terms of food safety 

and quality control. However, a limit of this method is that reference sequences of uncommon 

plants are usually lacking in databases (Ali et al., 2014; Galimberti et al., 2013; Ha et al., 2015; 

Hebert, Cywinska, Ball, & Jeremy, 2003). 

 

2. Materials and methods 

2.1. Plant material 

Aerial parts of the four wild species belonging to the genus Carduus were collected from different 

sites in Sardinia, in May and June 2015 (Table S1). They were identified at the Department of Life 

and Environmental Sciences, University of Cagliari, Italy, where a voucher specimen for each 

species was deposited. In total 10 specimens of C. argyroa, 6 of C. cephalanthus, 13 of C. nutans 

subsp. macrocephalus and 10 of C. pycnocephalus were collected. All plants growing at each site 

were separated by 1–50 m from one another, and were collected randomly. The fresh materials 

were dried at 40°C to constant weight. 

2.2. Chemicals 

HPLC-grade acetonitrile (LC-MS grade), formic acid (>98% purity), chlorogenic acid, rutin, apigenin 

7-O-glucoside, apigenin, diosmin and kaempferol were from Sigma Aldrich (Bellefonte, USA). De-

ionized water (18.2 MΩ cm) was obtained from a Milli-Q purification system (Millipore, Bedford, 

MA, USA). Luteolin, quercetin 3-O-glucoside, kaempferol 3-O-rutinoside and kaempferol 3-O-

glucoside were from Extrasynthese (Genay Cedex, France). Cryptochlorogenic acid, 1,5-

dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, luteolin 7-O-glucoside, 

luteolin 7-O-glucuronide, apigenin 7-O-glucuronide, kaempferol 3-O-rhamnoside, diosmetin and 

tricin were from Phytolab (Vestenbergsgreuth, Germany). 
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2.3. Sample preparation and HPLC-PDA-MS/MS analysis 

Five hundred mg of each dried and ground aerial part were submitted to ultrasonic extraction with 

10 mL of methanol/water (70:30, v/v) three times for 10 min. The extracts were then combined 

and centrifuged at 4000 rpm for 10 min. The supernatant was brought to a volume of 30 ml and 

filtered with a 13 mm diameter, 0.22 μm pore diameter hydrophilic PTFE syringe filter, before the 

HPLC-PDA-MS/MS analysis. 

2.4. HPLC-PDA-MS/MS analysis 

Each extract (5 μl) was analyzed in duplicate with a Shimadzu Nexera X2 system equipped with a 

photodiode detector SPD-M20A in series to a triple quadrupole Shimadzu LCMS-8040 system 

provided with electrospray ionization (ESI) source (Shimadzu, Dusseldorf Germany). Samples were 

analyzed on an Ascentis Express C18 column (15 cm x 2.1 mm, 2.7μm, Supelco, Bellefonte, USA) 

using water/formic acid (999:1, v/v) and acetonitrile/formic acid (999:1, v/v) as mobile phases A 

and B, respectively. The flow rate was 0.4 mL/min and the column temperature was maintained at 

30°C. The gradient program was as follows: 5% B for 3 min, 5-15% B in 17 min, 15-25% B in 10 min, 

25-75% B in 12 min, 75-100% B in 10 min, 100% B for 1 min. Total pre-running and post-running 

time was 60 min. UV spectra were acquired over the 220-450 nm wavelength range and the 

resulting chromatograms were integrated at 330 nm. MS operative conditions were as follows: 

heat block temperature: 200°C; desolvation line (DL) temperature: 250°C; nebulizer gas flow rate: 

3 L/min drying gas flow rate: 15 L/min. Mass spectra were acquired both in positive and in 

negative full-scan mode over the range 100-1000 m/z, event time 0.5 sec. Product Ion Scan mode 

(collision energy: - 35.0 V for ESI+ and 35.0 V for ESI-, event time: 0.2 sec) was applied to 

compounds for which a correspondence between the pseudomolecular ions [M+H]+ in ESI+ and 

[M-H]- in ESI- had been confirmed. Multiple Reaction Monitoring acquisition (collision energy: - 

35.0 V for ESI+ and 35.0 V for ESI-, dwell time: 20) was carried out on specific product ions derived 
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from precursor ions fragmentation (Table S2). Some of the main components were identified by 

comparing their retention times, UV and MS spectra to those of authentic standards (chlorogenic 

acid, cryptochlorogenic acid, dicaffeoylquinic acids, rutin, quercetin 3-O-glucoside, luteolin 7-O-

glucoside, luteolin 7-O-glucuronide, kaempferol 3-O-rutinoside, kaempferol 3-O-glucoside, 

kaempferol 7-O-rhamnoside, apigenin 7-O-glucoside, apigenin 7-O-glucuronide, diosmin, apigenin, 

luteolin, kaempferol, tricin, diosmetin). The other components were tentatively identified on the 

basis of their UV spectra and mass spectral information, compared to those given in the literature. 

Data were processed using LabSolution software (Shimadzu, Dusseldorf Germany). 

2.5. DNA extraction, PCR amplification and sequencing 

Ten milligrams of the same material employed for chemical analyses were ground to a fine 

powder, with the addition of approximately 5 mg of polyvinylpolypyrrolidone (PVPP, Sigma 

Aldrich, Bellefonte, USA). Genomic DNA was extracted from the ground powder using the 

Eurogold Plant DNA Mini Kit (Euroclone, Pero, Italy) following the manufacturer’s instructions. The 

quantitative and qualitative analyses of the isolated genomic DNA were assessed by 

spectrophotometry using the Nanophotometer (Implen GmbH, Munich, Germany) and by gel 

electrophoresis. Approximately 20 ng of genomic DNA were used as a template for PCR 

amplification with forward primer ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) and reverse primer ITS4 

(5’-TCCTCCGCTTATTGATATGC-3’) (White, Bruns, Lee, & Taylor, 1990). The amplification was 

carried out in a 25 μl reaction mixture containing 2.5 μl of 10X PCR buffer (Thermo-Scientific, 

Waltham, MA USA), 0.2 mM deoxynucleotide triphosphates (dNTPs), 20 pmol of forward and 

reverse primers, and 0.5 U of Taq DNA polymerase (Thermo-Scientific, Waltham, MA USA). PCR 

reactions were carried out in a T-Gradient Thermalcycler (Biometra GmbH, Gӧttingen, Germany). 

Cycling conditions consisted of an initial 4 min at 94°C, followed by 30 s of denaturing at 94°C, 45 s 

of annealing at 53°C and 45 s of elongation at 72°C, repeated for 35 cycles and with 10 min of final 
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extension at 72°C. PCR products were separated by 1.5% (w/v) agarose gel electrophoresis and 

visualized by ethidium bromide staining under UV. PCR products were purified using the 

Agencourt® AMPure® kit following the manufacturer’s protocol, and employed as a template for 

sequencing (IGA Technology Services, Udine, Italy). Both DNA strands were sequenced. 

2.6. PCR-RFLP 

The PCR products of the ITS gene of the four species were digested in separate reactions with 10 U 

of NdeI at 37°C for 2 h, or with 10U of StuI or of ApaLI, at 37°C for 1 h (NEB, New England Biolabs, 

Ipswich, AM, USA). One microliter of each digestion reaction was analyzed by capillary gel 

electrophoresis (CGE) using the Agilent 2100 Bioanalyzer (Agilent Technologies) and the DNA 1000 

LabChip Kit (Agilent Technologies) following the manufacturer’s instructions. 

The DNA 1000 LabChip Kit provides sizing and quantitation of dsDNA fragments ranging from 25 to 

1000 bp. 

2.7. Statistical elaboration 

Data obtained from the chemical analyses were processed through Principal Component Analysis 

(PCA), to reduce the multivariate space in which objects were distributed, and through hierarchical 

cluster analysis with quadratic Euclidean distance and Ward linkage, using SPSS 15.0 (IBM 

Corporation) software. Before data treatment, all variables obtained from HPLC-PDA-MS/MS 

analysis were scaled to unit variance. 

Gene sequences were aligned with CLC sequence viewer software using default parameters to 

check the integrity of each sample sequence. Consensus sequences, obtained by aligning the 

individual sequences of each species, were then aligned using MEGA7 software (ClustalW) by 

modifying the Gap Opening and Gap Extension Cost values to 15 and 1, respectively. From this last 

alignment, a cluster analysis was made. Neighbor Joining and UPGMA statistical methods were 



9 
 

selected and relationships were tested with 1000 Bootstrap replicates, considering gaps in the 

Partial Deletion option. 

 

3. Results and discussion 

3.1. Phytochemical analyses  

The extracts of Carduus argyroa, Carduus cephalanthus, Carduus nutans subsp. macrocephalus 

and Carduus pycnocephalus were analyzed by HPLC-PDA-MS/MS, to obtain their chromatographic 

profiles, and to obtain UV spectra, and mass spectral information concerning their components. 

MS data were acquired for a significant number of plants per species to identify the secondary 

metabolites characterizing them; all plants were analyzed twice. The repeatability of extract 

composition was evaluated on at least three plants per species. Fig.1 shows a representative 

chromatogram for each species. Approximately sixty peaks were detected through the HPLC-PDA-

MS/MS untargeted metabolite analysis. Accordingly to the UV and MS collected information, 31 

informative peaks were identified or tentatively identified and selected as target compounds for 

the statistical analysis. Among them, 20 were identified by comparing their UV and MS spectra to 

those of reference standards. The other 11 components were tentatively identified from their UV, 

MS and MS/MS spectra by comparison to literature data (Table 1). In agreement with the existing 

literature, flavonoids were the most representative compounds, and in particular quercetin, 

luteolin, kaempferol, diosmetin, and apigenin O-glycosides, resulting in 18 flavones and 7 

flavonols; in addition, caffeoylquinic acids were also found (Al-Shammari et al., 2015; Ha et al., 

2015; Jordon-Thaden & Louda, 2003; Li et al., 2014; Thao et al., 2011). Tandem mass spectrometry 

fragmentation provides further structural information on the compounds for which authentic 

standards are not available. The following compounds are given as illustrative examples of how 

the fragmentation patterns were used for identification. Compounds 4, 5, 6, 9, 10 and 16 are 
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characterized by maximum UV absorptions at approximately 348, 253 and 265 nm, which are 

typical for flavones (Li et al., 2014; Pandino, Lombardo, Mauromicale, & Williamson, 2011). For 

each peak, the MS/MS fragmentation gave a potential aglycone of 286 g/mol, and the positive ion 

mode MS/MS fragmentation yielded 1,3B+ (m/z 135) and 1,3A+ (m/z 153) fragments due to the X1,3 

cleavage of the C-ring, 0,2B+ (m/z 137) and 0,4B+-H2O (m/z 161) fragments due to the X0,2 and X0,4 

cleavage of the C-ring, respectively. Since this fragmentation pattern is consistent with that of 

luteolin standard (compound 26), compounds 4, 5, 6, 16 were tentatively identified as luteolin O-

glycosides. Compounds 9 and 10 were identified as luteolin glucuronide and luteolin glucoside, 

respectively, by comparison with the authentic standards.  (Cuyckens & Claeys, 2004). Apigenin 

(17, 18, 20), kaempferol (12, 14, 24), diosmetin (19, 21, 22, 25, 27), quercetin (3, 7, 8), and their 

glycosides were identified or tentatively identified in the extracts with the same approach. The 

pseudomolecular [M – H]+ diagnostic fragments of the aglycones were as follows: apigenin: MS2 at 

m/z 119, 153, 163; kaempferol: MS2 at m/z 121, 137, 153, 165; diosmetin: MS2 at m/z 258, 286; 

quercetin: MS2 at m/z 121, 127, 137, 153, 161, 165; tricin: MS2 at m/z 153, 203, 315. Six 

caffeoylquinic acid derivatives were also identified (1, 2, 11, 13, 15, 23), by comparison with 

reference standards. The only exception was compound 11, for which the MS/MS fragments (m/z 

163 and 191 in the positive and negative ionization mode, respectively) were consistent with those 

diagnostic for the dicaffeoylquinic acid derivatives (Li et al., 2014; Martini, Conte, & Tagliazucchi, 

2017). 

From these results, interspecific differences can be associated to the presence/absence of specific 

compounds (Table 1). Some compounds, such as chlorogenic acid (1), cryptochlorogenic acid (2), 

dicaffeoylquinic acids (13 and 14), kaempferol 3-O-glucoside (15), kaempferol 3-O-rhamnoside 

(24), luteolin (26), apigenin (28), kaempferol (29), diosmetin (30) and tricin (31), were present in all 

samples. Diosmetin derivatives (19, 21, 22) and 4,5 dicaffeoylquinic acid (23) were only detected in 
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C. cephalanthus and C. pycnocephalus, while luteolin O-arabinosyl-glucoside (5), apigenin O-

rhamnosyl-glucoside (17), and apigenin 7-O-glucoside (18) were only present in C. argyroa and C. 

nutans subsp. macrocephalus samples. Moreover, some peaks, detectable only in one of the four 

species, can be taken as markers. In particular, luteolin O-arabinosyl-glucoside isomer (6) is 

present only in C. argyroa, dicaffeoylquinic acid (11) in C. cephalanthus, luteolin diglucoside (4), 

luteolin acetyl diglycoside (16) and diosmetin acetyl glycosides (25, 27) in C. nutans subsp. 

macrocephalus, and a quercetin diglycoside (3) in C. pycnocephalus. In spite of the same retention 

time (19.898 min) and pseudomolecular ions (611 in ESI+ and 609 in ESI- , i.e. supposed molecular 

weight 610 g/mol), compounds 3 and 4 fragmented differently in MS/MS, giving potential 

aglycones at 302 g/mol and 286 g/mol, respectively. 

A survey of the literature confirmed some of the results, viz. the presence of chlorogenic acid, 

rutin, kaempferol, apigenin, luteolin and the related O-glycosides in C. pycnocephalus and C. 

nutans (Al-Shammari et al., 2015; Bain & Desrochers, 1988; Jordon-Thaden & Louda, 2003; 

Marrelli et al., 2013). The other (putatively) identified compounds, namely dicaffeoylquinic acids, 

diosmetin, quercetin, and tricin, were found in other Carduus species (Dimitrova-dyulgerova et al., 

2015; Jordon-Thaden & Louda, 2003; Li et al., 2014). No data are available on the flavonoid 

composition of C. argyroa, C. cephalanthus and C. nutans subsp. macrocephalus. 

It is worth noting that the compounds detected in the species investigated are known to have 

several nutraceutical properties. For instance, the antioxidant, hepatoprotective, antibacterial, 

anticarcinogenic, and anti-inflammatory activities of most of the flavonoids and caffeoylquinic acid 

derivatives identified are documented (de Falco, Incerti, Amato, & Lanzotti, 2015; Nijveldt et al., 

2001). 

3.2. Statistical data treatment 



12 
 

Principal Component Analysis (PCA) and hierarchical cluster analysis (HCA), were applied to 

discriminate samples from the species investigated. PCA is an unsupervised multivariate data 

analysis method with which the multivariate space in which objects are distributed can be 

reduced, so as to visualize similarities and/or differences within multivariate data of secondary 

metabolite composition (Zheng, Jiang, Wu, Wang, & Huang, 2014). HCA is an unsupervised pattern 

recognition method to detect similarities (Ha et al., 2015). The dataset of the 39 samples 

investigated was thus submitted to PCA and HCA, in a targeted approach based on the 31 

previously characterized compounds listed in Table 1. The best result was obtained by scaling all 

variables to unit variance, so that all components had a standard deviation of one (Berg, 

Hoefsloot, Westerhuis, Smilde, & Werf, 2006). 

Both score and loading plots were built with the aim of discriminating the four species and 

verifying the presence of discriminating variables. As shown in Fig. 2A, the first component (PC1) 

that explains 42.97% of the variation, individually separates C. argyroa and C. nutans subsp. 

macrocephalus from C. pycnocephalus and C. cephalanthus. Conversely, PC2 (20.98% of the 

variation) discriminates between C. argyroa and C. nutans subsp. macrocephalus. The related 

loading plot shows the influence of the variables in the distribution of the samples in the loading 

plot (Fig. 2B). From the results obtained in this plot, it is interesting to note that, among the 

compounds that negatively explain PC1, 19, 21, 22, 23, are present only in C. pycnocephalus and C. 

cephalanthus samples, while compounds 5, 17, and 18 are positively correlated with PC1 and are 

characteristic of C. argyroa and C. nutans subsp macrocephalus species (Table 1). Conversely, 

among the PC2 positively correlated variables, compounds 4, 25 and 27 are characteristic of C. 

nutans subsp. macrocephalus while 6, which is negatively correlated with PC2, is only present in C. 

argyroa (Fig. 2B). The third component (PC3) explains 10.30% of the variation and separates C. 

cephalanthus from C. pycnocephalus (Fig.2C). Fig. 2D highlights the positive correlation of 3 and 
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the negative correlation of 11 with PC3; these compounds are characteristic of C. pycnocephalus 

and C. cephalanthus species, respectively (Table 1). 

These results suggest that some of these compounds can be discriminating for species 

identification purposes, although all components must be considered together for better species 

discrimination. 

A three-dimensional PCA was also carried out, since the combination of the first two components 

is not sufficient to separate all individuals belonging to each species. The first three components, 

which explain 74.25% of the variation, give four distinct clusters according to species (Fig. S1). 

In the next step, a dendrogram generated by hierarchic cluster analysis was constructed. Fig. 2E 

shows that all samples belonging to the same species are clustered together. This dendrogram 

confirms the results obtained with the PCA, and provides more information on the relationships 

among the four species. In particular, the chemical composition of C. argyroa appears to be more 

closely correlated to that of C. nutans subsp. macrocephalus, while C. pycnocephalus and C. 

cephalanthus cluster together. 

3.3 ITS sequence analysis 

For the PCR amplification, primers flanking the ITS-1 and ITS-2 regions were employed (Fig. 3A). It 

has been shown that the ITS regions provide better discrimination at the species level, for species 

belonging to Compositae family (Choi & Thines, 2015). This sequence comprises the rDNAs 

transcription units, which are well conserved in the higher plants, and the ITS-1 and ITS-2 regions, 

which vary widely in closely related species (Wu et al., 2011). The nucleotide composition of the 

resulting sequences is shown in Fig. 3B. The sequences are approximately 785-811 bp long, and 

the alignment of the four species’ sequences shows that 89% of the sites are conserved. Data 

suggest the presence of some differences in the nucleotide composition of the sequences 

belonging to each species. In particular, of the 10.3% that are variable sites, 0.6% provide little 
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information and 9.3% are singleton sites. In agreement with the literature, most of these variable 

sites are located in the ITS-1 and ITS-2 regions (Wu et al., 2011). Analysis of the individual ITS 

sequences indicates the lack of intraspecific nucleotide variation (data not shown). A consensus 

sequence was built for each species. 

The Neighbor Joining (NJ) and the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) 

trees were built from the ITS region sequence alignment (Fig. 4 A, B). Cluster analyses showed a 

cluster linking C. argyroa to C. nutans subsp. macrocephalus. The C. cephalanthus nucleotide 

composition appeared to vary more significantly than the sequences of the other species. These 

results are in agreement with the dendrogram based on chemical data (Fig. 2E). 

Analysis of the sequences obtained through pairwise sequence alignment with the software 

BLASTN 2.4.0+ gave the percentage of identity between each pair of sequences (Table S3) (Zhang, 

Schwartz, Wagner, & Miller, 2000). From the resulting percentages of identity, it emerged that the 

C. nutans subsp. macrocephalus sequence is more similar to those of C. argyroa and C. 

pycnocephalus (95% and 94%, respectively). C. argyroa and C. pycnocephalus showed 94% 

nucleotide identity, while the C. cephalanthus sequence was more variable than the sequences of 

the other species (92-93% of identity vs. the other species). These data are in accordance with the 

results of the hierarchical cluster analysis (Fig. 4). 

A further interesting aspect is that each sequence is species-specific, and can be used as a 

barcoding gene. ITS sequences of C. pycnocephalus, C. nutans and C. nutans subsp. leiophyllus 

(Petrovič) Stoj. & Stef. and other Carduus species are deposited in GenBank (Kelch & Baldwin, 

2003; Robba, Carine, Russell, & Raimondo, 2005; Susanna, Hidalgo, Vilatersana, & Ciencia, 2006). 

The Carduus database ITS sequences, which include the ITS-1, 5.8 rRNA gene, and ITS-2 complete 

sequences, and 18S and 28S ribosomal RNA gene partial sequences, are generally shorter (from 

686 to 737 bp) than those reported here. Blast analysis shows that the C. pycnocephalus sequence 
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obtained here is identical to those present in the database (EF123105.1, KT363916.1). 

Additionally, the C. nutans subsp. macrocephalus sequence is almost identical to those of C. 

nutans and C. nutans subsp. leiophyllus (98-99% identity) (AF443678.1, HQ540426.1, EF543521.1, 

KT249753.1, KC603920.1, KT363914.1, JX867642.1, KX167785.1). In particular, the C. nutans 

subsp. leiophyllus ITS sequence shows only one nucleotide variation versus the C. nutans ITS 

sequence. Conversely, in positions 70, 298 and 627, the C. nutans subsp. macrocephalus sequence 

has an adenine, while the C. nutans sequences already reported have a guanine, a cytosine, and a 

thymine, in the respective positions. No sequences belonging to the species C. argyroa and C. 

cephalanthus are present in GenBank, but BLAST alignment indicates the similarity of these 

sequences to those belonging to other Carduus species. This reveals that the ITS sequence has 

some conserved regions throughout the genus Carduus, even if variable nucleotide sites can 

discriminate between the individual species. The fact that the C. nutans subsp. macrocephalus 

sequence is almost identical to those of C. nutans and C. nutans subsp. leiophyllus may suggest 

that, in this case, this gene is not discriminatory at the subspecies level. 

3.4. PCR-RFLP analysis 

To better discriminate among the species, PCR-RFLP analyses were carried out. Three restriction 

enzymes were used to selectively cleave the resulting amplicons (Fig. 3C). The first four lanes of 

Fig. 5 show the undigested PCR products of the four Carduus species. From the RFLP analysis, it is 

possible to note that NdeI, ineffective on the other Carduus sequences, is able to discriminate C. 

nutans subsp. macrocephalus by giving two distinct fragments (512 and 295 bp, respectively). 

Conversely, StuI selectively cleaves only C. argyroa and C. pycnocephalus sequences, giving two 

diagnostic fragments (623 and 188 bp for C. argyroa, and 620 and 178 bp for C. pycnocephalus). 

Since the C. argyroa and C. pycnocephalus sequences are cleaved by StuI at the same sites, ApaLI 

was employed to discriminate between these two species. This enzyme is able to cleave only C. 
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pycnocephalus, releasing two diagnostic fragments of 508 and 290 bp, respectively. Lastly, the C. 

cephalanthus sequences show no cleavage sites for the three enzymes analyzed. These results 

show that it is possible to differentiate among the four species investigated with a combination of 

these three different restriction enzymes. 

 

4. Conclusion 

This study reports the first investigation of the phenolic acid and flavonoid profiles, and the ITS 

sequences and PCR-RFLP, of C. argyroa, C. cephalanthus, C. pycnocephalus and C. nutans subsp. 

macrocephalus from Sardinia. The differences in secondary metabolite profiles, defined by HPLC-

PDA-MS/MS analysis, together with Principal Components and Hierarchical Clustering Analysis, 

afforded their unequivocal discrimination. Similar results were obtained with biomolecular 

analysis, through ITS sequence and PCR-RFLP analyses. ITS sequences of C. pycnocephalus, C. 

nutans and C. nutans subsp. leiophyllus and other Carduus species are available in the database 

(Kelch & Baldwin, 2003; Robba, Carine, Russell, & Raimondo, 2005; Susanna, Hidalgo, Vilatersana, 

& Ciencia, 2006) while the ITS genes of C. argyroa, C. cephalanthus and C. nutans subsp. 

macrocephalus were here sequenced for the first time and deposited in GenBank. 

The complementary combination of the genetic and chemical approaches provides important 

information on little-investigated, but traditionally widely-used, plants and offers reliable 

discrimination of four morphologically-similar species belonging to the same genus. Moreover, 

chemical analysis detected interesting compounds with nutraceutical properties in the extracts 

investigated. This might support the traditional consumption and medicinal uses of these plants, 

and open new perspectives for further investigation of the compound(s) potentially responsible 

for the properties attributed to them. These findings may also promote the consumption of these 

herbs, including through the development of food supplements and functional foods. Moreover, 
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this approach can successfully be used for quality control of the species, e.g. in thistle-based 

commercial food products or traditional herbal remedy, for which their botanical and chemical 

composition must be quoted to assess origin, or because of regulatory requirements (e.g. food 

supplements). 
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Figure captions 

Fig. 1. Representative profiles of the four Carduus species (λ=330nm). Compounds are numbered 

as in Table 1. (A) Carduus argyroa; (B) Carduus cephalanthus; (C) Carduus pycnocephalus; (D) 

Carduus nutans subsp. macrocephalus 

 

Fig. 2. Statistical analysis of the 39 samples from the four Carduus species based on the 31 Carduus 

target compounds as variables. (A, B, C, D) PCA score and loading plots of samples from the four 

Carduus species. (E) Hierarchical cluster analysis. 

 

Fig. 3. Comparison of ITS sequences among the four Carduus species. (A) Structure of the rRNA 

gene cluster, arrows indicates the position of the primers (ITS1 and ITS4). (B, C) Carduus ITS 

sequence alignment is shown. Variations in the nucleotide composition among the species are 

shaded. NdeI, StuI and ApaLI sites are indicated by squared solid box, dotted box, and dashed box, 

respectively. 

 

Fig. 4. Hierarchical cluster analysis of Carduus species (numbers at the node indicate bootstrap 

values). (A) Neighbor Joining tree. (B) UPGMA tree. 

 

Fig. 5. Capillary gel electrophoresis analysis of PCR products of the four Carduus species ITS regions 

and the relative fragments produced by the NdeI, StuI and ApaLI restriction enzymes. Lanes: 1, a 

single product of about 811 bp is produced by C. argyroa; 2 a single product of about 807 bp is 

produced by C. nutans subsp. macrocephalus; 3, a single product of about 798 bp is produced by C. 

pycnocephalus; 4, a single product of about 785 bp is produced by C. cephalanthus; 5, C. argyroa 

PCR products are not digested by NdeI; 6, C. nutans subsp. macrocephalus PCR products digested 
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by NdeI give two major fragments of 512 and 295 bp, respectively; 7, C. pycnocephalus PCR 

products are not digested by NdeI; 8, C. cephalanthus PCR products are not digested by NdeI; 9, 

StuI cleaves C. argyroa ITS region, giving two fragments 623 and 188 bp long; 10, C. nutans subsp. 

macrocephalus PCR products are not digested by StuI; 11, StuI cleaves C. pycnocephalus ITS region, 

giving two fragments, 620 and 178 bp long; 12, C. cephalanthus PCR products are not digested by 

StuI; 13, C. argyroa PCR products are not digested by ApaLI; 14, C. nutans subsp. macrocephalus 

PCR products are not digested by ApaLI; 15, PCR products from C. pycnocephalus give two 

fragments, of 508 and 290 bp, when digested by ApaLI; 16, C. cephalanthus PCR products are not 

digested by ApaLI. 

 

Supplementary material 

Table S1. Sites and date of collection, voucher specimens, and GenBank accession numbers of the 

four Carduus species 

Table S2. Multiple Reaction Monitoring acquisitions 

Table S3. Sequence homologies of ITS sequences between each pair of Carduus sequences  

Fig. S1. Three dimensional PCA score plot of samples of the four Carduus species. 
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Table 1. List of identified and putatively-identified compounds in the four Carduus species. Each compound is quoted through its relative retention time, 
UV spectrum, molecular formula, pseudomolecular ions, molecular weight fragments obtained by Product Ion Scan mode (PIS), identified or tentatively-
identified compound names. The identification confidence value, the presence of the compounds in the Carduus species, and the references are also given. 
 
N

o
 RT 

(min) 

λmax 

(nm) 

Putative 

molecular 

formula 

[M – H]
+ 

m/z 

[M – H]
-
 

m/z 

Mol. 

weight 

g/mol 

MS
2
+ 

m/z 

MS
2
- 

m/z 

Compound  Name IC
b
 

Presence 

in Carduus 

species
C
 

References 

1
a
 7.282 325 C16 H18O9 355 353 354 163 191 5-O-Caffeoylquinic acid 

(chlorogenic acid) 

1 A, C, M, P (Dimitrova-dyulgerova et al., 2015; Li et al., 

2014; Marrelli et al., 2013) 

2
a
 9.075 325 C16 H18O9 355 353 354 163 191 4-O-Caffeoylquinic acid 

(Cryptochlorogenic acid) 

1 A, C, M, P (Li et al., 2014) 

3 19.88 255 

353 

C27 H30O16 611 609 610 303, 

121, 

127, 135, 

153, 

161 

301 Quercetin diglycoside  2 P (Dimitrova-dyulgerova et al., 2015; Jordon-

Thaden & Louda, 2003; Li et al., 2014) 

4 19.89 348 

254 

265 

C27 H30O16 611 609 610 287 

135 

137 

153 

161 

285 Luteolin O-diglucoside 2 M (Bain & Desrochers, 1988; Dimitrova-

dyulgerova et al., 2015; Jordon-Thaden & 

Louda, 2003) 

5 20.617 348 

253 

265 

C26 H30O16 581 579 580 287 

135 

137 

153 

285 Luteolin O-arabinosyl-

glucoside 

2 A, M (Cuyckens & Claeys, 2004; Li et al., 2014) 

6 20.815 348 

253 

265 

C26 H30O16 581 579 580 287 

135 

137 

153 

285 Luteolin O-arabinosyl-

glucoside isomer 

2 A (Cuyckens & Claeys, 2004; Li et al., 2014) 

7
a
 20.823 255 

351 

C27 H30O16 611 609 610 303 301 Quercetin 3-O-rutinoside 

(rutin) 

1 M, P (Dimitrova-dyulgerova et al., 2015; Li et al., 

2014; Marrelli et al., 2013) 

8
a
 21.351 255 

351 

C21 H20O12 465 463 464 303 301 Quercetin 3-O-glucoside 1 A, M, P (Li et al., 2014) 
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9
a
 21.651 348 

253 

265 

C21H18O12 463 461 462 287 

135 

137 

153 

161 

285 Luteolin 7-O-glucuronide 1 C, M, P (Cuyckens & Claeys, 2004) 

10
a
 21.758 349 

253 

265 

C21 H20O11 449 447 448 287 

135 

137 

153 

161 

285 Luteolin 7-O-glucoside 1 A, C, M, P (Cuyckens & Claeys, 2004; Li et al., 2014) 

11 23.233 329 C25 H24O12 517 515 516 163 191 Dicaffeoylquinic acid 3 C (Li et al., 2014) 

12
a
 23.702 265 

344 

C27 H30O15 595 593 594 287 285 Kaempferol 3-O-

rutinoside 

1 M, P (Li et al., 2014) 

13
a
 24.109 329 C25 H24O12 517 515 516 163 191 1,5-dicaffeoylquinic acid 1 A, C, M, P (Li et al., 2014) 

14
a
 24.231 265 

344 

C21 H20O11 449 447 448 287 285 Kaempferol-3-O-

glucoside 

1 A, C, M, P (Li et al., 2014) 

15
a
 24.257 329 C25 H24O12 517 515 516 163 191 3,5-dicaffeoylquinic acid 1 A, C, M, P (Li et al., 2014) 

16 24.257 348 

253 

266 

 653 651 652 449 

329 

287 

135 

137 

153 

161 

609 

447 

327 

285 

Luteolin acetyl 

diglycoside 

3 M (Cuyckens & Claeys, 2004) 

17 24.7 337 

266 

C27 H30O16 593 591 592 271 

119 

153 

163 

269 Apigenin O-rhamnosyl-

glucuronide 

2 A, M (Jordon-Thaden & Louda, 2003) 

18
a
 24.836 337 

266 

C21 H20O10 433 431 432 271 269 Apigenin 7-O-glucoside 1 A, M (Li et al., 2014) 

19 24.916 344 

252 

266 

C27 H34O17 595 593 594 301 299 Diosmetin arabinosyl-

glucoside 

2 C, E (Li et al., 2014) 
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20
a
 25.074 337 

266 

C21 H20O10 447 445 446 271 269 Apigenin 7-O-

glucuronide 

1 A, M, P (Li et al., 2014) 

21 25.221 344 

251 

266 

C27 H34O17 595 593 594 301 299 Diosmetin arabinosyl-

glucoside 

2 C, P (Li et al., 2014) 

22
a
 25.552 338 

267 

C28 H32O15 609 607 608 301 299 Diosmetin O-rhamnosyl-

glucoside (diosmin) 

1 C, P (Li et al., 2014) 

23
a
 26.061 329 C25 H24O12 517 515 516 163 191 4,5-dicaffeoylquinic acid 1 C, P (Li et al., 2014) 

24
a
 27.037 263 

343 

C21 H20O10 433 431 432 287 285 Kaempferol 3-O-

rhamnoside 

1 A, C, M, P (Al-Shammari et al., 2015; Jordon-Thaden & 

Louda, 2003) 

25 27.037 263 

343 

 667 665 666 463 

343 

301 

286 

623 

461 

341 

299 

284  

Diosmetin acetyl 

diglycoside 

3 M (Li et al., 2014) 

26
a
 30.232 349 

252 

266 

C15 H10O6 287 285 286 135 

137 

153 

161 

 Luteolin 1 A, C, M, P (Bain & Desrochers, 1988; Dimitrova-

dyulgerova et al., 2015; Jordon-Thaden & 

Louda, 2003; Li et al., 2014) 

27 32.678 347 

266 

 709 707 708 343 

301 

286 

665 

341 

299 

284 

Diosmetin diacetyl 

diglycoside 

3 M (Li et al., 2014) 

28
a
 33.168 337 

266 

C15 H10O5 271 269 270 119 

153 

163 

 Apigenin 1 A, C, M, P (Al-Shammari et al., 2015; Dimitrova-

dyulgerova et al., 2015; Li et al., 2014) 

29
a
 33.569 366 

265 

C15 H10O6 287 285 286 121 

137 

153 

165 

 Kaempferol 1 A, C, M, P (Al-Shammari et al., 2015; Dimitrova-

dyulgerova et al., 2015; Jordon-Thaden & 

Louda, 2003; Li et al., 2014) 

30
a
 33.64 345 

267 

C16 H12O6 301 299 300 258 

286 

256 

284 

Diosmetin 1 A, C, M, P (Li et al., 2014) 

31
a
 33.64 266 C17H14O7 331 329 330 153 161 Tricin 1 A, C, M, P (Li et al., 2014) 
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348 203 

315 
a
 Compounds identified by comparison with reference standards. 

b
 The Identification Confidence value is in agreement with the CAWG (2007) guidelines and indicates: Level 1: Identified compound (A minimum of two independent orthogonal data (such as 

retention time and mass spectrum) compared directly to an authentic reference standard; Level 2: Putatively annotated compound (similarity of chromatographic and spectral data to 

published data); Level 3: Putatively characterized class of compounds 
C
 A= C. argyroa; C= C. cephalanthus; M= C. nutans subsp. macrocephalus; P= C. pycnocephalus. 
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Supplementary material 

 

Table S1 Sites and date of collection, voucher specimens, and GenBank accession numbers of the 

four Carduus species 

Species Sites and date of 

collection 

Coordinates Voucher 

speciment 

GenBank 

Access. No. 

Carduus argyroa Decimomannu, 

27 May 2015 

(39°17'47.96"N - 

8°58'14.95"E) 

CAG-803 KY242483 

Carduus 

cephalanthus 

Capo Testa, 12 

June 2015 

(41°14'33.80"N – 

9°8'49.25"E) 

CAG-807 KY242486 

Carduus nutans 

subsp. 

macrocephalus 

Gennargentu, 18 

June 2015 

(39°57'35.77"N - 

9°19'12.46"E) 

CAG-802 KY242485 

Carduus 

pycnocephalus 

Monte dei Sette 

Fratelli, 21 May 

2015 

(39°20'43.60"N –  

9°17'43.74"E) 

CAG-805 KY242484 

 

Table S2. Multiple Reaction Monitoring acquisitions 

Compound MRM (m/z) ESI
+
 MRM (m/z) ESI

-
 

Chlorogenic acid 355163 353191 

Dicaffeoylquinic acid 517163 515191 

Apigenin 271119 

271153 

271163 

 

Luteolin 287127 

287135 

287137 

287153 

287161 

 

Kaempferol 287121 

287137 

287153 

287165 

 

Quercetin 303121 

303127 

303137 

303153 

303161 

303165 

 

Diosmetin 301258 

301286 

299256 

299284 
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Table S3. Sequence homologies of ITS sequences between each pair of Carduus sequences are 

shown 

 C. argyroa C. cephalanthus C. nutans subsp. 

macrocephalus 

C. pycnocephalus 

C. argyroa 100% 93% 95% 94% 

C. cephalanthus 93% 100% 92% 92% 

C. nutans subsp. 

macrocephalus 

95% 92% 100% 94% 

C. pycnocephalus 94% 92% 94% 100% 

 

Fig. S1. Three dimensional PCA plot of samples of the four Carduus species. 
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