
13 March 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

PiCo: a Novel Approach to Stream Data Analytics

Publisher:

Published version:

DOI:10.1007/978-3-319-75178-8_10

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1659344 since 2018-05-12T11:43:31Z

PiCo: a Novel Approach to Stream Data
Analytics

Claudia Misale1, Maurizio Drocco1, Guy Tremblay2, Marco Aldinucci1

1 Department, University of Torino. Torino, Italy
{misale, drocco, aldinuc}@di.unito.it

2 Dépt. d’Informatique, Université du Québec à Montréal. Montréal, QC, Canada
tremblay.guy@uqam.ca

Abstract. In this paper, we present a new C++ API with a fluent in-
terface called PiCo (Pipeline Composition). PiCo’s programming model
aims at making easier the programming of data analytics applications
while preserving or enhancing their performance. This is attained through
three key design choices: 1) unifying batch and stream data access mod-
els, 2) decoupling processing from data layout, and 3) exploiting a stream-
oriented, scalable, efficient C++11 runtime system. PiCo proposes a pro-
gramming model based on pipelines and operators that are polymorphic
with respect to data types in the sense that it is possible to re-use the
same algorithms and pipelines on different data models (e.g., streams,
lists, sets, etc.). Preliminary results show that PiCo can attain better
performances in terms of execution times and hugely improve memory
utilization when compared to Spark and Flink in both batch and stream
processing.

1 Introduction

In the context of Big Data analytics, there is a series of tools aiming at simpli-
fying programming applications to be executed on clusters. Although each tool
claims to provide better programming, data and execution models—for which
only informal (and often confusing) semantics are generally provided1—they
all share some characteristics at different levels. From a high-level perspective,
Big Data is about extracting knowledge from both structured and unstructured
data. Extracting knowledge from Big Data requires tools satisfying strong re-
quirements with respect to programmability and performance. The common aim
of Big Data tools is to ensure ease of programming by providing a unique frame-
work addressing both batch and stream processing. Even when they accomplish
this task, they often lack of a clear semantics of their programming and execution
model. For instance, users can be provided with two different data models for
representing collections and streams, both supporting the same operations but

1 For instance, consider Spark’s dstream.foreachRDD, which provides access to RDDs
in a DStream, declared as immutable collections of objects, accessible only with
collective operators.

Marco Aldinucci
Authors copy (postprint) ot C. Misale, M. Drocco, G. Tremblay, and M. Aldinucci, “PiCo: a Novel Approach to Stream Data Analytics,” in Proc. of Euro-Par Workshops: 1st Intl. Workshop on Autonomic Solutions for Parallel and Distributed Data Stream Processing (Auto-DaSP 2017), Santiago de Compostela, Spain, 2018. doi:10.1007/978-3-319-75178-8_10 �

often having different semantics. We advocate a new API with a fluent interface
(with method chaining) [11], called PiCo (Pipeline Composition), designed over
the presented layered Dataflow conceptual framework [13,14]. PiCo program-
ming model aims at easing the programming and enhancing the performance
of Analytics applications through three design choices: 1) unifying batch and
stream data access models, 2) decoupling processing from data layout, and 3)
exploiting a stream-oriented, scalable, effiicient C++11 run-time system.

These design choices move further the level of abstraction in the programming
and execution model achieved in mainstream approaches for Big Data analytics.
For instance, Spark [18], Storm [15], Flink [10], and Google Dataflow [1] typically
force the specialization of the algorithm to match the data access and layout.
Specifically, data transformation functions (called operators in PiCo) exhibit
different functional types when accessing data in different ways.

For this reason, the source code must often be revised when switching from one
data model to the next. Some of them, such as the Spark framework, provide the
runtime with a module to convert streams into micro-batches (Spark Streaming,
a library running on Spark core), but still different code needs to be written at
the user-level. The Kappa architecture advocates the opposite approach, i.e., to
“streamize” batch processing, but the streamizing proxy has to be coded. As
for the Lambda architecture, it requires the implementation of both a batch-
oriented and a stream-oriented algorithm, which means coding and maintaining
two codebases.

PiCo fully decouples algorithm design from data model and layout. Code is de-
signed in a fully functional style by composing stateless operators. As we discuss
in the present paper, all PiCo operators are polymorphic with respect to data
types. This makes it possible to 1) re-use the same algorithms and pipelines on
different data models (e.g., streams, lists, sets, etc.); 2) reuse the same operators
in different contexts, and 3) update operators without affecting the calling con-
text, i.e., the previous and following stages in the pipeline. Note that in other
mainstream frameworks, such as Spark, the update of a pipeline by changing a
transformation with another may not be trivial, since this may require the de-
velopment of input and output proxies to adapt the new transformation for the
calling context. Moreover, PiCo relies on FastFlow [3,4,9], a parallel program-
ming framework designed to support streaming applications on cache-coherent
multicore platforms.

2 Related Work

In this section, we provide background related to Big Data analytics tools from
a stream processing perspective. Apache Spark design is intended to address
iterative computations by reusing the working dataset by keeping it in mem-
ory [20,18,19]. For this reason, Spark represents a landmark in Big Data tools
history, having a strong success in the community. The overall framework and

parallel computing model of Spark is similar to MapReduce, while the inno-
vation is in the data model, represented by the Resilient Distributed Dataset
(RDD). An RDD is a read-only collection of objects partitioned across a cluster
of computers that can be operated on in parallel. A Spark program can be char-
acterized by the two kinds of operations applicable to RDDs: transformations
and actions. Those transformations and actions compose the directed acyclic
graph (DAG) representing the application. For stream processing, Spark imple-
ments an extension through the Spark Streaming module, providing a high-level
abstraction called discretized stream or DStream [20]. Such streams represent
results in continuous sequences of RDDs of the same type, called micro-batches.
Operations over DStreams are “forwarded” to each RDD in the DStream, thus
the semantics of operations over streams is defined in terms of batch processing
according to the simple translation op(a) = [op(a1), op(a2), . . .], where [·] refers
to a possibly unbounded ordered sequence, a = [a1, a2, . . .] is a DStream, and
each item ai is a micro-batch of type RDD. All RDDs in a DStream are processed
in order, whereas data items inside an RDD are processed in parallel without
any ordering guarantees.

Formerly known as Stratosphere [5], Apache Flink [7] focuses on stream pro-
gramming. The abstraction used is the DataStream, which is a representation of
a stream as a single object. Operations are composed (i.e., pipelined) by call-
ing operators on DataStream objects. Flink also provides the DataSet type for
batch applications, that identifies a single immutable multiset—a stream of one
element. A Flink program, either for stream or batch processing, is a term from
an algebra of operators over DataStreams or DataSets, respectively. Flink, dif-
ferently from Spark, is a stream processing framework, meaning that both batch
and stream processing are based on a streaming runtime. It can be considered
one of the more advanced stream processors as many of its core features were
already considered in the initial design [7].

Apache Storm is a framework targeting only stream processing [15,16,17]. It is
perhaps the first widely used large-scale stream processing framework in the
open source world. Storm’s programming model is based on three key notions:
Spouts, Bolts, and Topologies. A Spout is a source of a stream, that is (typically)
connected to a data source or that can generate its own stream. A Bolt is a
processing element, so it processes any number of input streams and produces
any number of new output streams. A topology is a composition of Spout and
Bolts.

Google Dataflow SDK [1] is part of the Google Cloud Platform [12]. Here, the
term “Dataflow” is used by reference to the “Dataflow model”, to describe the
processing and programming model of the Cloud Platform. This framework aims
at providing a unified model for stream, batch, and micro-batch processing. The
base entity is the Pipeline, representing a data processing job consisting of a set
of operations that can read a source of input data, transform that data, and write
out the resulting output. The data model in Google Dataflow is represented by
PCollections, representing a potentially large, immutable bag of elements, that

can be either bounded or unbounded. The bounded (or unbounded) nature of
a PCollection affects how Dataflow processes the data. Bounded PCollections
can be processed using batch jobs, that might read the entire data set once and
perform processing in a finite job. Unbounded PCollections must be processed
using streaming jobs, as the entire collection may never be available for pro-
cessing at any one time and they can be grouped by using windowing to create
logical windows of finite size.

Thrill [6] is a prototype of a general purpose big data batch processing framework
with a dataflow style programming interface implemented in C++ and exploiting
template meta-programming. Thrill’s data model is the Distributed Immutable
Array (DIA), an array of items distributed over the cluster, to which no direct
access to elements is permitted—i.e., it is only possible to apply operations to the
array as a whole. A DIA remains an abstract entity flowing between two concrete
DIA operations, allowing to apply optimizations such as pipelining or chaining,
combining the logic of one or more functions into a single one (called pipeline). A
consequence of using C++ is that memory has to be managed explicitly, although
memory management in modern C++11 has been considerably simplified—for
instance, Thrill uses reference counting extensively. Thrill provides a SPMD
(Single Program, Multiple Data) execution model, similar to MPI, where the
same program is run on different machines,

3 PiCo Programming Model

In this section, we present the PiCo C++ API, consisting of two main cat-
egories of elements: Pipelines and Operators—PiCo’s formal semantics is de-
scribed in [8]. Note that the design of the Operators API is based on inher-
itance, following faithfully PiCo’s grammar specification [8]—even though the
use of template programming without inheritance might have slightly improved
the runtime performance. Thus, the implementation makes use of dynamic poly-
morphism when building the semantics DAG, where virtual member functions
are invoked to determine the kind of Operator currently processed.

3.1 Pipe and Operators

A C++ PiCo program is a set of operator objects composed into a Pipe object,
processing bounded or unbounded data.

A Pipeline can be: 1. created as the empty Pipe (default constructor); 2. created
as a Pipe consisting of a single operator; 3. modified by adding an operator,
through the add function; 4. modified by appending other Pipes, through the to

functions; 5. merged with another Pipe, through the merge function; 6. paired
with another Pipe by means of a binary operator, through the pair function.

1 typedef KeyValue<std::string, int> KV;
2

3 static auto tokenizer = [](std::string& in,FlatMapCollector<KV>& collector) {
4 std::istringstream f(in);
5 std::string s;
6 while (std::getline(f, s, ’ ’)) {
7 collector.add(KV(s,1));
8 }
9 };

10

11 int main(int argc, char** argv) {
12 // Parse command line
13 parse_PiCo_args(argc, argv);
14

15 // Define a generic word-count pipeline
16 Pipe countWords;
17 countWords
18 .add(FlatMap<std::string, std::string>(tokenizer))
19 .add(Map<std::string, KV>([&](std::string in) { return KV(in,1); }))
20 .add(PReduce<KV>([&](KV v1, KV v2) { return v1+v2; }));
21

22 // Define I/O operators from/to file
23 ReadFromFile reader();
24 WriteToDisk<KV> writer([&](KV in) {
25 return in.to_string();
26 });
27

28 // Compose the pipeline
29 Pipe p2;
30 p2
31 .add(reader)
32 .to(countWords) // append to...
33 .add(writer);
34

35 // Execute the pipeline
36 p2.run();
37

38 return 0;
39 }

Listing 1.1: Word Count example in PiCo.

Operators can be unary or binary. UnaryOperator is the base class represent-
ing PiCo unary operators, those with no more than one input and/or output
collection. For instance, a Map object takes a C++ callable value (i.e., a kernel)
as parameter and represents a PiCo operator map, which processes a collec-
tion by applying the kernel to each item. Also, ReadFromFile is a sub-class of
UnaryOperator and represents PiCo operators that produce a (bounded) un-
ordered collection of lines, read from an input text file.

BinaryOperator is the base class representing operators with two input collec-
tions and one output collection. For instance, a BinaryMap object represents a
PiCo operator b-map that processes pairs of elements coming from two different
input collections and produces a single output for each pair. A BinaryMap ob-
ject is passed as parameter to Pipeline objects built by calling the pair member
function.

Listing 1.1 shows a complete example for our Word Count benchmark.

4 Anatomy of a PiCo Application

When the run() member function is called on a pipeline p1, the semantics
dataflow is processed to create the parallel execution dataflow. This latter graph
represents the application in terms of processing elements (i.e., actors) connected
by data channels (i.e., edges), where operators can be replicated to express data
parallelism. We implemented this intermediate representation directly in Fast-
Flow by using nodes, farms and pipelines patterns.

The creation of the parallel execution dataflow is straightforward. Having an
empty ff pipeline picoDAG that will be executed, we then start visiting the
first node of the semantics dataflow, which can be an input or an entry point
node. On the basis of its role, a new ff node or ff farm is instantiated and
added to picoDAG.

The semantics DAG is recursively visited and the following operations are per-
formed: 1. A single ff node is added in case of input/output operators; 2. The
corresponding ff farm is added in case of operators different from I/O opera-
tors; 3. If an entry point is encountered, a new ff farm is created and added
to picoDAG: (a) a new ff pipeline is created for each entry point’s adjacent
node; (b) these ff pipelines are built with new ff nodes created by recursively
visiting the input Pipe’s graph, until reaching the last node of each Pipe visited.

At the end, the resulting picoDAG is thus a composition of ff pipelines and
ff farms.

4.1 FastFlow Network Execution

In this section, we describe the execution of the picoDAG pipeline, starting from
a brief summary of the FastFlow runtime.

From the orchestration viewpoint, the process model to be employed is based on
the Communicating Sequential Processes (CSP)2 model, where processes (i.e.,
ff nodes) are named and the data paths between processes are explicitly iden-
tified (which is thus different from the Actor model). The abstract units of com-
munication and synchronization are known as channels and represent a stream
of data exchanged between two processes. Each ff node is a C++ class entering
an infinite loop through its svc() (service) member function where: 1. it gets a
task from input channel; 2. it executes business code on the task; 3. it puts a
task into the output channel. Representing communication and synchronization
by a channel ensures that synchronization is tied to communication and allows
layers of abstraction at higher levels to compose parallel programs where syn-
chronization is implicit. Patterns to build a graph of ff nodes, such as farms,
are defined in the core patterns level of the FastFlow stack. Since the graph of

2 The CSP model describes a systems in terms of component processes operating inde-
pendently, which interact with each other through message-passing communication.

ff nodes is a streaming network, any FastFlow graph is built using two stream-
ing patterns (farm and pipeline) and one pattern-modifier (loopback, to build
cyclic networks). As an example, we highlight the key steps during the execution
of the FastFlow network of processes for a simple PiCo application with three
operators: Read from File, Map, and Write to Disk. The first node is the Read
from File (Rff), which reads lines from a file that are then forwarded to their
following node of the pipeline. Tokens are sent out at microbatch granularity (in
this case, a microbatch is a fixed size array of lines read from the input file).
Since also a fixed size dataset is streamized, the Rff node reads the text file and
sends out microbatches until the EOF is reached. The next stage of Rffs is the
Emitter of the map farm, which processes stream of microbatches. Each worker of
the map ff farm processes the received microbatch by applying the user-defined
function. Then each worker allocates a new microbatch to store the result of the
user-defined function, and then deletes the received microbatch. The new micro-
batch is forwarded to the next node. The general behavior of a worker during
its svc() call is that it deletes each input microbatch (allocated by the Emit-
ter) after it has been processed and the results of the kernel function (applied
to all elements of the microbatch) are stored into a new microbatch. When the
Collector receives PICO EOS tokens from all workers—a token specifying that
the stream is finished and that there are no more tokens to process (i.e., end of
file or socket closed)—it then forwards the token to the next stage, namely the
Write to Disk (Wtd) node. This last node is a single sequential ff node—input
and output processing nodes are always sequential—writing the received data to
a specified file. When the Wtd node receives PICO EOS, the file is closed and
the computation terminates.

5 Experiments

We compare PiCo to Flink v1.2.0 and Spark v2.1.0, focusing on expressiveness
of the programming model and on performances in shared memory. We tested
PiCo with both batch and stream applications. A first set of experiments were
made of the following two applications: word count and stock market analysis.

Word count is considered as the “Hello, World!” of Big Data analytics, typically
an example of batch processing. The input is a text file, which is first split into
lines. Then, each line is tokenized into a sequence of words: this is implemented
using flatmap, as each line may contain varying numbers of words. Each of
these words from the input file are processed by a map operator that produces a
key-value pair 〈w, 1〉 for each word w. After all words have been processed, the
pairs are grouped by the word from each pair, and then the values (i.e., the 1s)
are reduced by a sum. The final result is a single pair for each word, where the
value represents the number of occurrences of the word in the text. (See also
Listing 1.1.) As for the stock market analysis, it implements the “Stock Pricing”
program computing a price for each option read from a text file. Each line is
parsed to extract stock names followed by stock option data. A map operator

 0

 5

 10

 15

 20

WordCount StockPricing

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Benchmark

Minimum Execution Time (seconds)

Flink
Spark
PiCo

 0

 5

 10

 15

 20

 25

 1 2 4 8 12 16 32 42 48
 0

 5

 10

 15

 20

 25

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

S
c
a
la

b
ili

ty
 F

a
c
to

r

Parallelism

Pico Scalability and Execution Time on WordCount

Scalability Factor
Time (s)

Fig. 1: (Left) Comparison of best execution times for Word Count and Stock
Pricing obtained by Spark, Flink, and Pico. (Right) Scalability and execution
time for Word Count in PiCo.

then computes prices by means of the Black & Scholes algorithm for each option
and, finally, a reducer extracts the maximum price for each stock name.

The architecture used for experiments is the Occam Supercomputer (Open Com-
puting Cluster for Advanced data Manipulation) [2], designed and managed by
the University of Torino and the National Institute for Nuclear Physics. We
used one node having the following characteristics. At hardware side: 4x IntelR©

XeonR© Processor E7-4830 v3 12 core/2.1Ghz, 768GB/1666MHz (48 x 16GB)
DDR4 RAM, 1x SSD 800GB + 1x HDD 2TB/7200rpm, InfiniBand 56Gb + 2x
Ethernet 10Gb. At software side: Linux CentOS v7.3 with Linux kernel 3.10,
gcc v4.8.5 compiler (PiCo has been compiled with O3 optimization flag), and
OpenJDK Server v1.8 Java runtime.

5.1 Batch Applications

The size of the input file for the Word Count application is 600MB. It is a
text file containing random words taken from a dictionary of 1K words. In the
Word Count pipeline, PiCo instantiates a total of 5 fixed threads (corresponding
to sequential operators), plus the main thread, plus a user-defined number of
workers for the flatmap operator. To exploit at most 48 physical cores, we can
run at most 42 worker threads. We provide a comparison on minimum execution
time obtained by each tool as the average of 20 runs for each application. For
the Stock Pricing application, the size of the input file is 10MB.

Figure 1 (left) shows that PiCo obtains the best execution times when compared
to Spark and Flink, for both the Word Count and Stock Pricing applications.
Figure 1 (right) shows scalability and execution times for the Word Count appli-
cation: each value represents the average of 20 runs for each number of workers,
the microbatch size is 512, and the thread pinning strategy is physical cores first.

5.2 Stream Applications

In this set of experiments, we compare PiCo to Flink and Spark when executing
a stream application, the Stock Pricing one. The application is similar to the
one from the batch experiment, except we added two additional option pricing
algorithms—Binomial Tree and Explicit Finite Difference—and the data comes
from a socket, not from a text file.

In the Stock Pricing pipeline, PiCo first instantiates 6 threads corresponding
to sequential operators, such as read from socket and write to standard out-
put, plus Emitter and Collector threads for map and p-reduce operators. Then,
there is the main thread, and then k (a user-specified number) workers for the
map and k for the w-p-reduce operators. With 16 workers for the map and 16
workers w-p-reduce operator mapped on physical cores, PiCo obtains the best
average execution time of 7.348 seconds and a scalability factor of 14.87. We
compared PiCo to Flink and Spark on the Stock Pricing streaming application.
The window is count-based (or tumbling) and has size 8 in Flink and PiCo. For
stream processing, Spark implements an extension through the Spark Streaming
module, providing a high-level abstraction called discretized stream or DStream.
Such streams represent results in continuous sequences of RDDs of the same
type, called micro-batches. Operations over DStreams are “forwarded” to each
RDD in the DStream, thus the semantics of operations over streams is defined
in terms of batch processing. All RDDs in a DStream are processed in order,
whereas data items inside an RDD are processed in parallel without any order-
ing guarantees. Hence, Spark implements its stream processing runtime over the
batch processing one, thus exploiting the BSP runtime on stream microbatches,
without providing a concrete form of pipelining and reducing the real-time pro-
cessing feature.

Table 1 presents the best execution times obtained by each tool, showing that
PiCo obtains the best execution time and with a higher scalability compared to
other tools, with a scalability of 14.87 in PiCo while 9.21 for Flink and 2.24 for
Spark. Let us stress that the comparison with Spark is not completely fair since
windowing is not performed in a count-based fashion. Table 1 also shows that
PiCo processes more than 1.3M stock options per second, outperforming Flink
and Spark, as they processes approx. 400K and 200K stock options per second
respectively.

6 Conclusions

In this paper, we presented PiCo, a new C++ API with a fluent inteface for
data analytics pipelines.

One key feature of PiCo is that the data model is hidden to the programmer,
thus making it possible to create a model that is polymorphic with respect to the

Table 1: Flink, Spark and PiCo performance on Stream Stock Pricing. The exe-
cution time is the best average on 20 runs, For the same configuration, also the
scalability (against Parallelism 1) and the sustained throughput are reported.

Throughput Values for 10M Stock Options

Execution time (s) Parallelism Throughput (stocks/s) Scalability
Flink 24.78 16 403476.35 9.21
Spark 42.22 16 236875.81 2.24
PiCo 7.35 16 1360806.94 14.87

data model as well as to the processing model (i.e., stream or batch processing).
This make it possible to 1) re-use the same algorithms and pipelines on different
data models (e.g., stream, lists, sets, etc.); 2) reuse the same operators in dif-
ferent contexts, and 3) update operators without affecting the calling context.
These aspects are fundamental to PiCo, differentiating it from other frameworks
exposing different data types to be used in the same application, forcing the user
to re-think the whole application when moving from one operation to another.

We compared PiCo to Flink and Spark, focusing on expressiveness of the pro-
gramming model and on performances in shared memory. The current (pre-
liminary) experiments were performed on shared memory only. By comparing
execution times in both batch and stream applications, PiCo attained the best
execution time when compared to two state-of-the-art frameworks, Spark and
Flink. However, an aspect not mentioned above is that those experiments showed
high dynamic allocation contention in input generation nodes, thus limiting PiCo
scalability, a problem that will be addressed in future work. Also, results for
stream processing showed that PiCo processes more than 1.3M stock options
per second, outperforming Flink and Spark, that process about 400K and 200K
stock options per second respectively.

Acknowledgements

This work has been partially supported by the OptiBike experiment of the EU-
H2020-IA “Fortissimo2” project (no. 680481), the EU-H2020-RIA “Rephrase”
project (no. 644235), the EU-H2020-RIA “Toreador” project (no. 688797), and
the 2015-2016 IBM Ph.D. Scholarship program.

References

1. T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernàndez-Moctezuma,
R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle. The dataflow

model: A practical approach to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing. Proceedings of the VLDB Endow-
ment, 8:1792–1803, 2015.

2. M. Aldinucci, S. Bagnasco, S. Lusso, P. Pasteris, and S. Rabellino. The Open
Computing Cluster for Advanced data Manipulation (OCCAM). In Journal of
Physics: Conf. Series 898 (CHEP 2016), San Francisco, USA, 2017.

3. M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. Fastflow: high-level
and efficient streaming on multi-core. In S. Pllana and F. Xhafa, editors, Pro-
gramming Multi-core and Many-core Computing Systems, Parallel and Distributed
Computing, chapter 13. Wiley, 2017.

4. M. Aldinucci, M. Danelutto, M. Meneghin, M. Torquati, and P. Kilpatrick. Effi-
cient streaming applications on multi-core with FastFlow: The biosequence align-
ment test-bed, volume 19 of Advances in Parallel Computing. Elsevier, 2010.

5. A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao,
M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer, M. J. Sax,
S. Schelter, M. Höger, K. Tzoumas, and D. Warneke. The stratosphere platform
for big data analytics. The VLDB Journal, 23(6):939–964, Dec. 2014.

6. T. Bingmann, M. Axtmann, E. Jöbstl, S. Lamm, H. C. Nguyen, A. Noe, S. Schlag,
M. Stumpp, T. Sturm, and P. Sanders. Thrill: High-performance algorithmic dis-
tributed batch data processing with C++. CoRR, abs/1608.05634, 2016.

7. P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas. Lightweight asyn-
chronous snapshots for distributed dataflows. CoRR, abs/1506.08603, 2015.

8. M. Drocco, C. Misale, G. Tremblay, and M. Aldinucci. A formal semantics for data
analytics pipelines. https://arxiv.org/abs/1705.01629, May 2017.

9. Fastflow website. http://mc-fastflow.sourceforge.net/, 2017 (last accessed).
10. Flink. Apache Flink website. https://flink.apache.org/, 2017 (last accessed).
11. M. Fowler. Domain-Specific Languages. Addison-Wesley, 2011.
12. Google cloud dataflow. https://cloud.google.com/dataflow/, 2017 (last ac-

cessed).
13. C. Misale. PiCo: A Domain-Specific Language for Data Analytics Pipelines. PhD

thesis, Computer Science Department, University of Torino, May 2017.
14. C. Misale, M. Drocco, M. Aldinucci, and G. Tremblay. A comparison of big

data frameworks on a layered dataflow model. Parallel Processing Letters,
27(01):1740003, 2017.

15. M. A. U. Nasir, G. D. F. Morales, D. Garćıa-Soriano, N. Kourtellis, and M. Ser-
afini. The power of both choices: Practical load balancing for distributed stream
processing engines. CoRR, abs/1504.00788, 2015.

16. Storm. Apache Storm website. http://storm.apache.org/, 2017 (last accessed).
17. A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni,

J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy.
Storm@twitter. In Proceedings of the 2014 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’14, pages 147–156, New York, NY, USA,
2014. ACM.

18. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-tolerant Abstrac-
tion for In-memory Cluster Computing. In Proc. of the 9th USENIX Conference
on Networked Systems Design and Implementation, NSDI’12, Berkeley, CA, USA,
2012. USENIX.

19. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Clus-
ter computing with working sets. In Proceedings of the 2nd USENIX Conference on

http://mc-fastflow.sourceforge.net/
https://flink.apache.org/
https://cloud.google.com/dataflow/
http://storm.apache.org/

Hot Topics in Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA,
2010. USENIX Association.

20. M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized
streams: Fault-tolerant streaming computation at scale. In Proc. of the 24th ACM
Symposium on Operating Systems Principles, SOSP, pages 423–438, New York,
NY, USA, 2013. ACM.

	PiCo: a Novel Approach to Stream Data Analytics

