Acoustic Cavitation in Flow reactors: Enabling Technology for modern Chemistry

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1663913 since 2018-03-26T22:25:50Z

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
PROGRAM AND BOOK OF ABSTRACTS

13th Meeting of the European Society of Sonochemistry

July 01–05, 2012
Lviv – Ukraine
OC-37: Acoustic Cavitation in Flow Reactors: Enabling Technology for modern Chemistry

Giancarlo Cravotto\(^1\), Emanuela Calcio Gaudino\(^1\), Davide Garella\(^1\) and Pedro Cintas\(^2\).

\(^1\) Dip.to di Scienza e Tecnologia del Farmaco, University of Torino, Via Giuria 9, 10125 Torino, Italy.
\(^2\) Dpto. de Química Orgánica e Inorgánica, University of Extremadura, Avenida de Elvas s/n, E-06006 Badajoz, Spain.

In recent years, chemistry in flowing systems has become more prominent as a method of carrying out chemical transformations, ranging in scale from microchemistry to kilogram-scale processes. Compared to classic batch US reactors, flow reactors stand out for their greater efficiency and flexibility as well as lower energy consumption. Herein we report ten years of investigation and design of sonochemical flow-reactors, applied to organic synthesis, the degradation of persistent organic pollutants and several manufacturing processes. Chemists are increasingly paying attention to combinations of enabling technologies with an eye to achieving the double goal of obtaining high efficiency and meeting the green criteria of energy savings and the absence of dangerous or harsh reagents. Flow-systems offer promising perspectives for automation and implementation which will move batch US-based chemistries to cleaner and more efficient continuous processes.

1. Lab-Scale Flow Reactors

Figure 1 shows loop-reactors enabling a continuous flow with a peristaltic pump that circulates the reacting mixture through the sonication compartments (20 and 300 kHz).

![Figure 1: Lab-scale US flow reactors](image1)

In the last decade we have also developed high-power cavitating tubes that maximize cavitational effects. These titanium cylinders have been used as a support for coiled copper or PTFE tubing as depicted in Figure 2.

![Figure 2: Sonochemical flow-mesoreactors](image2)

2. Lab to Pilot-Scale Flow-Reactors

The application of US to process intensification hinges on the development of large-scale multiple transducer sonochemical reactors operating in a continuous mode. Figure 3 shows the highly efficient sonotube available in two versions working at 20 and 35 kHz (volume: 70 and 700 cm\(^3\) respectively) and a high density power. Figures 4 and 5...
show US pilot reactors and a pilot system for hydrodynamic cavitation developed by the authors in collaboration with Danacamerini and E-Pic (Torino).

Figure 3: Flow sonication with Sonotube® (Synetude, Chambery, France).

Figure 4: Two examples of pilot flow-reactors: a multi-horn and a multi-transducer emitting titanium plate.

Figure 5: Hydrodynamic cavitation reactor

In summary, both research laboratories and the industrial sector are involved in the search for new technologies that may lead to process intensification. Our investigation confirmed the advantages of US flow-reactors due to the easier scaling up, higher efficiency and energy saving.

References


Bremner D., Di Carlo S., Chakinala A.G. and Cravotto G., 2008, Mineralisation of 2,4-dichlorophenoxyacetic acid by acoustic or hydrodynamic cavitation in conjunction with the Advanced Fenton Process, Ultrason. Sonochem. 15, 416-419.
