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Recent advances in nanobiotechnology and nanomaterials are providing novel functional 

agents that hold great potential in several imaging-based approaches for cancer diagnosis and 

therapy.[1] Photoacoustic (PA) imaging is a hybrid imaging technique for non invasive 

visualization of tissue structures that combine optical excitation with ultrasound detection, 

exploiting the PA effect.[2] Thanks to the high spatial resolution and imaging depth that this 

modality can provide, the endogenous PA contrast from naturally occurring tissue 

cromophores, such as hemoglobin and melanin, allows monitoring anatomic and 

physiological changes in several diseases as well as following treatment response.[3] Notably, 

photoacoustic imaging has already been exploited for visualizing human breast cancer based 

on the intrinsic optical absorption contrast.[4] However, intrinsic PA contrast is usually small 
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and this has prompted the search for exogenous contrast (e.g. organic dyes, quantum dots, 

carbon nanotubes, gold nanorods and other platforms) to enhance the role of this imaging 

modality as diagnostic tool.[5] It has been shown that these agents may markedly improve 

resolution and sensitivity of PA imaging and the quest for novel materials with improved 

optoacoustic properties, optimal biodistribution and low cytotoxicity continues to be under 

intense scrutiny to expand PA imaging applications.[6] In this context, materials based on 

naturally occurring biomolecules are receiving great attention due to the obvious 

biocompatibility they may offer. 

Here, we report a novel melanin-based PA contrast agent, as an efficient probe for assessing 

tumor vasculature properties that allows, for the first time, the set-up of a Dynamic Contrast 

Enhanced (DCE)-PA approach to monitor vascular changes following an anti-angiogenic 

treatment. 

Melanin is a natural pigment found widespread in nature including human skin. Dark-brown 

melanin, or eumelanin, is a macromolecular insoluble structure formed by high-molecular 

weight polymeric chains with a broad set of biological functions, remarkable for their 

protective role in oxidative stress, as anti-oxidant, free radical scavenger and metal ion 

storage.[7] Moreover, the broad absorption spectrum of melanin and its good stability in 

physiological environments makes it well suitable for PA imaging in live animals.[8] Recently, 

PA probes based on melanin-like nanoparticles have been proposed. These nanoparticles were 

prepared from synthetic melanin granules dissolved in basic conditions and sonicated to limit 

aggregation (i.e. to improve their dispersion in aqueous solutions) or by synthesis of artificial 

melanin models from chemical oxidation of dopamine followed by linear polymerization.[9] 

As recently pointed out, the capability to control the aggregation state of melanin and hence 

its solubility is essential for future developments of melanin as functional materials within the 

PA field.[10] Importantly, melanin-containing nanoparticles can be exploited for multimodality 

imaging, owing to ability of the melanin macromolecules to chelate metal ions, as well as for 
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drug-loading systems due to its binding capabilities through electrostatic and π-π 

interactions.[11] However, the aforementioned methods have some limitations associated to the 

fact that sonication of the melanin granules often results in a marked degradation of the 

original structure. Therefore we adopted a novel strategy for obtaining water soluble melanin 

derivatives that retain the melanin properties, with dimensions that are optimal in term of 

pharmacokinetic and biodistribution within tumors. 

Importantly, exogenous agents are commonly exploited in several imaging modalities for 

assessing tumor microvasculature properties. Dynamic Contrast Enhanced (DCE) imaging is a 

well established technique that describes the acquisition of baseline images followed by a 

series of images acquired over time after the intravenous administration of a contrast agent.[12] 

The characteristic wash-in and wash-out enhancement curves of the contrast agent provide 

information on the tumor vascular compartment. Notably, DCE is a useful tool for providing 

early measurement of vascular functional changes after therapeutic treatment and therefore it 

is considered as a useful biomarker of drug treatment response.[13] In addition, agents with 

size close to serum albumin can provide a better assessment of tumor vessel permeability and 

monitor more precisely changes upon anti-angiogenic treatment.[14]  

In this study, we prepared highly water soluble Melanin Free-Acid (MFA) starting from 

synthetic melanin granules (sMG) through a slight modified “bleaching” procedure (Figure 

1a). sMG were synthesized by enzymatic (tyrosinase) oxidation of L-dopa.[15] Solubilization 

of sMG is typically achieved by treatment with hydrogen peroxide in alkaline solution.[16] To 

remove the solubility-restraining crosslinks but still preserving the overall chemical nature of 

the pigment, we applied a light oxidative breakdown of the melanin structure under mild and 

neutral pH conditions for a short period of time. Briefly, synthetic sMG were treated with 0.3 

M H2O2 in 0.12 M ammonia buffer at pH 7 for 20 min at 30 °C. After this mild treatment, the 

solution phase became dark colored because of the partial solubilization of sMG to yield the 

MFA derivative (Figure 1a and 1b). 
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The obtained MFA exhibited excellent stability and water solubility up to 10 mg/ml, with no 

precipitation after storage at 4°C for several months (Figure 1b). To further improve 

dispersibility for applications in living animals, polyethylene glycol (PEG-3000) chains were 

conjugated to MFA. The MFA-PEG derivative (Figure 1b) has been obtained by a cross-

linking reaction between the amine groups of NH2-PEG3000-NH2 and the carboxylic groups of 

MFA. Purification was carried out by gel-filtration chromatography on a Superdex 200 

10/300 GL column. The ratio of PEG chains per MFA molecule was determined to be 3:1 by 

1H NMR spectroscopy using sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4 as internal 

standard (data not shown). The obtained MFA-PEG derivatives maintained the brown-to-

black color of the parent MFA (Figure 1b). 

Dynamic light scattering data showed an average diameter of 6.9 ± 1.2 nm for MFA that 

reached 10.5 ± 1.8 nm for the PEG-functionalized MFA (Figure S1). The size of the 

synthesized MFA derivatives appears slightly smaller than that of natural occurring melanin, 

which is 20-300 nm in diameter and spherical in shape.[17] From the point of view of a 

biological application, small-size systems are expected to be more suitable for biological 

applications than larger particles, because they are less likely to be rapidly recognized and 

cleared by macrophages by complement receptor-mediated phagocytosis and they can more 

easily avoid cellular internalization. [18] The similar absorption spectrum of MFA-PEG and 

MFA demonstrated that the PEG-modification did not influence the absorption properties of 

MFA and that both MFA and MFA-PEG possess similar optical properties as the parent 

melanin (Figure 1c).[17] 

Stability of MFA nanoparticles in water was assessed by DLS measurements over a period of 

3 months, with no changes in size (Figure S2). The physiological stability of MFA and MFA-

PEG was assessed in cell culture medium (DMEM) and in PBS added of 10% fetal bovine 

serum, at 37°C. No changes in PA properties and in absorbance at 700nm were observed after 

incubation up to 24h in both media (Figure S3 and S4, respectively). These data suggest that 
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both MFA and MFA-PEG hold a good chemical and physiological stability and are therefore 

suitable for in vivo applications. 

To assess the potential of MFA and MFA-PEG to be used as PA agents, we investigated the 

detection sensitivity of their aqueous solutions at increasing concentration, from 0.6 to 2.5 

mg/ml. The PA signal increased with the concentration of the MFA and MFA-PEG, with 

MFA-PEG invariantly showing higher optoacoustic signal intensities at all the investigated 

wavelengths (Figure 1d). MFA and MFA-PEG yield the best PA response, with maximum 

ultrasound emission, upon excitation at ca. 700 nm value. This wavelength appears well 

suitable for in vivo work due to the low absorption of de-oxygenated blood at this wavelength. 

In fact, the PA signal generated at ca. 700 nm by a blood sample added of 1.25 mg/ml MFA 

and MFA-PEG, respectively, was significantly higher of the one obtained from the neat blood, 

as shown in Figure S4. At higher excitation wavelengths, the MFA containing phantoms 

display lower PA responses, in comparison to the pure blood sample, reflecting the low PA 

efficiency of MFA and MFA-PEG at wavelength exceeding 750 nm (Figure 1d). At 700 nm 

both MFA and MFA-PEG displayed a linear relationship between PA signal and 

concentrations (R2 = 0.996 and 0.987 for MFA and MFA-PEG, respectively, Figure 1e). The 

PA intensity is overlaid with the ultrasound image in Figure 1f, to obtain a tomographic 

composite image, displaying higher intensities for the MFA-PEG compound. 

Tissue culture experiments were used in vitro for pilot toxicity studies. The MFA and MFA-

PEG were first tested with J774 macrophage cells plated in 96 well plates. Increasing 

concentrations of MFA and MFA-PEG were added to the culture media and allowed to 

incubate for 24 h. Analysis with the MTT viability assay indicated no statistically significant 

decrease in cell viability even at highest concentrations of 2.5 mg/ml, for both MFA and 

MFA-PEG (Figure S5). 

The biodistribution of MFA-PEG was carried out in BALB/c mice bearing a subcutaneous 

HER2 positive breast tumor generated by injection of ca. 2.5·105 TS/A cells. All animal 
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experiments were performed complying with the EU guidelines for the care and use of 

laboratory animals and with our University Ethical committee’s requirements and according 

to a protocol approved by the Institutional animal care. Mice were injected intravenously with 

MFA-PEG labeled with a fluorescent dye (S-07186, Ferrania Technologies, Italy), named 

MFA-PEG-Cy5 (25 µl of 0.06 mM MFA-PEG-Cy5 solution) that shows a fluorescence 

emission peak at 660-670 nm (Figure S6). The dynamic optical imaging data revealed a rapid 

distribution and elimination of MFA-PEG-Cy5 in the tumor. Indeed, fluorescent intensity in 

the tumor reached a high level in the first 5 min after injection of MFA-PEG-Cy5 up to 30 

min, followed by a quite fast wash-out (Figure S7). MFA-PEG-Cy5 showed a good 

selectivity in the tumor as a significantly lower signal was detected in the muscle at all time 

points (Figure S7). Ex-vivo evaluation of organs 4 h post injection clearly showed that the 

highest fluorescence emission was associated with the tumor tissue. MFA-PEG-Cy5 was also 

found in the liver and the kidneys, the main organs involved in the elimination of the 

compound, while no specific signal was detected in the heart, lung, spleen and muscle. In all 

the organs explanted from control mice treated with the unlabeled compound a low signal, 

caused by tissue autofluorescence, was observed (Figure S8). The capability of MFA and 

MFA-PEG for tumor imaging was validated by performing in vivo PA imaging in the HER2 

positive TS/A tumor model. Three groups of mice (n=4 for each group) received intravenous 

administration of 100 µL of a saline solution, or of MFA and MFA-PEG solutions with 

concentration of 2.5 mg/mL. After systemic administration of MFA, the PA signal in the 

tumor gradually increased during the first 30 min, in analogy to what observed in the optical 

imaging experiments. The average increase, upon subtraction of the baseline PA signal, was 

in the range 0.05-0.10 a.u. (Figure 2a). Upon the systemic administration of MFA-PEG at the 

same dose, a marked and higher increase of the PA signal was observed in the tumor area, 

with an average increase between 0.10-0.20 a.u. (Figure 2b). The higher contrast 

enhancement obtained for the MFA-PEG solution likely reflects the enhanced optoacoustic 
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properties of the MFA-PEG in comparison to the MFA compound. Pre-contrast PA images 

showed weak PA response in the region of interest, essentially due to the intrinsic absorption 

of oxyhemoglobin and deoxyhemoglobin in the NIR region (Figure 2d, 2e and 2f). PA 

images overimposed onto the B-mode images showed a heterogeneous distribution of the 

signal, with a slight prevalence in the rim region in comparison to the core area (Figure 2d 

and 2e). The good PA contrast generated by MFA and MFA-PEG can be accounted in terms 

of the enhanced permeability and retention (EPR) effect within tumors. The administration to 

the control group of the saline solution did not increase at all the PA signal in the first 15 min, 

with a successive slight reduction (Figure 2c and 2f). These results give support to the view 

that the enhanced PA signal in tumor is due to the passive extravasation and accumulation of 

the MFA and MFA-PEG derivatives. 

A further step in tumor characterization is represented by the assessment of tumor vascular 

permeability. To examine the ability to visualize dynamically tumor vessel permeability, a 

DCE-PA imaging experiment was performed upon the injection of MFA-PEG into the tail 

vein. The uptake of MFA-PEG over time was monitored within the tumor region, from which 

time-intensity PA signal can be extracted and used to describe the microvasculature features 

(Figure 3a). The DCE-PA curve showed a slow but constant uptake into the tumor up to 15 

min post-injection. Additionally, to validate the DCE-PA approach for assessing changes in 

tumor vascularization, we treated a group of mice with tumor necrosis factor-α (TNF-α), an 

agent used in clinical trials known to increase vascular permeability and uptake of nano-sized 

systems into tumors [19]. Thus, we carried DCE-PA imaging on mice bearing subcutaneous 

TS/A tumors after intravenous injection of saline solution or of TNF-α. Post-treatment images 

were acquired after 3 h to allow sufficient time for tumors to respond to TNF-α treatment.[20] 

Averaged DCE-PA time curves are shown in Figure 3b for control and TNF-α treated group, 

respectively. As compared to the control group, the PA enhancement curve for the TNF-α 

group significantly increased upon time after the MFA-PEG injection. To quantify the 
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differences between the two groups, we calculated the area under the curve (AUC) at several 

time points from the DCE-PA curves. A relatively small increase in AUC values was 

observed up to 6 min post injection, which significantly increased from 8 to 12 min (Figure 

3c). Clearly the DCE-PA imaging demonstrated that the increase of PA contrast is specific for 

the enhanced accumulation of MFA-PEG molecules in tumors due to the TNF-α treatment. 

In conclusion, we have reported a new synthetic way to produce melanin-based nanosized 

systems possessing high water solubility as an active platform for PA imaging. These PA 

nanoscale agents possess relatively small size, good optoacoustic properties and excellent 

biocompatibility that point to their use as passive tumor targeting agents. Moreover, for the 

first time, we showed that these agents can be exploited within a DCE-PA approach for the 

assessment of changes in tumor vasculature after treatment. In addition, owing to the presence 

of amine moieties on the surface of these particles, one can envisage to exploit these 

anchoring points for the conjugation of suitable vectors for in vivo active targeting of specific 

molecular markers.[21] 
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Figures 

 
 

Figure 1. Schematic representation of the synthesis of MFA and MFA-PEG (a). Pictures of 

MFA and MFA-PEG solutions (2.5 mg/ml) dissolved in H2O after 4 months of storage in dark 

conditions at 4°C (b). UV-vis absorption (c) and PA spectra (d) of MFA and MFA-PEG in 1x 

PBS at pH=7.4. PA intensities as a function of MFA and MFA-PEG concentration in PBS (e). 

Representative PA images of MFA and MFA-PEG solutions in the range of concentrations 

0.625 - 1.25 – 2.5 mg/ml each excited by pulsed laser at 700 nm (f). 
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Figure 2 Average PA signal changes upon intravenous administration of 0.1 mL of MFA (a) 

and MFA-PEG (b) with concentration of 2.5 mg/mL or of 0.1 ml PBS solution (c) in breast 

tumor bearing mice (n=4) at 700 nm. Representative optoacoustic images in transverse 

section of tumor before and 5 min after intravenous injection of MFA (d), MFA-PEG (e) and 

PBS (f) at 700 nm. All data are expressed as mean ±SD. 
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Figure 3 Typical time PA intensity curve for intravenous bolus injection of 80 µL of MFA-

PEG (2.5 mg/mL) in the tumor region (a). Averaged dynamic contrast enhanced PA curves 

(PA Enh%) upon MFA-PEG tail vein injection for control group (n=3) and for TNF-α treated 

group (n=4) (b). Area under the curve (AUC) values at different time points calculated on the 

corresponding dynamic contrast enhanced curves for control and TNF-α treated mice. 
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Experimental Section 
 
Synthesis of MFA 

300 mg of synthetic melanin (sMG) were treated for 20 min at 30 °C under stirring with 

freshly prepared bleaching solution (0.2 ml per mg of melanin), by mixing stock solutions of 

ammonia (solution A) and hydrogen peroxide (solution B) in the 1:1 v/v ratio. Solution A was 

composed of NH3 (3.00%), EDTA · 4Na · 2H2O (0.05%), and H2O (96.95%); solution B was 

composed of H3PO4 (1.76%), 30% H2O2 (9.40%), and H2O (88.84%). EDTA was added to 

solution A to remove chelated iron ions during the reaction of melanin synthesis. The 

obtained solution was treated with concentrated HCl to lower the pH to ~2. After two hours, 

the brown-black precipitate (Melanin Free Acid, MFA) was separated by centrifugation (3000 

rpm for 5 min) from the supernatant and washed several times with H3PO4 10 mM. MFA was 

finally dried in vacuum obtaining 143 mg of dark powder (yield 47%). 

 

Synthesis of MFA-PEG3000 

10 mg of MFA were dissolved in 2 ml of 0.1 M buffer phosphate solution (pH 6.6) and 

SulfoNHS (N-hydroxysulfosuccinimide) (26 mg). EDC (N-(3-dimethylamminopropyl)-

ethylcarbodiimide hydrochloride) (28 mg) was dissolved in 400 μl of buffer and added to the 

MFA solution under stirring. A great excess of H2N-PEG3000-NH2 (150 mg) in 1 ml of 
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phosphate buffer was added and the mixture was stirred overnight at room temperature. 

Purification of product by unattached PEG was performed by gel-filtration chromatography 

on a Superdex 200 10/300 GL column equilibrated with 10 mM sodium phosphate containing 

150 mM NaCl (pH 7.2) on a FPLC Akta Purifier 100. The purified fraction containing MFA-

PEG was collected and freeze-dried. The black-brown solid obtained was dissolved in 2 ml of 

bidistilled water and desalted using a PD10 column. 1H NMR spectroscopy analysis was 

performed by dissolving 1 mg of MFA-PEG in 600 µl of D2O and in 50 µl of sodium 3-

(trimethylsilyl) propionate-2,2,3,3-d4 (TSP) 5 mM. The number of PEG chains per MFA was 

determined to be 3 from the ratio of peak area of –OCH2CH2-PEG3000 group at 3.65 ppm and 

of –CH3 TSP group at 0 ppm. 

 

Synthesis of MFA-PEG3000-Cy5  

To a solution of Cy5 (S-07186) (50mg, 0.07 mmol) in dimethylacetamide (3 ml) were added 

NHS (20 mg, 0.17 mmol) and EDC (26 mg, 0.13 mmol) under stirring at room temperature 

for 3 h. The mixture was then added to a solution of H2N-PEG3000-NH2 (0.15mmol, 460 mg) 

in DMA (6 ml); then 100 μl of N,N-diisopropylethylamine  was added and stirred for 24 h at 

room temperature. The product was precipitated in 25 ml of diethyl ether, and then was dried 

under reduced pressure and used without further purifications. 1.5 mg of MFA in phosphate 

buffer (0.1M, pH 6.5, 1 ml) was cooled to 0 °C and EDC (2 mg, 10 mmol) and sulfoNHS (2 

mg, 10 mmol) in phosphate buffer (0.5 ml) were added. The mixture was allowed to stir for 1 

h. Then Cy5-PEG3000-NH2 (14.0 mg, 3.9 mmol) was added and the mixture was stirred 

overnight. Purification of product by unattached Cy5-PEG was performed by gel-filtration 

chromatography on a Superdex 200 10/300 GL column equilibrated with 10 mM sodium 

phosphate containing 150mM NaCl (pH 7.2) on a FPLC Akta Purifier 100. The purified 

fraction contains MFA-PEG3000-Cy5 was collected and freeze-dried, dissolved in 1 ml of 

bidistilled water and desalted using a PD10 column. 
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Stability of MFA and MFA-PEG 

Long-term stability of MFA and MFA-PEG in water (0.5 mg ml-1) was assessed by measuring 

the hydrodynamic size up to 90 days of storage at 4°C. In addition, physiological stability of 

MFA and MFA-PEG (0.5 mg ml-1) was assessed in cell culture medium (DMEM) and in a 

serum solution (10% fetal bovine serum, FBS, in PBS) after incubation at 37 °C for 24 h. 

Absorption values and PA images at 700nm were collected at 0 h, 2 h, 4 h and 24 h. 

 

Cytotoxicity assay 

The viability and proliferation of J774 macrophagic cells were evaluated by methyl thiazolyl 

tetrazolium (MTT) assay. Typically, J774 cells were incubated in the culture medium 

(DMEM) at 37 °C in an atmosphere of 5% CO2 and 95% air for 24 h. Subsequently, the 

culture medium was removed. The cells were incubated in culture medium containing MFA 

and MFA-PEG with different concentrations for another 24 h and washed with medium twice. 

100 μl of the new culture medium containing MTT reagent (10%) was added to each well of 

the 96-well assay plate and incubated for 4 h to allow the formation of formazan dye. After 

removal of the medium, the purple formazan product was dissolved with DMSO for 15 min. 

Finally, the optical absorption of formazan was measured at 570 nm by iMARK microplate 

reader (Bio-Rad). 

 

Mouse Models 

BALB/c mice (Charles River Laboratories) were maintained at the Molecular Biotechnology 

Center, University of Turin and treated in accordance with University Ethical Committee and 

European guidelines under Directive 2010/63. All animal experiments were performed in 

compliance with the Guidelines for the Care and Use of Research Animals established by our 

University Animal Studies Committee. Murine breast cancer HER2+ cells (TS/A) suspended 
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in 100 μl of PBS were inoculated subcutaneously in the shoulder of 4−6 weeks old female 

BALB/c mice. When the tumors reached 0.5−0.8 cm in diameter, the tumor bearing mice 

were subjected to PA imaging studies. 

 

Biodistribution and Ex Vivo Tissue Analysis  

Optical imaging was performed with the IVIS 200 small animal imaging system 

(PerkinElmer). A customized filter set, exciting at 640 nm and acquiring at 680 nm, was used 

for data acquisition. Identical illumination settings (f-stop/field of views/binning/acquisition 

time, 2/12.8/8/1 s) were used to acquire all the images, and fluorescence emission was 

normalized to average radiance (p·s-1cm-2sr-1). Images were acquired and analyzed with 

Living Image Software 3.0.4 (PerkinElmer). Mice bearing TS/A subcutaneous tumors were 

injected intravenously with 20 µl of 0.06 mM MFA-PEG-Cy5 solution, anesthetized with 

2.5% isoflurane (Abbott Laboratories) and then analyzed with the IVIS 200 after 5-10-15-20-

30 min, 2 and 4 h. After 4 h mice were sacrificed for ex vivo biodistribution studies. 

Explanted organs were cleaned from surrounding tissue, washed in PBS placed on a piece of 

laboratory film and analyzed with the IVIS 200. 

 

PA Imaging of Phantoms 

Different concentrations of MFA and MFA-PEG aqueous solutions ranging from 0.625 to 5 

mg ml-1 were filled into polyethylene capillaries and then the capillaries were laid on the 

surface of solidified 1% agarose gel. The capillaries were further covered with thin 1% 

agarose gel to make the surface smooth. The VevoLAZR PA imaging system (VisualSonics 

Inc., Toronto, Canada) with a laser at excitation wavelengths in the range 680 to 970 nm with 

5 nm step and a focal depth of 10 mm was used to acquire PA and ultrasound images. 

Stability experiments were carried out with the with the LOIS-3D Laser Optoacoustic 

Imaging System (Tomowave Systems, Houston TX), equipped with a q-switched Nd:YAG 
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pumped Ti:Sapphire laser (Quanta Systems, Solbiate Olona, Italy) with laser pulse set to 

700nm. Optoacoustic images were acquired by rotating the phantoms 360 deg submerged in 

degassed distilled water at constant temperature of 30°C. 

Image analysis was carried out using the respective proprietary software. Briefly, 

quantification analysis was performed on the PA images with ROIs drawn over the sample on 

the PA images. 

 

PA Imaging of Tumor Bearing Mice  

Mice bearing TS/A tumors were anesthetized with 1-2% isoflurane in oxygen then depilated 

using a combination of shaving and application of nair cream (Veet), which was removed 

with moist gauze. Anesthetic depth was maintained throughout the image acquisitions, with 

mice oriented ventral side up in the animal holder and body temperature was monitored 

continuously with a rectal thermometer and kept at 37°C. PA imaging was performed using 

the same VevoLAZR PA system as for the in vitro study. MFA (2.5 mg/ml), MFA-PEG (2.5 

mg ml-1) and saline solutions were administered intravenously through the tail vein in a 

volume of 100 µL. Quantification analysis of PA signals was performed on the PA images by 

subtracting images recorded at 700 nm at several time points (1, 5, 15 and 30 minutes) post-

injection to the PA signal intensity before the injection. 

 

Dynamic Contrast Enhanced (DCE)-PA Imaging 

Mice bearing TS/A tumors were photoacoustically imaged 3 h after tail vein administration of 

100 μl of TNF-α at 10 μg/ml (n=4, TNF-α treated) or of 100 μl of saline solution (n=3, 

control) using the same VevoLAZR PA system as for the in vitro study. Mice were 

anesthetized with 2% isoflurane in oxygen and placed in lateral position. 2D PA images 

passing throughout the central tumor region were acquired by exciting at 700 nm with a 

sampling rate of ca. 6s. Images were acquired before (30s of baseline acquisition) and after 
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intravascular tail vein injection of 80 µL of MFA-PEG (2.5 mg ml-1) for 15 min. The mean 

PA intensity along the first 30s images before contrast injection was defined as the pre-

contrast PA signal baseline (PApre). PA signal enhancements were calculated at each time 

point of the dynamic scan, according to Eq. [1]: 

 
( )

pre

pre

PA
PAtPA

tPAenh
−

=
)(

)(  

where in each voxel PA(t) is the PA intensity at time point t. The area under the PA 

enhancement curve (AUC) was calculated integrating the PA enhancement curve at several 

time points (120, 360, 480 and 720 s) using the trapezoidal rule. Mean AUC values were 

calculated within the tumor region for each group. 

 
 
 
 
 

 
Figure S1. Representative DLS diagram of MFA and MFA-PEG. 
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Figure S2. DLS data of MFA (0.5 mg/ml) after storage at 4°C under dark over a period of 3 

months. 

 

 
Figure S3. Normalized absorbance and PA signal intensities of MFA and MFA-PEG (0.5 

mg/ml) dissolved in cell culture medium (DMEM) or in serum (10% fetal bovine serum) after 

2, 4, and 24h in comparison to freshly prepared solutions. 
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Figure S4. PA signal intensities of MFA and MFA-PEG (1.25 mg/ml) in presence of full 

blood. 

 
 
 

 
Figure S5. Cytotoxicity studies of MFA (a) and MFA-PEG (b). In vitro viability of J774 

macrophagic cells treated with MFA and MFA-PEG solutions at concentrations of 0.5, 1.0 

and 2.5 mg/ml for 24h. The percentage of cell viability of treated cells was calculated relative 

to that of cells treated with the same volume of PBS. Error bars represent standard deviation 

of three independent experiments, each performed in triplicate. 
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Figure S6. Absorption and emission spectra for the fluorescent MFA-PEG derivative (MFA-

PEG-Cy5). 

 

 

 

 

 
Figure S7. Mean fluorescence intensity in the tumor and muscle regions of interest (ROIs) as 

a function of time after intravenous injection of 20 µL of 0.06 mM MFA-PEG-Cy5 solution. 
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Figure S8. Fluorescence intensity (mean ± SEM) of several tissues explanted from mice 

sacrificed 4 h after intravenous injection of 20 µL of 0.06 mM MFA-PEG-Cy5 solution or of 

PBS (CTL). 
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