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Abstract. The cloud environment is increasingly appealing for the HPC commu-
nity, which has always dealt with scientific applications. However, there is still
some skepticism about moving from traditional physical infrastructures to virtual
HPC clusters. This mistrusting probably originates from some well known factors,
including the effective economy of using cloud services, data and software avail-
ability, and the longstanding matter of data stewardship. In this work we discuss the
design of a framework (based on Mesos) aimed at achieving a cost-effective and ef-
ficient usage of heterogeneous Processing Elements (PEs) for workflow execution,
which supports hybrid cloud bursting over preemptible cloud Virtual Machines.
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1. Introduction

In the HPC landscape, workflows play a very important role for scientific computing and
application coordination, because they provide means to formalize and organize complex
scientific processes by supporting the modeling, execution and monitoring of the data
analysis process. In this paper we mainly focus on Bioinformatics workflows, commonly
referred as pipelines. They typically exploit a pure Data flow behavior [7].

For scientists to switch to the cloud for their analysis and computations, an important
metric to consider is the cost for resource usage, taking into account application’s work-
load and performance requirements. Typically, the cost per unit of time of Infrastructure-
as-a-Service (IaaS) grows in a linear-affine fashion with Virtual Machines (VMs) relia-
bility, core count, memory size and storage (in increasing order of weight); VMs execut-
ing tasks using only a fraction of their cores are entirely payed. Bioinformatics pipelines
are typically long-running and performance-demanding applications. Nowadays, their
execution on cloud might be a quite expensive option.

Notwithstanding, the cloud makes it possible to execute a scientific workflow with a
close to zero investment in infrastructures, according to the pay-per-use model. Also, the
cloud execution model offers a much more dynamic execution model with respect to tra-
ditional HPC clusters. With their technically unbound resource availability, several pub-
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lic cloud providers offers the elasticity feature, meaning that VM count can be scaled up
or down to adapt to workload variations over independent tasks. The idea of elasticity is
normally bound to auto-scaling techniques, consisting in pre-configured scaling policies.
While this concept mostly applies to uniform clusters, we envision elasticity coupled
with a complementary adaptive mechanism specifically designed to reduce the cost of
execution of scientific workflows in cloud environments. We call this feature plasticity. It
is designed to support the execution of workflows on a hybrid cloud, i.e. heterogeneous
clusters of VMs with different size and reliability. We will show that this makes possi-
ble to execute the workflow using generally smaller and cheaper (i.e. preemptive) VMs,
while guaranteeing the correct termination of the workflow execution. Specifically, we
distinguish PEs using three plasticity features: 1) core count – #vcpus ∈ N, 2) memory
size – #vram ∈ N, and 3) preemptibility – preempt ∈ {T,F}, which is the possibility of
sudden and unavoidable termination.

In this work we focus on plasticity as mechanism for adaptive execution of work-
flows that complement elasticity. We give a definition of an execution model of a hy-
brid cloud, and we explain how plasticity helps in defining schedule and provisioning
strategies that support the execution of scientific workflows over heterogeneous hybrid
clusters. We also depict the components that support our execution model, describing
their role in maintaining ad adaptive infrastructure that can efficiently host tasks exe-
cution, adhering to user’s QoS requirements. Section 2 provides a background on sci-
entific workflows with a focus on the existing facilities for their description and execu-
tion; in Section 3 the hybrid cloud model is defined, explaining the concepts that support
plasticity; Section 4 illustrates the main components of our infrastructure and describes
their implementation; Section 5 concludes this work and gives some details about future
perspectives.

2. Background

Different stages of a scientific workflow are just fundamentally different, and have dif-
ferent parallelism, memory access and data access requirements. The cloud paradigm
can help in addressing these requirements [5]; for instance, on-demand resources reflect
a pay-per-usage model. Many cloud vendors provide also preemptible resources, that al-
low to run cloud instances at a much lower price, with the drawback that such instances
can be terminated by the service provider.

In this section we will review some core aspects upon which this work deploys,
starting from the description of workflows to their execution on distributed computing
environments, with a discussion of related works.

2.1. Workflow description

A workflow is modeled as a process made up of multiple steps or tasks arranged as a
Directed Acyclic Graph (DAG), where each node of the DAG is an activity that needs
to be conducted and that is characterized by a number of parameters, which are named
input or output place-holders with an associated data-type or schema. Also, each task can
be characterized with extra-functional attributes, such as plasticity features. Tasks output
are connected to the inputs of downstream steps. They are DAG edges and represent data-
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Figure 1. Sample workflow with ten tasks. Nodes represent computational tasks, edges are data dependencies
between tasks

and control-flow dependencies between tasks (see Figure 1). A task becomes executable
(or fireable) as soon as all input parameters are available. At any point in time, all fireable
tasks are independent and can be executed in parallel.

One effort to standardize workflow description and analysis tools – in a way that
makes them portable across a variety of software and hardware environments – is the
Common Workflow Language (CWL) [6]: workflow steps are described using CWL’s
Domain Specific Language (DSL), which details inputs, outputs and commands to exe-
cute. Such description can include annotations that qualify the job type and job’s resource
requirements, helping job schedulers to best accommodate these job types. Similar ap-
proaches to a standard formal description language for workflows include the Workflow
Definition Language (WDL) [23] and Yet Another Workflow Language (YAWL) [21].

2.2. Workflow execution and task scheduling

Workflow execution on distributed HPC platforms requires a scheduler able to dispatch
tasks to computing resources. Here we introduce some basic concepts of job scheduling
and discuss some of the existing schedulers. A review of HPC job schedulers, with a
classification and a comparison of the most representative ones, can be found in [19].

A scheduler (also known as batch system, Resource Manager System, or workload
automation) is responsible for managing the tasks listed in a job queue, in which jobs
wait to be scheduled. Job queues may include different types of jobs, each characterized
by different priorities, estimated execution time and resource requirements.

A job scheduler is thus in charge of: 1) manage job placement into computing re-
sources; 2) run the job; 3) report the outcome of the execution; 4) provide a failure re-
covery mechanism.

Schedulers are a primary component of a scalable computing infrastructure, because
they control all the work on the system and directly impact the overall system efficiency.
Traditional HPC schedulers include PBS [12], GridEngine [11], HTCondor [20] and
Slurm [25]. These schedulers are fully featured tools that provide queues and resources
management and job scheduling features. Each of them has peculiar features that make
it better suitable for specific workloads.

On the other end, Apache Mesos [13] makes resources available for scheduling and
carries out the logistics of launching and monitoring tasks: in a similar way that an op-
erating system manages access to the resources on a desktop computer, Mesos enables
the partitioning of a pool of compute resources among many scheduling domains, and
ensures that applications have access to the resources they need.



2.3. Related works

There exist several frameworks and libraries for workflow description and execution: a
reasoned list of existing tools, with a discussion and classification of workflow manage-
ment solutions is given in [17].

Many tools implement abstract workflow description languages through general-
purpose language bindings (such as Python, Java, etc.), enhancing expressiveness and
portability and making the abstract representation an executable application. Among
such frameworks, we mention Nextflow [9], Snakemake [16], and Toil [22]. Using these
packages, workflows can be written upon general-purpose programming languages,
though exposing a different specific grammar for workflow definition, and possibly al-
lowing in-line code of various scripting languages.

The majority of frameworks are built upon implicit wild-card rules definition (like in
a Makefile), but use high-level languages to improve logic functionality and code read-
ability. They allow to define file transformation rules, while the framework engine builds
the entire topology upon execution. Differently, Toil is a class-based framework, which
inherits the OOP paradigm. It is a Python workflow engine that offers explicit APIs for
defining task dependencies from within task methods. It is also one of the few frame-
works providing extensive support for CWL, including facilities for workflow analysis
and execution on batch systems.

Workflow Management Systems (WMS) bundle together the features listed above,
providing a high-level (often graphical) tool that is agnostic of the physical resources
where the workflow is executed. Among them are Galaxy [1], Pegasus [8] and Tav-
erna [18]. In particular, Galaxy is a server/cloud workbench that provides a graphical
design panel and extensive computing and storage facilities, all accessible through a
friendly, web-based user interface.

Some studies have investigated cost minimization on public cloud platforms. Some
of them focus on Amazon EC2 spot (i.e. preemptible) instances: an important work pro-
poses statistical models to help users bid resources by fitting spot prices and time between
price changes [14]; another interesting work investigates check-pointing mechanisms to
minimize costs while maximizing the reliability with spot instances [24].

Among the tools and frameworks discussed and referenced, some of them provide
facilities for the execution of workflows on cloud resources. While most cloud vendors
provide auto-scaling techniques, they mostly apply to homogeneous cloud clusters (same
hardware features and pricing model).

Due to their dynamic nature and the heterogeneity of the tasks they encompass, we
believe that scientific workflows better run on heterogeneous clusters, where different
types of hardware configurations are desirable to meet jobs’ computing requirements,
while taking advantage of the cloud’s pricing models and helping reducing infrastructure
costs. To the best of our knowledge, none of the existing frameworks takes into account
this heterogeneity requirement, and we will illustrate how it can be achieved and the
benefits it can bring to the execution of a workflow.



3. Plastic workflows on the hybrid cloud

3.1. Execution model: The hybrid cloud

The core of the present work consists in the design and implementation of a scheduler
supporting the execution of workflows across a hybrid cloud, which is defined as an
heterogeneous cluster of homogeneous clusters of processing elements (PEs). In turn,
each PE is described by the previously mentioned features #vcpus, #vram, preempt.
Also, PEs in a cluster can be either VMs or on-premises resources. We can distinguish:

• Hybrid Cloud HC = {CC1,CC2, . . .CCn}
• Homogeneous Cluster CCi = {PE i

1,PE i
2, . . .PE i

k}, where each PE i
j exhibits the

same #vcpu, #vram, and preempt; they are all either VMs or not.

The composition of HC is defined at launch time and remains constant during the
execution of the workflow. According to HPC lexicon, it is a moldable (i.e. easy o be
modeled) job. Notwithstanding, each PE i

j marked with preempt = T can be terminated
in any moment of the execution. This scenario differs from elastic cloud scenarios for
three key issues: 1) resources are heterogeneous, 2) resource count is non-increasing, 3)
execution strategy reacts to unexpected infrastructure changes (e.g. preemption, unbal-
anced workload).

We consider workflows described in CWL, where plasticity features can be anno-
tated for each task: 1) core count – #vcpus ∈ N, 2) memory size – #vram ∈ N, and 3)
preemptibility – preempt ∈ {T,F}. The scheduler matches these target features against
all CCi to make a greedy scheduling decision.

Workflow tasks have no deadline. For this reason the adopted schedule strategy is
on-line and best-effort. It aims at scheduling any given task ti ∈ T onto the next likely
unused PE i

j that best fits the requirements of ti. This mapping is easily obtainable through
a (simple) function of #vcpu,#vram, and preempt. The very same approach can be used
to define more sophisticated global optimization strategies, which will necessarily exhibit
a stochastic nature because of the non-deterministic behavior of preemption.

The total cost for workflow execution on a cloud cluster is linked to the execu-
tion time of each task ti in each PE i

j: cloud resources follow a pay-as-you-go model,
where VMs are charged per billing periods. Follows that the longer a task time span,
the higher the cost for resource leasing. When execution time is a crucial requirement,
costs inevitably increase because we need to use dedicated, high-end resources, which
offer higher reliability at a higher price. On the other hand, when costs must be kept at
the minimum, we can give up performance but choose less powerful (and less reliable)
configurations.

For the sake of simplicity, in this work we do not deal with data movement and
storage issues: although these factors play a fundamental role in system performance and
actual infrastructure costs, we temporary omit these elements and assume that all data is
stored in a global storage facility (e.g., Amazon S3, Dropbox). Computing nodes should
be able to get snapshots of the data and read it, while the results are put back to the same
storage, in an structured manner.



3.2. Programming model: annotated CWL

Scientific workflows exhibit recurrent features that have an effective impact on the ex-
ecution of the involved tasks, such as data distribution and data aggregation. Their full
characterization is presented in [15]. They also present varied data and computational
characteristics, including:

1. Tasks filter or transform data, and can be either quick or long-lived. Also, tasks
are either sequential or multi-threaded.

2. The whole workflow, or a part of it, can be executed on a batch of independent
data.

These two characteristics can be used to label workflow tasks for a plastic execution.
The former one can be exploited to size the task, whereas the second is useful for marking
preemption feature.

Setting #vcpus and #vram features can be hardly made automatic, since the reason-
able values for these features depend on the knowledge of the domain and the tools used
in each specific task. Here the workflow designers are asked to size the task, i.e. imagine
the minimum compute capability (#vcpus and #vram) each specific task requires. The
workflow approach simplifies the process since it decouples the evaluation of compute
capability task by task. A very common case are inherently sequential tasks and simple
data filtering that typically require a “small” VM, e.g. #vcpus = 1. If the task supports
multi-threading, #vcpus can be also used to set the task’s parallelism degree, which can
be often controlled with launch time parameters.

A more automatic reasoning can be made on preemption: it is useful to explicitly
declare in the workflow all the cases in which functional replication is used, i.e. where
a part of the workflow is repeatedly applied to a bulk of independent data, meaning that
they are farmed out [4,3]. We assume to use two special workflow nodes (Co-Start/Co-
End) to delimit the part of the workflow subject to replication, collectively called worker
macro-node. Co-Start/Co-End nodes trammel workers in a lattice fashion. An example
is shown in Fig. 2. The execution of the whole workflow on a bulk of independent data is
a common case. In this case the whole workflow will result entirely contained between
two special nodes in a lattice.

Co-Start/Co-End nodes permit to compactly represent a parametric number of repli-
cas of the worker node instances (without really adding nodes to the description of the
DAG) [2]. Worker nodes are good candidates to be marked with preempt = T features,
since they are independent, i.e. the failure of one of them does not directly affect any
other node, apart from the collector, which can be executed only when all the instances of
the worker nodes has been successfully executed. For this reason, the preemption of VMs
executing worker node instances is a non-catastrophic failure. To accomplish this, the
scheduler should periodically monitor the execution of worker node instances assigned
to preemptible VMs, and reissue failed tasks onto different VMs, that can reliably run the
task to successful termination. It can be useful to define preempt ∈N,0 < preempt ≤∞,
representing the marker cost at which the VM instance will be preempted, and where ∞

denotes on-demand VMs.
Observe that the definition of a balanced hybrid cloud significantly influences the

effectiveness of the approach, which actually depends on a well-designed mix of clusters
with complementary features. As an example:
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Figure 2. Functional replication of workflow steps: top graph shows a generic workflow; middle drawing
identifies a subset of steps good for replication; bottom drawing shows a functional replication of a number of
steps over a bulk of data. Red nodes drive steps firing, acting as synchronization points

Core A cluster of on-demand (preempt = ∞) large VMs, e.g. #vcpus = 8− 16, and
enough #vram for the most memory demanding task. According to the Hybrid
Cloud paradigm, reliable VMs can be substituted with on-premise PEs.

Burst-large A cluster of preemptible VMs (preempt = x) large VMs, e.g. #vcpus =
8−16.

Burst-small A cluster of preemptible VMs (preempt = x) small VMs, e.g. #vcpus = 1

The two burst clusters can be substituted with more PEs exhibiting different
preempt levels, thus a different likelihood of failure during execution. Eventually, the
performance-cost trade-off can be fixed by the Hybrid Cloud composition, while the cor-
rectness guarantee is enforced by the presence of reliable (at least one) VMs and the
scheduling strategy.

4. Achieve plasticity on heterogeneous clusters

To implement our solution we use Toil for its extensive support for CWL, and Mesos as
a resource orchestrator. The main components of the system are the resource manager,
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Figure 3. An overview of our solution

the plasticity manager and the execution manager (see Figure 3). As already described
in section 3, we assume the presence of a global storage facility shared and accessible
by all components, where the state of the workflow is maintained. Each job is backed
by a file in the storage, and atomic updates are used to ensure the workflow can always
be resumed upon failure. All user files and datasets are also maintained there, allowing
them to be shared between jobs.

The resource manager corresponds to a “master” in Mesos terminology, and has
knowledge about all available PEs (called agents in Mesos): it consists of a Mesos frame-
work that offer resources to applications willing to execute and schedules tasks among
available computing components.

The plasticity manager parses the workflow description and performs an initial anal-
ysis of the computing requirements for each of the involved steps, estimating the amount
of computing resources required for the workflow to be executed, taking into account the
budget specified. The decision is based on the evaluation of multiple factors, including
the computing requirements annotated in each task’s definition, the available computing
resources, the estimated costs for the whole computing infrastructure and users’ QoS
specifications.

Based on the metrics collected from the initial analysis, scheduling and provisioning
strategies are built, which proceed by deploying the required computing infrastructure
that better suits for the requirements computed. The provisioning scheme results from
a greedy approach and does not seek to obtain an optimal solution to the provisioning
problem (which is known to be NP-hard [10]).

The execution manager supervises running agents, checking for under- or over-
provisioning issues and task failures. It maintains information about jobs status and re-
acts to failures by re-scheduling the failed job. At every time span it polls preemptible
PEs to make sure they have not been signalled to shut down by the cloud provider. If
that should happen – a warning message is sent by the cloud provider when it is about to
happen – jobs running there need to be rescheduled to another instance.



During workflow analysis and evaluation, tasks are ordered according to a priority
score. The dominant sorting criteria is preemptibility: jobs marked as preempt = F (e.g.,
critical tasks) should be considered first for execution (keeping data dependencies) be-
cause they can only be run on standard nodes, while other jobs can run on both. Using
a first-fit decreasing, bin-packing-like algorithm we can calculate an approximate mini-
mum number of PEs that will fit a given list of jobs.

5. Conclusions and perspectives

In this work we have outlined our ideas concerning a plasticity mechanism, intended
to support the execution of scientific workflows in hybrid cloud environments. Plastic-
ity provides facilities for an adaptive execution of workflows in heterogeneous environ-
ments, characterized by an heterogeneous cluster of homogeneous clusters of processing
elements, where each processing element might belong to a different level of reliability:
it is the case of preemptible instances, that can be acquired at much lower prices, with
the risk of having the shut down at provider’s needs.

By coupling the underlying logic of plasticity with proper task scheduling and dy-
namic resource provisioning, it is possibly to better exploit the cloud paradigm for work-
flow execution, while keeping the expenses on budget. We showed that the presence
of at lest one reliable instance guarantees the correctness of the execution, while the
performance-costs trade-off will affect the hybrid cloud composition.

Studies on scientific workflows and HPC exploiting cloud resources are central to a
large range of data profiling areas. This is increasingly true as data from different fields
will need similar processing and databases keep growing. The combination of cloud
computing and optimisation of workflows has two important benefits: improved resource
utilization, which translates into cautious and affordable costs for running complex sci-
entific applications; improved performance, derived from the reasoned mapping of tasks
on best fitting resources.

Considering Bioinformatics, scientific pipelines (i.e. workflows) are widely used for
data analysis purposes over huge sets of heterogeneous raw data: in order for results
to be significant, it is not uncommon to run the same stage of an analysis in a number
of different ways, to demonstrate the robustness of novel results, or to tackle different
sorts of data, that have undergone different perturbations or that have been collected at
different time points. And the final result may be the aggregation of the outcomes of
these independent workflows.
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