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Novelty and impact  

Findings on the relation between vitamin D and pancreatic cancer risk are conflicting. In our study, the 

largest combination of European studies to date, higher vitamin D concentrations are not associated with 

a lower risk of pancreatic cancer. Since findings across the globe are not consistent and the underlying 

mechanisms with respect to pancreatic cancer are unclear, caution is warranted before guidelines to 

increase vitamin D concentrations for the prevention of cancer can be recommended. 
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ABSTRACT 

Evidence from in vivo, in vitro and ecological studies are suggestive of a protective effect of vitamin D 

against pancreatic cancer. However, this has not been confirmed by analytical epidemiological studies. 

We aimed to examine the association between pre-diagnostic circulating vitamin D concentrations and 

pancreatic cancer incidence in European populations.  

We conducted a pooled nested case-control study within the European Prospective Investigation into 

Cancer and Nutrition (EPIC) and the Nord-Trøndelag Health Study’s second survey (HUNT2) cohorts. In 

total, 738 primary incident pancreatic cancer cases (EPIC n=626; HUNT2 n=112; median follow-up = 6.9 

years) were matched to 738 controls. Vitamin D [25(OH)D2 and 25(OH)D3 combined] concentrations were 

determined using isotope-dilution liquid chromatography-tandem mass spectrometry. Conditional logistic 

regression models with adjustments for body mass index and smoking habits were used to estimate 

incidence rate ratios (IRRs) and 95% confidence intervals (95%CI). 

Compared with a reference category of >50 to 75 nmol/L vitamin D, the IRRs (95% CIs) were 0.71 (0.42-

1.20); 0.94 (0.72-1.22); 1.12 (0.82-1.53); and 1.26 (0.79-2.01) for clinically pre-defined categories of ≤25; 

>25 to 50; >75 to 100; and >100 nmol/L vitamin D, respectively (p for trend = 0.09). Corresponding 

analyses by quintiles of season-standardized vitamin D concentrations also did not reveal associations 

with pancreatic cancer risk (p for trend = 0.23). 

Although these findings among participants from the largest combination of European cohort studies to 

date show increasing effect estimates of pancreatic cancer risk with increasing pre-diagnostic 

concentrations of vitamin D, they are not statistically significant. 
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INTRODUCTION 

Pancreatic cancer (PC) is a relatively rare form of cancer in Europe, with annual incidence rates of 

8.3/100,000 in men and 5.5/100,000 in women 1. However, it is an aggressive and devastating 

malignancy, which is characterised by invasiveness, rapid progression and resistance to treatment. As a 

result, 5-year survival rates in Europe are only 7% 2. Prevention is therefore key, but with the exception of 

family history, chronic pancreatitis, diabetes mellitus, smoking, alcohol and obesity as established risk 

factors 3, 4, a large part of the etiology of PC remains unknown. The identification of (other) modifiable risk 

factors is therefore warranted. 

A potentially interesting factor in this respect is vitamin D. In general, vitamin D and its derivatives have 

been shown to have significant anti-carcinogenic properties 5, 6. The expression of the enzyme 25-

hydroxyvitamin D-1 α –hydroxylase that catalyses the established biomarker of vitamin D status, 25(OH)D 

7, to the active vitamin D form, 1α,25(OH)2D, has been observed in pancreatic duct cells, and in normal 

and adenocarcinomatous tissues 8, 9. Furthermore, vitamin D analogs inhibit PC cell proliferation, induce 

differentiation, promote apoptosis and repress metastasis in vitro 10-18, and inhibit pancreatic tumour 

growth in vivo 12, 13, 16, 18. 

Ecological studies have shown that lower latitude and increased ultraviolet B (UVB) radiation are inversely 

related to PC risk and mortality 19-21 and a preventive role of vitamin D has been suggested. However, an 

ecological study design has several weaknesses and the validity of associations might be questioned. 

Analytical epidemiologic studies on vitamin D in relation to PC risk have been conducted, with conflicting 

results.  

In prospective nested case-control studies, blood concentrations of vitamin D have been investigated, 

which better reflects total vitamin D status. In the Alpha-Tocopherol, Beta-Carotene (ATBC) Cancer 

Prevention Study of male smokers from Finland 22, higher vitamin D concentrations were associated with 

an increased risk of PC, whereas no overall association was observed in a first report, but an increased 

risk was shown in a second report of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer 

Screening Trial from the United States (US)23, 24. When the ATBC and PLCO studies were combined with 

four other studies from the US and two from China in the Cohort Consortium Vitamin D Pooling Project of 

Rarer Cancers (VDPP), including 952 PC cases and 1333 controls, an increased risk with higher vitamin 
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D concentrations was observed 25. However, a pooled analysis of 451 PC cases and 1167 controls from 

five US studies, different from those in the VDPP, showed an inverse association 26. 

Except for the single study from Finland 22, which was based on male smokers only, no studies on vitamin 

D concentrations in relation to PC risk have been performed in European populations. Given the paucity of 

information from European populations, particularly from prospective cohort studies where biological 

samples are collected prior to cancer onset, we conducted a pooled nested case-control study within the 

European Prospective Investigation into Cancer and Nutrition (EPIC) and the Nord-Trøndelag Health 

Study’s second survey (HUNT2) cohorts to examine the association between pre-diagnostic circulating 

concentrations of vitamin D and the incidence of PC. 
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METHODS 

Study population 

Both the EPIC and HUNT2 cohorts have previously been described in detail 27, 28. In brief, EPIC is a multi-

centre prospective cohort study designed to investigate the association between diet, various lifestyle and 

environmental factors and the incidence of different forms of cancer and other chronic diseases. It 

consists of cohorts in 23 centres from 10 European countries: Denmark, France, Germany, Greece, Italy, 

the Netherlands, Norway, Spain, Sweden, and the United Kingdom. A total of 521,448 subjects joined the 

study between 1992 and 2000. Habitual dietary intake for the past 12 months was assessed using 

validated country-specific food frequency questionnaires 29, 30 and country-specific food composition 

tables.  Participants also completed a lifestyle questionnaire, had their anthropometric measurements 

recorded (self-reported in France, Norway and Oxford), and donated a blood sample (in approximately 

80% of cohort participants). These blood samples were processed, aliquoted and stored in heat-sealed 

straws at – 196 °C under liquid nitrogen at the International Agency for Research on Cancer (IARC) for all 

countries except Denmark and Sweden, where tubes were stored at -150 °C under nitrogen vapour or at -

80°C in freezers, respectively. 

Incident PC cases were identified through record linkage with regional cancer registries in Denmark, 

Norway, the Netherlands, Spain, Sweden, the United Kingdom, and in most of the Italian centres. In 

France, Germany, Greece, and Naples (Italy), follow-up  was based on a combination of methods, 

including health insurance records, cancer and pathology registries, and active follow-up through study 

participants and their next-of-kin. Closure dates for the present study were defined as the latest date of 

complete follow-up and ranged from December 2007 to December 2008 for centres using registry data, 

and from June 2005 to December 2009 for centres using active follow-up procedures. 

All participants gave written informed consent, and the study was approved by the Ethics Review 

Committee of IARC and by the local ethical committee of individual EPIC centres.  

The HUNT study was initiated in 1984, inviting the total adult population of over 20 years of age in the 

county of Nord-Trøndelag in Norway for a general population-based health screening. The main emphasis 

was initially on hypertension and diabetes, but this was later extended to include a large number of health 

problems and disease categories. For the current analyses, the 65,237 participants of the second HUNT 
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survey (HUNT2) were included. Between 1995-1997 these participants filled out questionnaires on a wide 

range of topics (e.g. use of alcohol and tobacco, physical activity and medical history), had a clinical 

examination and donated a blood sample. These samples were stored in a biobank at -80 0C. 

Based on the unique national identity number, assigned to all Norwegian residents, the participants in 

HUNT are linked to different national registries to access migration, emigration, cancer incidence and 

mortality data. The last record linkages for the present study with the Norwegian Cancer Registry 

identified cancer cases diagnosed until September 2007. 

All participants gave written informed consent at baseline, including future linkage to national registries, 

and the study was recommended by the Regional Committee for Medical Research Ethics and approved 

by the Data Inspectorate of Norway. 

 

Nested case-control design 

Cases in this study included primary incident pancreatic adenocarcinomas (International Classification of 

Diseases for Oncology, Third Edition, codes C250–C259 or C25.0–C25.3 and C25.7–C25.9). Endocrine 

pancreatic tumours (code C25.4; histology types 8150, 8151, 8153, 8155, 8240 and 8246) were excluded, 

because the aetiology of these cancers may be different.  

During the follow-up period, 1013 PC cases were identified in the EPIC cohort. Of these, 33 endocrine 

cases were excluded. After further exclusions [283 cases who did not have blood sample available, 2 

cases who had in situ tumours or tumours of non-malignant morphology, 65 cases who had a secondary 

tumour, and 4 cases who did not have lifestyle data available], a total of 626 incident PC cases with 

available questionnaire data and blood samples were identified for the present study. 

In the HUNT2 cohort, 117 PC cases were identified, of which 5 endocrine tumours were excluded, leaving 

112 incident cases for the present study.   

Among this total of 738 cases, 493 (67%) were microscopically confirmed, based on histology of the 

primary tumour (N=251), histology of the metastasis (N=82), cytology (N=117) or autopsy (N=43). 

 

Control subjects were selected by incidence density sampling from all cohort members alive and free of 

cancer (except non-melanoma skin cancer) at the time of diagnosis of the matching case and were 
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matched to cases by study centre, sex, duration of follow-up, age at blood collection (+/- 1 month to +/- 5 

years), and fasting status at the time of blood collection (< 3 hours (not fasting), 3-6 hours (in between) or 

> 6 hours (fasting)). For the EPIC study, participants were also matched on date of blood collection (+/- 1 

month to +/- 1 year) and time of blood collection (+/- 1 hour to +/- 4 hours). For every case one matched 

control was identified. 

 

Laboratory measurements 

Concentrations of both forms of vitamin D status [25(OH)D2 and 25(OH)D3] were measured in blood 

serum [plasma for the samples of Umea (Sweden)], using isotope-dilution liquid chromatography (LC) 

tandem-mass spectrometry (MS/MS) 31, at the department of clinical chemistry, Canisius Wilhelmina 

Hospital in Nijmegen, the Netherlands. The inter-assay coefficients of variation (CV) were 5.3%, 3.1% and 

2.9% at 25(OH)D3 concentrations of 39.0, 92.5 and 127.0, nmol/L, respectively, and 9.5%, 5.5% and 5.6% 

at 25(OH)D2 concentrations of 32.9, 57.3 and 111.0 nmol/L, respectively. For technical reasons, EPIC and 

HUNT2 samples were measured sequentially. In addition, 11% of case-control sets were not measured in 

the same analytical batch. However, batch to batch differences are considered to be minor: no significant 

between-day drift, time shifts or other trends were observed. For all analyses, laboratory technicians were 

blinded to case-control status of the samples. 

Concentrations of 25(OH)D2 were only observed in 24 persons (1.6%) of the population, of which 3 came 

from Denmark, 4 from Spain, 13 from Sweden and 4 from the HUNT2 cohort in Norway. For the current 

analyses, total vitamin D status was evaluated by adding 25(OH)D2 to 25(OH)D3 concentrations. 

 

Data analysis 

Means with standard deviations, medians with interquartile ranges or frequencies (where appropriate) of 

baseline characteristics were computed and compared between cases and controls of the EPIC and 

HUNT2 cohorts separately. Differences between cases and controls were tested by paired t-test or by 

conditional logistic regression. 
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An incidence rate ratio (IRR), which is the interpretation of an odds ratio in an incidence density sampling 

design 32, and 95% confidence interval (95% CI) for the association between vitamin D status and PC was 

estimated by conditional logistic regression analysis.  

To compare our findings with results from literature, vitamin D concentrations were divided into 5 

categories (≤25; >25 to 50; >50 to 75; >75 to 100; and >100 nmol/L) according to clinically defined cut-

points, which are based on the proposed levels of vitamin D deficiency, insufficiency and sufficiency 33-36. 

The middle category was used as reference in order to provide stability in the statistical analyses.  To test 

for trend across categories, the categories of vitamin D were modelled as continuous variables, in which 

each category was assigned the median value of controls in that category. 

In addition, vitamin D concentrations were divided into overall quintiles as well as cohort-specific quintiles, 

defined by the distribution in control subjects. Vitamin D concentrations were also log2-transformed. The 

IRR for a log2-transformed variable corresponds to the change in PC risk by doubling the blood 

concentrations. 

Since season of blood collection may affect vitamin D levels, two approaches were used to take this into 

account: a) adjustment for month of blood collection; b) standardization of vitamin D levels by adding the 

overall mean of vitamin D for all subjects to the residuals derived from 1) a simple regression model fitted 

to vitamin D concentration by month of blood collection, 2) a regression of vitamin D levels on the periodic 

function – sin(2πX/12) – cos (2πX/12), where X is the month of blood collection; and 3) a non-parametric 

local regression (PROC LOESS; SAS Institute, Cary, NC) with vitamin D status as the dependent variable 

and week of the year of blood donation as the independent variable 37, 38. Since the results were similar for 

all different approaches to take seasonal variation into account, adjustment by LOESS residuals was used 

in all final models on quintiles and a doubling of vitamin D concentrations. 

IRR estimates were computed both in a crude model, which was conditioned on the matching factors, and 

in a multivariable model, which was developed by individually adding variables to the model. Variables 

examined as potential confounders were body mass index (BMI; weight (kg)/height(m)2), waist-to-hip ratio, 

waist circumference (cm), hip circumference (cm), alcohol consumption (g/d), physical activity (inactive, 

active), smoking habits (never smokers, former smokers who quitted ≥ 15 years earlier, former smokers 

who quitted between 0-15 years earlier, currents smokers who smoke < 15 cigarettes/day, current 
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smokers who smoke ≥ 15 cigarettes/day, former/current smokers with years since quitting/dose unknown), 

smoking duration, educational level (primary school or less, secondary school lower level, secondary 

school higher level, college/university degree), diabetes (yes, no), any vitamin use (yes, no), and season 

of blood collection (winter: December-February; spring: March-May; summer: June-August; autumn: 

September-November). The final multivariable model included BMI and smoking habits as these were 

associated with both the disease and the risk factor and changed the risk estimate by 10% or more. The 

dietary variables red meat, processed meat, and fruit and vegetable intake were also investigated as 

potential confounders for cases and controls from the EPIC study, but they did not change the point 

estimates appreciably and were therefore not included in any model.  

To evaluate whether preclinical disease may have influenced the results, additional analyses were 

conducted after exclusion of cases that were diagnosed within two year after recruitment and their 

matched controls (leaving approximately 87% of the population). In addition, the association between 

vitamin D and pancreatic cancer was examined by tertiles of follow-up time. Further sensitivity analyses 

were performed in which only microscopically confirmed PC cases (67%) and their matched controls were 

included. 

Possible heterogeneity of effects by log2 transformed values of vitamin D levels between categories of 

matching factors [age groups (median split), sex, season of blood collection, region (North: Norway, 

Sweden, Denmark, the Netherlands, Germany, and United Kingdom; South: France, Italy, Spain, and 

Greece), latitude (30-50 and 50-70 ⁰N) and country] was tested using the heterogeneity statistic derived 

from the inverse variance method.  

Joint effects of several factors (in median split or pre-defined categories) with season-standardized vitamin 

D concentrations (in quartiles) were calculated, for which a combined reference category of the lowest 

category of these factors with a low vitamin D concentration was used. These factors are BMI, physical 

activity, smoking status, alcohol consumption, multivitamin use, diabetes at baseline, calcium intake (only 

available for the EPIC cohort), and retinol intake (only available for the EPIC cohort). Interaction (on the 

multiplicative scale) was tested by including a product term of the above-mentioned factors with season-

standardized vitamin D status into the model. In addition, heterogeneity of effects by log2 transformed 
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values of vitamin D levels by strata of the above-mentioned factors were tested using the heterogeneity 

statistic derived from the inverse variance method.  

All analyses were performed using SAS Software (version 9.3, SAS Institute Inc, Cary, NC, USA). For all 

analyses two-sided p-values < 0.05 were considered statistically significant. 

 

RESULTS  

In the EPIC cohort, the mean age of PC cases was 57.7 years at recruitment and they were followed for 

7.0 years on average (Table 1). PC cases from EPIC were heavier, had a larger waist circumference and 

waist-hip ratio, were more likely to be current smokers and to have diabetes than controls.  

In the HUNT2 cohort, the mean age of PC cases was 68.0 years at recruitment and they were followed for 

5.8 years on average. PC cases from HUNT2 were more likely to be current smokers and tended to have 

a longer duration of smoking than controls. 

When pre-defined cut-points of vitamin D concentrations were investigated in relation to PC risk, a trend 

was observed, which was not statistically significant (p for trend = 0.09; Table 2). Compared with the 

reference (> 50 to 75 nmol/L), lower vitamin D levels showed decreased effect estimates (≤ 25.0 nmol/L: 

IRR (95% CI)=0.71 (0.42-1.20); >25 to 50 nmol/L: 0.94 (0.72-1.22)), whereas higher levels showed 

increased effect estimates (>75 to 100 nmol/L = 1.12 (0.82-1.53); >100 nmol/L = 1.26 (0.79-2.01)) in the 

adjusted model. 

Season-standardized circulating vitamin D concentrations were not associated with risk of PC (Table 2). 

Compared with the lowest overall quintile (Q1), IRRs with 95% CIs were 1.32 (0.95-1.85) for Q2, 1.14 

(0.81-1.62) for Q3, 1.18 (0.83-1.69) for Q4 and 1.38 (0.94-2.01) for Q5 (p for trend = 0.23). Effect 

estimates for cohort-specific quintiles were comparable. A doubling of vitamin D concentrations was also 

not associated with PC risk (IRR (95% CI) = 1.16 (0.95-1.41). A model that, in addition to BMI and 

smoking habits, was further adjusted for waist-hip-ratio, physical activity, alcohol, diabetes, education, and 

vitamin use showed similar effect estimates (e.g. IRRlog2 (95% CI) = 1.20 (0.94-1.54)). 

When the first two years of follow-up were excluded (leaving approximately 87% of the population in the 

analyses), the trend over pre-defined cut-points reached statistical significance (p for trend 0.04), whereas 

the trend over season-standardized quintiles of vitamin D concentrations did not (p for trend 0.08). When 
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follow-up time was divided in tertiles, the trend over pre-defined cut-points as well as the one over season-

standardized quintiles was only statistically significant in the second tertile (p for trend for increasing 

tertiles of follow-up time = 0.48, 0.004 and 0.43 for pre-defined cut-points and 0.79, 0.004 and 0.51 for 

quintiles). 

The trends over pre-defined cut-points and season-standardized quintiles were not statistically significant 

when only confirmed PC cases (67%) were included in the analyses (p for trend 0.22 and 0.72, 

respectively).  

No heterogeneity was observed by age (IRRlog2 (95% CI) = 1.06 (0.79-1.42) for younger age and 1.29 

(0.97-1.72) for older age; pheterogeneity=0.34), sex (IRRlog2 (95% CI) = 1.13 (0.83-1.55) for men and 1.18 

(0.90-1.53) for women; pheterogeneity=0.86), season of blood collection (IRRlog2 (95% CI) = 0.87 (0.48-1.55) 

for winter, 0.90 (0.51-1.59) for spring, 0.94 (0.51-1.74) for summer and 1.16 (0.78-1.73) for autumn; 

pheterogeneity=0.82), region (IRRlog2 (95% CI) = 1.18 (0.94-1.48) for north and 1.14 (0.73-1.76) for south 

pheterogeneity=0.88), nor latitude (IRRlog2 (95% CI) = 1.07 (0.71-1.61) for 30-50⁰N and 1.20 (0.95-1.51) for 50-

70⁰N; pheterogeneity=0.63).  

Although none of the countries within the EPIC cohort separately showed a statistically significantly 

increased PC risk for every doubling of season-standardized vitamin D concentrations, all countries 

except Germany and Greece showed effect estimates above the null value (p for heterogeneity between 

EPIC countries = 0.97; Figure 1). The IRR (95% CI) for every doubling in season-standardized vitamin D 

concentrations was 1.08 (0.87-1.35) for the EPIC cohort, whereas it was 1.73 (1.00-3.01) for the HUNT2 

cohort (p for heterogeneity between EPIC and HUNT2 = 0.12; Figure 1).  

No interaction nor heterogeneity of effects was observed for vitamin D and any of the factors tested (Table 

3).  
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DISCUSSION  

In this study, the largest combination of European studies to date on this topic, higher vitamin D 

concentrations are not inversely associated with PC risk. In fact, increasing effect estimates of PC risk 

with a borderline statistically significant trend were observed with increasing pre-defined cut-points of 

vitamin D status, whereas season-standardized quintiles did not show an association with risk of PC.  

Our findings are fairly consistent with observations from other studies as hardly any of them showed 

evidence of an inverse association. Although optimal levels of 25(OH)D have not been definitively 

determined, a classification of clinically relevant cut-points has been used before. The VDPP 25 first used 

these cut-points, where a low vitamin D concentration (< 50 nmol/L) compared with a reference category 

of 50 - <75 nmol was not associated with PC risk, while a high vitamin D concentration (≥ 100 nmol/L)  

was associated with a statistically significant 2-fold increase in PC risk [OR (95% CI) = 2.12 (1.23-3.64) 25. 

The pooling project included participants from eight cohorts, among which were the ATBC study 22 and the 

PLCO cohort 23. Both these studies already published results on vitamin D status and PC risk, but divided 

vitamin D in quintiles instead of clinically defined cut-points. Using these quintiles, the ATBC study 

revealed a nearly 3-fold increase in PC risk for the highest quintile in comparison with the lowest quintile 

(OR (95% CI) = 2.92 (1.56-5.48; p for trend 0.001) 22. In the PLCO no association was observed in the 

overall analysis, but a nearly 4-fold increase in PC risk for the highest versus the lowest quintile ((OR 

(95% CI) = 3.91 (1.19-12.85; p for trend 0.10)) was shown in a subgroup of participants living at northern 

latitudes 23. In a subsequent analysis, using clinically defined cut-points, an increase in PC risk was 

observed for a high vitamin D concentration (≥ 100 nmol/L)  compared with a reference category of 50 - 

<75 nmol ((OR (95% CI) = 3.23 (1.24-8.44)) in the overall group of the PLCO study 24. The only study that 

did observe an inverse association between vitamin D concentrations and PC risk is a pooled analysis of 

participants from five cohorts 26. Here, the odds ratio for the highest quintile of vitamin D concentrations 

compared with the lowest quintile was 0.67 (95% CI 0.46-0.97; p for trend 0.03). The inverse linear 

association observed for quintiles was not observed when Wolpin et al. divided vitamin D concentrations 

according to clinically relevant cut-points as defined in the VDPP study 26. However, they also did not 

observe an increased PC risk for high vitamin D concentrations of ≥100 nmol/L. Although we did not 

detect a direct association between high vitamin D concentrations and PC either, effect estimates seemed 
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to increase with increasing concentrations of vitamin D. In light of these results, we cannot state that 

higher vitamin D concentrations are related to a higher PC risk, but it seems reasonable to conclude that 

higher vitamin D concentrations are not related to a lower PC risk in this population. 

Except for the ATBC study from Finland 22, this is the first study on vitamin D concentrations in relation to 

PC risk among European populations. One may hypothesize that this relation may differ with the 

associations observed in populations from the US, due to differences in latitude and fortified foods. Most 

of Europe lies above 37⁰N latitude, whereas this is only true for the northern half of the US. Since UVB is 

efficiently absorbed by the ozone layer from November through February above 37⁰N latitude39, 40, nearly 

all European residents have low, if any, endogenous vitamin D production during these months and are 

thus more dependent on vitamin D intake from foods and supplements than residents from the US. In 

addition, vitamin D fortification of foods differs between Europe and the US, where fortification of milk, for 

example is the exception in Europe rather than the rule in the US41. As the amount of vitamin D that was 

added to milk was not very consistent in the 1990s42, 43, it is less likely that hypothesized differences in 

associations between populations from the US and Europe are due to differences in food fortification than 

to differences in latitude. Even though there may be a difference in the sources of vitamin D 

concentrations between populations from Europe and the US, the vitamin D concentrations from our 

European study are comparable to those from US studies in the 1990s, and no large differences were 

observed for the association between vitamin D concentrations and PC risk. 

Although several in vitro and in vivo studies have shown that vitamin D has anti-carcinogenic properties in 

general 5, 6, few studies have investigated this specifically with respect to PC. Whether vitamin D has anti-

carcinogenic effects on the pancreas is thus largely unclear. The molecular basis by which vitamin D may 

be involved in pancreatic carcinogenesis should be further investigated. We propose that certain genetic 

variants affecting vitamin D concentrations may modulate the association between vitamin D and PC risk. 

Within the vitamin D pathway, genetic variants in the vitamin D binding protein (DBP, corresponding gene 

GC) are most frequently investigated. It is possible that variants in the DBP gene may affect the vitamin D 

binding protein concentration in the circulation and therefore may influence the vitamin D bioavailability, 

the role of which is unknown in pancreatic carcinogenesis. In a recent study of 713 PC cases and 818 

controls from five cohorts within the VDPP, the association between vitamin D concentrations and PC risk 
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was not modified by single nucleotide polymorphisms in the DBP gene or 10 other genes in the vitamin D 

metabolic pathway 44. Nevertheless, it should be kept in mind that in various Genome-Wide Association 

Studies on vitamin D concentrations, genetic variants in GC are among the significant findings 45, 46. To 

unravel the molecular mechanisms by which vitamin D may influence pancreatic carcinogenesis, more 

studies should investigate vitamin D-gene interactions with genetic variants in the vitamin D metabolic 

pathway, but also including the vitamin D receptor (VDR) and its vitamin D-mediated transcriptionally 

regulated (VDRE containing) genes and their signalling pathways 47. 

An important strength of this study is the prospective design with pre-diagnostic measurements of vitamin 

D concentrations, which reduces the influence of reversed causation. In addition, pooling two large 

European studies resulted in a relatively large study population. This population originates from countries 

from the north to the south of Europe, spanning a wide range of sun exposure, many different lifestyle 

patterns, dietary habits and PC incidence. A difference in vitamin D status was also observed between the 

two European studies, where higher concentrations of vitamin D were observed in the HUNT cohort from 

the North of Norway than in the more centrally located EPIC study. Although this is contrary to what would 

be expected based on latitude, this may be due to differences in study population, blood sample handling 

procedures or to a higher use of cod liver oil supplements, which is a long dietary tradition in Norway 48. 

Finally, another strength of this study is that all samples were transported to the same laboratory for 

measurement using a single LC-MS/MS method, which shows close agreement to a reference 

measurement procedure for 25(OH)D3 and 25(OH)D2 analysis in human serum 31.   

A limitation of this study is that only a single baseline measurement of vitamin D was used. Vitamin D 

levels display seasonal variability and a single measurement of vitamin D may not reflect long-term 

vitamin D status. However, the concentration of 25(OH)D in samples collected up to 14 years apart was 

observed to be sufficiently reliable to be used in cohort studies 49. Furthermore, we standardized the 

vitamin D concentrations by week of blood collection to take season of blood draw into account. While we 

could not take some risk factors of PC risk, such as family history and chronic pancreatitis, into account 

due to a lack of information, we did test other established PC risk factors and included BMI and smoking 

habits into the model to adjust for potential confounding. Although residual confounding by smoking 
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cannot be ruled out, it is not likely, because the findings observed in never smokers were similar to the 

overall result. 

In conclusion, among participants from the largest combination of European studies to date, higher vitamin 

D concentrations are not associated with a lower risk of PC. More research is needed on the molecular 

mechanisms by which vitamin D may influence pancreatic carcinogenesis. Until there is a better biological 

understanding of this mechanism, caution is warranted before guidelines to increase vitamin D 

concentrations in healthy persons for the prevention of cancer can be recommended.  
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Table 1. Description of pancreatic cancer cases and matched controls for the EPIC and HUNT2 studies 
separately 

 EPIC HUNT2 

Matched variables 

Cases  
(n=626) 

Matched 
controls  
(n=626) 

P 
value b 

Cases  
(n=112) 

Matched 
controls  
(n=112) 

P 
value b 

Years of follow-up, mean (sd) 7.0 (3.7) --- --- 5.8 (3.2) --- --- 
Age at recruitment, years,  
mean (sd) 57.7 (7.8) 57.7 (7.8) --- 68.0 (10.7) 68.0 (10.6) --- 

Women, n (%) 337 (53.9) 337 (53.9) --- 59 (52.7) 59 (52.7) --- 
Residential region, n (%)   ---   --- 
North (UK, NL, Germany, Denmark, 
Sweden, Norway) 457 (73.0) 457 (73.0)  112 (100.0) 112 (100.0)  

South (France, Italy, Spain, Greece) 169 (27.0) 169 (27.0)  --- ---  
Country, n (%)       
HUNT2 cohort      --- 
Norway --- ---  112 (100.0) 112 (100.0)  
EPIC cohort   ---    
Denmark 79 (12.6) 79 (12.6)  --- ---  
France 12 (1.9) 12 (1.9)  --- ---  
Germany 86 (13.7) 86 (13.7)  --- ---  
Greece 36 (5.8) 36 (5.8)  --- ---  
Italy 66 (10.5) 66 (10.5)  --- ---  
The Netherlands 62 (9.9) 62 (9.9)  --- ---  
Norway 5 (0.8) 5 (0.8)  --- ---  
Spain 55 (8.8) 55 (8.8)  --- ---  
Sweden 145 (23.2) 145 (23.2)  --- ---  
United Kingdom 80 (12.8) 80 (12.8)  --- ---  
Season of blood collection, n (%)   ---   --- 
Winter (Dec, Jan, Feb) 134 (21.4) 135 (21.6)  24 (21.4) 25 (22.3)  
Spring (Mar, Apr, May) 190 (30.4) 197 (31.5)  26 (23.2) 25 (22.3)  
Summer (Jun, Jul, Aug) 125 (20.0) 123 (19.7)  19 (17.0) 19 (17.0)  
Autumn (Sep, Oct, Nov) 177 (28.3) 171 (27.3)  43 (38.4) 43 (38.4)  
Fasting status, n (%)   ---   --- 
< 3 hrs 253 (40.4) 263 (42.0)  78 (69.6) 80 (71.4)  
3-6 hrs 100 (16.0) 97 (15.5)  32 (28.6) 31 (27.7)  
> 6 hrs 171 (27.3) 165 (26.4)  1 (0.9) 1 (0.9)  
Use of pill/HRT/ERT at blood 
collection, yes, n (%) 56 (9.0) 56 (9.0) --- 6 (5.4) 6 (5.4) --- 

Characteristics       
Height, cm, mean (sd) 167.7 (9.4) 167.2 (9.7) 0.20 166.5 (9.6) 166.3 (8.9) 0.87 
Weight, kg, mean (sd) 74.7 (13.6) 73.4 (13.9) 0.06 75.1 (13.6) 74.3 (12.6) 0.55 
BMI, kg/m2, mean (sd) 26.6 (4.2) 26.2 (4.1) 0.13 27.0 (3.9) 26.8 (3.8) 0.61 
Waist circumference, cm, mean (sd) 89.8 (12.8) 88.3 (12.9) 0.02 90.4 (11.5) 89.3 (10.8) 0.38 
Hip circumference, cm, mean (sd) 101.8 (8.6) 101.1 (8.3) 0.2 103.5 (8.8) 102.6 (6.9) 0.33 
Waist-hip-ratio, mean (sd) 0.9 (0.1) 0.9 (0.1) 0.01 0.9 (0.08) 0.9 (0.09) 0.79 
Education level, n (%)   0.20   0.45 
Primary school or less 278 (44.4) 248 (39.6)  53 (47.3) 57 (50.9)  
Secondary school lower level 142 (22.7) 166 (26.5)  33 (29.5) 28 (25.0)  
Secondary school higher level 73 (11.7) 79 (12.6)  1 (0.9) 5 (4.5)  
College/University degree 113 (18.1) 116 (18.5)  6 (5.4) 13 (11.6)  
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Smoking status, n (%)   <0.01   0.08 
Never 233 (37.2) 287 (45.9)  40 (35.7) 48 (42.9)  
Past 183 (29.2) 201 (32.1)  36 (32.1) 43 (38.4)  
Current 201 (32.1) 133 (21.3)  26 (32.1) 21 (18.8)  
Age start smoking, years,  
mean (sd) 20.1 (6.5) 20.3 (6.4) 0.43 22.8 (8.5) 21.0 (8.1) 0.79 

Duration of smoking, years,  
mean (sd) 29.4 (12.0) 27.4 (12.9) 0.19 32.5 (14.7) 29.6 (14.8) 0.09 

Time since quitting, years,  
mean (sd) 16.0 (11.5) 16.0 (10.3) 0.16 18.1 (11.6) 21.8 (13.2) 0.74 

Smoking dose, cig/day, mean (sd) 15.7 (8.4) 16.3 (8.8) 0.35 10.9 (6.4) 10.2 (6.2) 0.16 
Smoking habits combined, n (%)   <0.01   0.15 
Never 233 (37.2) 287 (45.9)  40 (35.7) 48 (42.9)  
Former, time since quitting > 15 yrs 87 (13.9) 89 (14.2)  18 (16.1) 27 (24.1)  
Former, time since quitting 0 - 15 yrs 90 (14.4) 103 (16.5)  15 (13.4) 14 (12.5)  
Current, 0 - 15 cig/day 97 (15.5) 60 (9.6)  27 (24.1) 17 (15.2)  
Current, > 15 cig/day 80 (12.8) 52 (8.3)  7 (6.3) 1 (0.9)  
Former/current, quitting/dose unknown 30 (4.8) 30 (4.8)  5 (4.5) 5 (4.5)  
Physical activity, n (%)   0.53   0.59 
inactive 174 (27.8) 184 (29.4)  12 (10.7) 12 (10.7)  
active 432 (69.0) 426 (68.1)  73 (65.2) 80 (71.4)  
Diabetes, yes, n (%) 45 (7.2) 28 (4.5) 0.03 4 (3.6) 7 (6.3) 0.37 
Vitamin D status       
Serum 25(OH)D, nmol/L, mean (sd) 60.0 (27.3) 59.4 (27.1) 0.57 70.7 (23.8) 64.7 (20.3) 0.05 
Quintiles of serum 25(OH)D   0.35   0.18 
Q1, n (%) 118 (18.9) 139 (22.2)  9 (8.0) 9 (8.0)  
Q2, n (%) 144 (23.0) 126 (20.1)  13 (11.6) 21 (18.8)  
Q3, n (%) 131 (21.0) 121 (19.3)  26 (23.2) 26 (23.2)  
Q4, n (%) 105 (16.8) 118 (18.9)  23 (20.5) 31 (27.7)  
Q5, n (%) 128 (20.5) 122 (19.5)  41 (36.6) 25 (22.3)  
Predefined cut-points of serum 
25(OH)D   0.90   0.26 

≤25 nmol/l, n(%) 33 (5.3) 39 (6.2)  1 (0.9) 4 (3.6)  
>25 to 50 nmol/L, n (%) 214 (34.2) 216 (34.5)  20 (17.9) 21 (18.8)  
>50 to 75 nmol/L, n (%) 233 (37.2) 232 (37.1)  46 (41.1) 56 (50.0)  
>75 to 100 nmol/L, n (%) 92 (14.7) 90 (14.4)  33 (29.5) 25 (22.3)  
> 100 nmol/L, n (%) 54 (8.6) 49 (7.8)  12 (10.7) 6 (5.4)  
Dietary variables       

Alcohol (g/day) a 6.0 (0.9-
19.3) 5.7 (1.1-17.9) 0.64 1.4 (0.0-4.3) 0.7 (0.0-2.9) 0.13 

Any vitamin use, n (%)   0.36   0.22 
Yes 211 (33.7) 222 (35.5)  12 (10.7) 11 (9.8)  
No 337 (53.8) 323 (51.6)  11 (9.8) 17 (15.2)  

a Median (p25-p75). 
b P-values for differences in means between cases and controls were determined by paired t-test, whereas 
differences in categorical variables were determined by conditional logistic regression. No P-values were determined 
for years of follow-up, age at recruitment, sex, residential region, country, season of blood collection, fasting status 
and use of pill/HRT/ERT at blood collection, because these variables were used for matching. 



3 
 

 
Table 2. Incidence rate ratios (IRR) of pancreatic cancer according to predefined cut-points and standardized circulating concentrations of 25-hydroxy 
vitamin D 
 

PRE-DEFINED CUT-POINTS P for trend 
Vitamin D (nmol/L) ≤ 25 >25 to 50 >50 to 75 >75 to 100 >100  
N cases/controls 34/43 234/237 279/288 125/115 66/55   
Crude IRR b 0.78 (0.47-1.29) 1.0 (0.77-1.28) Ref 1.15 (0.85-1.56) 1.36 (0.87-2.13) 0.11 
N cases/controls 34/43 231/233 275/281 123/115 64/55   
Adjusted IRR c 0.71 (0.42-1.20) 0.94 (0.72-1.22) Ref 1.12(0.82-1.53) 1.26 (0.79-2.01) 0.09 

   

OVERALL QUINTILES  Doubling of 
concentration 

 Q1 Q2 Q3 Q4 Q5 P for trend  
Vitamin D (nmol/L) a ≤ 39.5 39.6 – 51.7 51.8 – 63.5 63.6 – 77.9 >78.0   
N cases/controls 133/148 159/148 138/146 143/148 165/148  738/738 
Crude IRR b Ref 1.20 (0.87-1.65) 1.08 (0.77-1.50) 1.10 (0.78-1.55) 1.31 (0.91-1.89) 0.27 1.11 (0.92-1.34) 
N cases/controls 131/146 158/143 134/144 141/146 163/148  727/727 
Adjusted IRR c Ref 1.32 (0.95-1.85) 1.14 (0.81-1.62) 1.18 (0.83-1.69) 1.38 (0.94-2.01) 0.23 1.16 (0.95-1.41) 
        

COHORT-SPECIFIC QUINTILES  Doubling of 
concentration 

 Q1 Q2 Q3 Q4 Q5 P for trend  
Vitamin D (nmol/L) a        
EPIC 
HUNT 

≤ 39.1 
≤ 45.1 

39.1 – 49.8 
45.1 – 57.7 

49.8 – 63.3 
57.7 – 66.4 

63.3 – 77.2 
66.4 – 78.5 

>77.2 
>78.5 

  

N cases/controls 136/148 150/147 146/148 138/147 168/148  738/738 
EPIC 
HUNT 

119/125 
17/23 

127/125 
23/22 

132/125 
14/23 

122/125 
16/22 

126/126 
42/22 

 626/626 
112/112 

Crude IRR b Ref 1.12 (0.81-1.55) 1.09 (0.79-1.51) 1.04 (0.74-1.47) 1.31 (0.91-1.88) 0.29 1.11 (0.92-1.34) 
N cases/controls 134/146 149/143 142/145 136/145 166/148  727/727 
EPIC 
HUNT 

118/124 
16/22 

126/121 
23/22 

128/122 
14/23 

120/123 
16/22 

124/126 
42/22  616/616 

111/111 
Adjusted IRR c Ref 1.23 (0.88-1.73) 1.20 (0.85-1.69) 1.12 (0.79-1.59) 1.40 (0.96-2.04) 0.20 1.16 (0.95-1.41) 

a Standardized by week of blood collection using LOESS residuals 
b Conditioned on matching factors [study centre, sex, duration of follow-up, age and fasting status at time of blood collection, use of oral contraceptives and/or 
hormone replacement therapy (only women) and date and time of blood collection (only EPIC)] 
c Conditioned on matching factors and adjusted for BMI and smoking habits 
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Table 3. Joint effectsa of potential effect modifiers with quartiles, and strata of potential effect modifiers by doubling of concentrations, of standardized 
circulating 25-hydroxy vitamin D in relation to PC risk 

Vitamin D status 
(nmol/L)    Q1 Q2 Q3 Q4 

P  
inter-
actionb 

Doubling of 
concentration 

P 
hetero-
geneityc 

BMI N (cases/ 
controls)  

163/183 194/179 173/182 197/183    

< 25.0 kg/m2 283/298 Ref 1.18 (0.70-2.00) 1.40 (0.83-2.36) 1.30 (0.78-2.20) 0.47 1.27 (0.75-2.18) 0.97 
≥ 25.0 kg/m2 444/429 0.95 (0.55-1.64) 1.32 (0.78-2.24) 0.97 (0.57-1.66) 1.31 (0.75-2.26)  1.26 (0.91-1.74)  
         
Physical activity   151/172 173/165 162/162 184/171    
Inactive 181/186 Ref 1.29 (0.73-2.26) 0.85 (0.46-1.57) 0.90 (0.47-1.72) 0.30 1.08 (0.52-2.24) 0.88 
Active 489/484 0.86 (0.52-1.41) 1.14 (0.70-1.85) 1.21 (0.75-1.97) 1.34 (0.81-2.21)  1.02 (0.77-1.35)  
         
Smoking status   163/183 194/179 173/182 197/183    
Never 272/330 Ref 1.29 (0.81-2.07) 1.13 (0.71-1.78) 1.55 (0.93-2.59) 0.52 0.94 (0.60-1.48) 0.96 
Former 218/243 0.94 (0.52-1.70) 1.38 (0.83-2.28) 1.59 (0.95-2.65) 1.58 (0.93-2.66)  1.13 (0.58-2.21)  
Current 237/154 2.66 (1.56-4.56) 3.46 (1.94-6.18) 2.18 (1.21-3.92) 2.45 (1.41-4.27)  0.90 (0.47-1.72)  
         
Alcohol   153/175 179/164 157/159 171/162    
< 5.0 g/day (median) 315/322 Ref 1.27 (0.81-1.98) 1.25 (0.78-1.99) 1.22 (0.76-1.97) 0.90 1.24 (0.83-1.85) 0.98 
≥ 5.0 g/day 345/338 0.98 (0.62-1.54) 1.41 (0.90-2.22) 1.18 (0.74-1.90) 1.43 (0.87-2.34)  1.23 (0.85-1.78)  
         
Multivitamin use   123/143 145/130 137/136 144/140    
No  338/327 Ref 1.40 (0.91-2.15) 1.24 (0.79-1.94) 1.50 (0.93-2.42) 0.80 1.12 (0.78-1.62) 0.60 
Yes 211/222 0.96 (0.52-1.75) 1.27 (0.77-2.11) 1.24 (0.75-2.05) 1.09 (0.65-1.81)  1.33 (0.75-2.36)  
         
Diabetes   160/180 190/173 167/175 186/175    
No 657/669 Ref 1.30 (0.95-1.78) 1.10 (0.79-1.53) 1.27 (0.89-1.81) 0.67 1.18 (0.95-1.45) --- 

Yes 46/34 0.94 (0.36-2.43) 1.60 (0.65-3.94) 2.23 (0.83-5.99) 2.20 (0.72-6.70)  Sample too 
small 

 

         
Calcium (only EPIC)   149/165 169/152 144/146 150/149    
< 959 mg/day (median) 303/313 Ref 1.50 (0.94-2.39) 1.25 (0.79-1.98) 1.43 (0.86-2.37) 0.73 1.15 (0.70-1.89) 0.85 
≥ 959 mg/day 309/299 1.36 (0.85-2.19) 1.56 (0.99-2.46) 1.45 (0.90-2.33) 1.34 (0.90-2.33)  1.08 (0.72-1.62)  
         
Retinol (only EPIC)   149/165 169/152 144/146 150/149    
< 700 ug/day (median) 296/315 Ref 1.26 (0.83-1.91) 1.31 (0.82-2.09) 1.32 (0.79-2.19) 0.68 1.44 (0.97-2.15) 0.10 
≥ 700 ug/day 316/297 1.23 (0.74-2.04) 1.67 (1.04-2.67) 1.22 (0.77-1.93) 1.27 (0.78-2.05)  0.96 (0.62-1.48)  
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a Conditioned on matching factors and adjusted for BMI and smoking habits. 
b Interaction (on the multiplicative scale) was tested by including a product-term of characteristics with quartiles of vitamin D in the model. 
c Possible heterogeneity of effects by log2 transformed values of vitamin D levels between strata of potential effect modifiers was tested using the heterogeneity 
statistic derived from the inverse variance method. 
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Figure 1. Country-specific incidence rate ratios (95% CI) of pancreatic cancer according to a doubling of standardized circulating 25-hydroxy vitamin D 
concentrations. 
Conditioned on matching factors and adjusted for BMI and smoking habits.  
No incidence rate ratios were obtained for EPIC-Norway due to the small population. 
P-value for heterogeneity between EPIC-countries was 0.97 and between the EPIC & HUNT2 cohorts was 0.12.   

 

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

D
en

m
ar

k

Fr
an

ce

G
er

m
an

y

G
re

ec
e

It
al

y

N
L

N
or

w
ay

S
pa

in

S
w

ed
en U
K

EP
IC

H
U

N
T

O
ve

ra
ll

In
ci

d
en

ce
 R

at
e 

R
at

io


	Study population
	Data analysis
	RESULTS
	In the EPIC cohort, the mean age of PC cases was 57.7 years at recruitment and they were followed for 7.0 years on average (Table 1). PC cases from EPIC were heavier, had a larger waist circumference and waist-hip ratio, were more likely to be current...
	In the HUNT2 cohort, the mean age of PC cases was 68.0 years at recruitment and they were followed for 5.8 years on average. PC cases from HUNT2 were more likely to be current smokers and tended to have a longer duration of smoking than controls.

