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Summary  27 

The evolutionary and ecological success of the arbuscular mycorrhizal (AM) symbiosis 28 

relies on an efficient and multifactorial communication system for partner recognition and 29 

on a fine-tuned and reciprocal metabolic regulation of each symbiont to reach an optimal 30 

functional integration. Besides strigolactones, N-acetylglucosamine-derivatives released by 31 

the plant were recently suggested to trigger fungal reprogramming at the pre-contact 32 

stage. Remarkably, N-acetylglucosamine-based diffusible molecules (LCOs and COs) are 33 

also symbiotic signals produced by AM fungi (AMF) and clues on the mechanisms of 34 

their perception by the plant are emerging. AMF genomes and transcriptomes contain a 35 

battery of putative effector genes that may have conserved and AMF- or host plant-36 

specific functions. Nutrient exchange is the key feature of AM symbiosis. A mechanism of 37 

phosphate transport inside fungal hyphae has been suggested and first insights into the 38 

regulatory mechanisms of root colonization in accordance with nutrient transfer and status 39 

were obtained. The recent discovery of the dependency of AMF on fatty acid transfer from 40 

the host has offered a convincing explanation for their obligate biotrophism. Novel studies 41 

highlighted the importance of plant and fungal genotypes for the outcome of the symbiosis. 42 

These findings open new perspectives for fundamental research and application of AMF in 43 

agriculture. 44 

 45 

Key words: Arbuscular mycorrhizal fungi, effectors, lipids, natural variation, nutrients, 46 

phosphate, signalling, symbiosis 47 
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I. Introduction 61 

Soil is a complex matrix with diverse geochemical properties that is inhabited by wide 62 

range of prokaryotic and eukaryotic organisms (Nielsen et al., 2015). The soil volume in 63 

direct contact with the plant root is defined as the rhizosphere and represents a particularly 64 

biologically rich environment, in which microbial communities profit from metabolites 65 

released by roots (Sasse et al., 2017). Some of the soil inhabitants, such as arbuscular 66 

mycorrhizal fungi (AMF) establish a very intimate association with plant roots leading to 67 

the formation of a mutualist interaction called the arbuscular mycorrhizal (AM) symbiosis 68 

(Martin et al., 2017). 69 

AMF show peculiar features: beside their obligate biotrophism, they are characterized by 70 

coenocytic hyphae and multinucleated spores (Kamel et al., 2016; Lanfranco et al., 2016); 71 

no sexual reproduction has been described so far, although evidence for the potential of 72 

mating-related processes has been obtained (Corradi & Brachmann, 2017). They have a 73 

rather long history of taxonomic revisions, which reflects the general difficulty in resolving 74 

the earliest branches in the fungal genealogy. Ribosomal DNA-based phylogenies placed 75 

them in the Glomeromycota phylum considered a sister group to Dikarya (Schüssler et al., 76 

2001). An extensive phylogenomic study, based on kingdom-wide sampling of fungal 77 

species and genome-scale sampling of loci, placed AMF in the subphylum named 78 

Glomeromycotina with a close relationship with Mortierellomycotina (Spatafora et al., 79 

2016). 80 

AM is one of the most ancient and widespread symbioses in nature (Lanfranco et al., 2016). 81 

The main advantage of the AM symbiosis is the exchange of nutrients: the plant provides 82 

up to 20% of the photosynthetically fixed organic carbon to the AMF (Roth & Paszkowski, 83 

2017), while the AMF transfers mineral nutrients to the plant thanks to its efficiency in 84 

exploring and acquiring these resources from the soil (Smith et al., 2011). In addition, 85 

plants colonized by AMF often show higher tolerance to biotic and abiotic stresses 86 

compared to non-mycorrhizal plants and this is not a mere consequence of a better 87 

nutritional status (Jung et al., 2012; Augé et al., 2015). At the ecosystem level, AM 88 

improves soil quality (Rillig et al., 2015) and increases plant biodiversity (van der Heijden 89 

et al., 1998).  90 

Root colonization by AMF occurs in successive steps. Prior to physical contact between 91 

plant and fungus, diffusible molecules mediate reciprocal recognition. When fungal hyphae 92 

touch the root epidermis, they form adhesion structures called hyphopodia. Subsequently, 93 

AMF enter the root and grow into the root cortex taking an intracellular as well as 94 
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intracellular route. In the cortex, hyphae penetrate single cells, where they develop 95 

arbuscules, highly branched structures (Gutjahr & Parniske, 2013; Lanfranco et al., 2016). 96 

Arbuscules are surrounded by a plant derived peri-arbuscular membrane (PAM), which, 97 

together with the arbuscule-membrane, forms an extensive interface for nutrient exchange. 98 

Excellent recent reviews describe the latest advances in plant regulatory and cell biological 99 

mechanisms required for accommodation of AMF inside roots (Luginbuehl & Oldroyd, 100 

2017; MacLean et al., 2017; Pimprikar & Gutjahr, in revision). Here we discuss, with 101 

special attention on the fungal partner, new findings in the understanding of molecules and 102 

mechanisms that control partner recognition, the importance of nutrients in the 103 

establishment and maintenance of AM and the role of plant-fungal genotype combinations 104 

for the outcome of the symbiosis. 105 

 106 

II. Interkingdom communication enabling symbiosis 107 

The rhizosphere is a preferential niche for large microbial communities. Unequivocal and 108 

efficient communication systems are therefore required to enable specific interactions such 109 

as the AM symbiosis. 110 

 111 

Plant exudates activate the fungus 112 

AMF and plants rely on reciprocal recognition before physical contact (Nadal & 113 

Paszkowski, 2013). Plant roots, particularly under Pi limiting conditions, release 114 

strigolactones (SL), carotenoid-derived molecules with hormone functions in plants 115 

(Waters et al., 2017). These stimulate AMF hyphal branching and elongation (Akiyama et 116 

al., 2005; Besserer et al., 2006; Fig. 1), thus promoting the chances to contact the host. 117 

Furthermore, a general activation of the fungal mitochondrial metabolism (visible as 118 

organelle division, ATP production and gene expression) has been associated to SL 119 

exposure (Besserer et al., 2008; Lanfranco et al., 2017). Notably, SL treatment also led to 120 

an increase in the release of chitin oligomers by AMF (Genre et al., 2013), which act as 121 

signaling molecules on the plant (Sun et al., 2015). SLs also contribute to the induction of 122 

fungal genes (Tsuzuki et al., 2016; Kamel et al., 2017). One of them, encoding a putative 123 

secreted protein 1 (SIS1), is essential for symbiosis establishment as host-induced gene 124 

silencing (HIGS) lead to stunted arbuscules and reduced root length colonization (Tsuzuki 125 

et al., 2016). The fungal receptor for SL is currently unknown and its identification is a 126 

matter of active investigation. Nevertheless, the importance of SL for efficient symbiosis 127 

establishment is clear, as plants defective in the biosynthesis or the exudation of SL display 128 
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a lower colonization level, while arbuscule morphology is normal (summarized in Waters 129 

et al., 2017 and Lanfranco et al., 2017). 130 

Although SL are plant-derived, they do not appear to play an important role at the host side 131 

because rice mutants defective in the alpha-beta hydrolase SL receptor D14, are not 132 

perturbed in AM colonization (Yoshida et al., 2012; Gutjahr et al., 2015). During SL 133 

perception, D14 interacts with the F-box protein MAX2/D3/RMS4 in a receptor complex 134 

(Hamiaux et al., 2012). MAX2/D3/RMS4 is also involved in the perception of karrikins 135 

together with the alpha-beta fold hydrolase KAI2/D14-LIKE (Nelson et al., 2010; Waters 136 

et al., 2012).  Karrikins are butenolide molecules found in smoke extracts that promote 137 

seed germination of many plant species (Flematti et al., 2004). Interestingly, rice d3 and 138 

pea rms4 mutants displayed aborted colonization attempts and reduced arbuscules 139 

formation, respectively (Yoshida et al., 2012; Foo et al., 2013; Gutjahr et al., 2015) and a 140 

rice mutant defective in the karrikin receptor D14-LIKE/KAI2 is characterized by a 141 

complete absence of hyphopodia (Gutjahr et al., 2015). In addition, the rice d14l/kai2 142 

mutant lacks the transcriptional response to fungal germinating spore exudates (GSEs), 143 

indicating that karrikin receptor complex may be involved in perception of the fungus. 144 

However, it is not yet clear whether a karrikin-like compound of fungal or plant origin acts 145 

as ligand of the D14L receptor in plant-AMF recognition (Gutjahr et al., 2015; Waters et 146 

al., 2017).  147 

The recent discovery that an N-acetylglucosamine (GlcNAc) transporter of rice and 148 

maize, called NOPE1, is required for early signalling in the AM symbiosis, points to the 149 

existence of additional and GlcNAc-based diffusible plant molecules, which may trigger 150 

presymbiotic fungal reprogramming (Nadal et al., 2017; Fig. 1). nope1 mutants display 151 

very low levels of root length colonization and root exudates from the mutant differ from 152 

wild type exudates in their ability to induce transcriptome changes in the AMF 153 

Rhizophagus irregularis associated with the GO-term “signalling” (Nadal et al., 2017). 154 

Although the exact molecular function of NOPE1 and its elusive substrate are so far 155 

unknown, the strong mycorrhizal phenotype of the nope1 mutant indicates a crucial role 156 

in plant-fungal communication. Identification of the NOPE1 substrate will be exciting as 157 

GlcNac-based signaling molecules are currently only known from bacteria and fungi but 158 

to our knowledge not from plants. 159 

 160 

Fungal chitin-based molecules elicit symbiotic plant responses  161 

AMF use GlcNAc-based molecules as pre-contact signals to activate symbiotic responses 162 
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in the host plant such as calcium spiking, lateral root formation, starch accumulation and 163 

gene expression (Gutjahr et al., 2009; Mukherjee & Ane, 2011; Genre et al. 2013; Sun et 164 

al., 2015; Czaja et al., 2012; Camps et al., 2015). These so called ‘Myc Factors’ include 165 

lipo-chito-oligosaccharides (Myc-LCOs, Maillet et al., 2011) and short chitin tetra- and 166 

pentamers (Myc-COs; Genre et al., 2013) (Fig. 1). Although the MycLCOs show strong 167 

similarity to Nod Factors released by nitrogen fixing rhizobia (Gough & Cullimore, 2011), 168 

the metabolic pathways leading to their synthesis in AMF are not yet known. 169 

Both Myc-COs and Myc-LCOs are able to elicit repetitive nuclear calcium (Ca2+) 170 

oscillations, known as Ca2+-spiking, which is considered a hallmark of symbiotic signalling 171 

(Oldroyd 2013; Sun et al., 2015). So far, the biological significance of producing both 172 

Myc-COs and Myc-LCOs remains obscure. It is possible that a diversity of signaling 173 

molecules contributes to the ability of AMF to interact with a wide range of AM host plants 174 

or to the robustness of the system. However, GlcNAc-containing molecules can be 175 

produced by many microorganisms, including plant pathogens, and it is puzzling how 176 

plants can distinguish AMF from the others. One possibility are fine-tuned Myc Factors 177 

ligand-receptor specificities (Zipfel & Oldroyd, 2017). Small molecules with a GlcNAc 178 

backbone are perceived by LysM-domain containing receptor like kinases (LysM RLKs) 179 

and receptor like proteins (LyM RLPs), with different ligand specificities (Gust et al., 180 

2012). The repertoire of LysM-receptors differs significantly among plant species (Zhang et 181 

al., 2009), which may have favoured the co-evolution or maintenance of several different 182 

Myc Factors. Possibly due to the functional redundancy of AMF-responsive LysM-receptor 183 

kinases in the genome of AMF-host plants, and the multitude of different Myc Factors, 184 

definitive receptors for Myc-COs or Myc-LCOs have not emerged yet (Buendia et al., 185 

2016; Zipfel & Oldroyd, 2017). Good candidates are SlLYK10 from tomato and NFP from 186 

Parasponia: virus-induced and RNAi-mediated gene silencing of both corresponding genes, 187 

respectively, partially perturbed AM establishment (Op den Camp et al., 2011; Buendia et 188 

al., 2016). However, there is currently no evidence that both LysM-RLKs bind Myc-COs or 189 

Myc-LCOs and it cannot be excluded that VIGS and RNAi affected the expression of 190 

additional redundant LysM-RLKs. The rice OsCERK1, a LysM receptor-like kinase, which 191 

has a dual role in both interactions with pathogenic fungi and AMF (Miyata et al., 2014), 192 

was shown to play a central role in the perception of Myc-CO signals because an oscerk1 193 

mutant does not respond to these molecules with Ca2+-spiking (Carotenuto et al., 2017). In 194 

addition, it fails to induce lateral roots in response to AMF (Chiu et al., 2018). However, 195 

oscerk1 root colonization is only delayed and not entirely abolished (Miyata et al., 2014; 196 
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Zhang et al., 2015; Chiu et al., 2018) pointing towards redundant recognition mechanisms. 197 

By contrast, OsCEBiP, a LysM receptor-like protein (RLP), which acts as co-receptor of 198 

OsCERK1 in the perception of long-chain chitin oligomers from pathogenic fungi, is not 199 

required for the AM symbiosis and is not essential for Myc-CO-induced Ca2+ spiking 200 

(Carotenuto et al., 2017). Therefore, an unknown LysM-containing protein likely associates 201 

with OsCERK1 to mediate specificity for the interaction with AMF. 202 

An additional level of complexity may be added by the possibility that AMF may produce 203 

different amounts and/or a different repertoire of Myc Factors at different life-stages. 204 

Additionally, the composition of the Myc Factor cocktail may differ among AMF species. 205 

Thus, our understanding of how plants distinguish beneficial microbes and limit the 206 

invasion by detrimental ones will rely on the characterization of the blend of GlcNAc-207 

containing molecules produced by AMF and their specific receptors and downstream 208 

signalling components. 209 

Also volatile signals may participate in the belowground communication with the plant. 210 

Fungal volatile organic compounds (VOCs) can reprogram root growth and architecture 211 

and influence the defense system of the host plants (Werner et al., 2016). Using an elegant 212 

split Petri-dish system, Sun et al. (2015) found that volatiles, released by germinating 213 

spores of the AMF Gigaspora margarita, stimulated lateral root formation in Lotus, as well 214 

as in Arabidopsis, indicating that these volatiles target a receptor, which is not AM-specific. 215 

The SL biosynthesis gene LjCCD7, was up-regulated following exposure to these VOCs, 216 

suggesting a possible involvement of SL signaling (Sun et al., 2015). 217 
  218 
An emerging role for fungal effectors in AM establishment  219 

In addition to GlcNAc-containing molecules, other molecules released by AMF contribute 220 

to interkingdom signaling. In analogy to pathogenic interactions, these molecules are called 221 

effectors: they serve to dampen defense responses and/or to interfere with host cellular 222 

processes to favor colonization of the host (Lo Presti et al., 2015). 223 

AMF effector candidates have been predicted from fungal genomes and transcriptomes 224 

(Sędzielewska Toro & Brachmann, 2016; Kamel et al., 2017). The number of identified 225 

genes depends on the criteria used to define effectors. A first criterium is the presence of a 226 

signal peptide that guides proteins towards secretion. Sezdzielewska Toro & Brachmann 227 

(2016) further filtered on the basis of the small size and the presence of cysteines, internal 228 

repeats and nuclear localization signals leading to the identification of 220 putative 229 

effectors from R. irregularis. Remarkably, a large majority of these genes is conserved in 230 
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the related species R. clarus, suggesting that a majority of putative effectors may be 231 

involved in core symbiotic functions. However, a comparison of transcriptomes from two 232 

distantly related AMF, R. irregularis and Gigaspora rosea, when colonizing three different 233 

host plants (the dicotyledon M. truncatula, the monocotyledon Brachypodium distachyon 234 

and the liverworth Lunularia cruciata), revealed that the expression of putative secreted 235 

proteins (SPs) can differ in function of the host plant: among 87 SPs genes expressed in the 236 

intraradical mycelium of R. irregularis only 33 were expressed in all three plant species 237 

(Kamel et al., 2017), suggesting that these 33 fulfill core-functions, while the others may 238 

act host-specifically (Fig. 2). Host-specifically expressed effector candidates have also been 239 

observed for the endophyte Piriformospora indica, when colonizing roots of barley or 240 

Arabidopsis (Lahrmann et al., 2015). 241 

The seminal work by Kloppholz et al. (2011) provided the first functional characterization 242 

of a putative AMF effector. The protein, named secreted protein 7 (SP7), from R. 243 

irregularis increased the speed of root colonization by AMF, when the corresponding gene 244 

was ectopically expressed in M. truncatula hairy roots (Kloppholz et al., 2011). It 245 

translocated to the nucleus of the plant cell where it was suggested to counteract the plant 246 

immune response by interacting with the pathogenesis-related-transcription factor ethylene 247 

response factor ERF19 (Kloppholz et al., 2011). However, the SP7 gene is not only 248 

expressed in intraradical fungal structures, but SP7 transcripts also strongly accumulate in 249 

extraradical fungal mycelia (Kamel et al., 2017), suggesting that SP7 may play a role in 250 

addition to suppressing plant immunity inside the root. SP7 contains several sequence 251 

repeats, which are separated by computationally predicted KEX2 protease cleavage motives, 252 

which could mean that SP7 can be cleaved into small peptides, which may act on the 253 

fungus or the plant (Kamel et al., 2017). 254 

Two additional fungal genes have been recently identified with a putative role in the 255 

accommodation of fungal structures in the root (Tsuzuki et al. 2016; Fiorilli et al., 2016). 256 

The R. irregularis gene, encoding the putative secreted protein SIS1, was among the five 257 

genes up-regulated in both SL-treated germinating spores and symbiotic extraradical 258 

mycelium, so that it has been proposed as a marker gene for fungal SL response (Tsuzuki et 259 

al., 2016). In the absence of genetic transformation protocols for AMF, SIS1 silencing was 260 

obtained by HIGS (Host-Induced Gene Silencing). This led to reduced colonization and 261 

stunted arbuscules. The second gene was called RiPEIP1 (Preferentially Expressed In 262 

Planta) since it is strongly induced in the intraradical phase, including arbuscules. It 263 

encodes a four transmembrane domain protein, which is not a common feature for 264 
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effectors. RiPEIP1 expression in Oidiodendron maius, an ericoid endomycorrhizal fungus, 265 

for which transformation protocols are available, led to enhanced mycorrhization capacity 266 

compared to the O. maius wild-type strain (Fiorilli et al., 2016). Further studies are needed 267 

to define the mechanisms of action of SIS1 and RiPEP1 and their specific role in the 268 

establishment of the AM symbiosis. 269 

In addition to proteins, small RNAs of the pathogenic fungus Botrytis cinerea, were shown 270 

to target, by cross-kingdom RNAi, mRNA of defense genes in the host plant, thus acting as 271 

effectors (Wang et al., 2017). It is possible that such a mechanism is also exploited by 272 

AMF. The interference with RNA metabolism of the host plant can also be envisaged for 273 

the so-called RALPH (RNase-Like Proteins associated with Haustoria) the secreted 274 

avirulence effectors described in the obligate biotroph pathogenic fungus Blumeris 275 

graminis (Spanu 2017). 276 

 277 

III. Alimentary and regulatory roles of nutrients in the AM symbiosis  278 

After the AM symbiosis has been established, both symbionts benefit from nutrient supply 279 

by the other partner. Accumulating evidence indicates that the exchanged nutrients not only 280 

function as nourishment but also act as signals that can drastically influence AM 281 

development. Thus, AM development is strongly linked to symbiotic function. 282 

 283 

AMF receive carbohydrates as well as lipids from the host  284 

Based on stable isotope labelling experiments, it has long been established that AMF 285 

receive carbohydrates and specifically glucose from the plant (Pfeffer et al., 1999; 286 

Trépanier et al., 2005). How the sugars are transported from the plant to the fungus is still 287 

unclear. A number of genes encoding sugar transporters with activities towards 288 

monosaccharides (MSTs) and sucrose (SUTs) as well as members of the SWEET family 289 

are upregulated in mycorrhizal roots (Harrison, 1996; Doidy et al., 2012; Manck-290 

Götzenberger & Requena, 2016), but genetic evidence for their function is still missing. So 291 

far only the function of the sucrose transporter SUT2 from tomato has been investigated by 292 

reverse genetics (Bitterlich et al., 2014). It is localized to the PAM and roots of sut2 293 

antisense plants are significantly more colonized than wild-type roots. Together, this 294 

suggests that SUT2 may be involved in competition with the fungus for sucrose for 295 

example by pumping the metabolite from the peri-arbuscular space (PAS) back into the 296 

plant cell (Bitterlich et al., 2014). A high affinity monosaccharide transporter MST2 from 297 

the AMF R. irregularis has been characterized. RiMST2 is expressed in arbuscules and 298 
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intercellular hyphae and is possibly responsible for sugars uptake from the peri-fungal 299 

apoplast, as silencing of RiMST2 led to reduced root colonization and impaired arbuscule 300 

branching (Helber et al., 2011). Interestingly, expression of RiMST2 was triggered also in 301 

the extraradical mycelium, when it was supplied with xylose. Furthermore, the extraradical 302 

mycelium was able to take up 14C-labelled glucose and xylose from the medium (Bücking 303 

et al., 2008; Helber et al., 2011) and this uptake was inhibited by the protonophore 304 

carbonyl cyanide m-chlorophenyl hydrazone, demonstrating that it occurred by active 305 

transport and not simple diffusion across the membrane (Helber et al., 2011). The finding 306 

that AMF can actively take up pentoses and hexoses from the medium challenges the 307 

notion that obligate biotrophy of AMF is based upon strict dependence on plant-derived 308 

sugars. 309 

Genome and transcriptome sequencing of the first AMF species shed more light on the 310 

biology and the evolution of AMF (Tisserant et al., 2013; Lin et al., 2014; Kamel et al., 311 

2016; Ropars et al., 2016; Tang et al., 2016). Surprisingly, it was found that genes 312 

encoding the cytosolic fatty acids (FA) synthase subunits, which are responsible for the 313 

bulk FA production in fungi, are absent from AMF genomes (Wewer et al., 2014; Tang et 314 

al., 2016). In about the same period, legume mutants, with stunted arbuscules, reduced root 315 

colonization and defects in three AM-induced lipid biosynthesis genes DISORGANIZED 316 

ARBUSCULES (DIS), FatM and REDUCED ARBUSCULAR MYCORRHIZA 2 were 317 

identified (Wang et al., 2012; Bravo et al., 2016; Bravo et al., 2017; Jiang et al., 2017; 318 

Keymer et al., 2017; Luginbuehl et al., 2017). DIS encodes a ß-keto-acyl-ACP synthase I 319 

(KASI), which is specific to genomes of AM-competent gymnosperms and dicots and 320 

catalyses FA chain elongation from C4 to C16 (Keymer et al., 2017). FatM encodes a 321 

thioesterase, which terminates FA chain elongation by hydrolysis of the acyl-ACP, and 322 

FatM shows a preference for C16-ACP (Bravo et al., 2017; Brands et al., under review). 323 

RAM2 encodes an sn-2 glycerol-3-phosphate acyltransferase 6, which transfers a fatty acyl 324 

residue to the sn-2-position of a glycerol, thereby creating ß-mono-acyl-glycerol (ß-MAG, 325 

Luginbuehl et al., 2017). Both FatM and RAM2 have been only found in genomes of AM-326 

competent land plants (Delaux et al., 2015; Bravo et al., 2016). Consistent with the 327 

phenotype, the promoters of all three genes DIS, FatM and RAM2 are specifically active in 328 

arbuscule-containing cells (Gobbato et al., 2013; Bravo et al., 2017; Jiang et al., 2017; 329 

Keymer et al., 2017). 330 

Comprehensive lipid profiling in L. japonicus and M. truncatula supported the hypothesis 331 

that DIS, FatM and RAM2 act in an AM-specific lipid-biosynthesis pathway because ram2 332 
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mutants accumulate unusual phospholipids enriched in palmityl moieties, which are the 333 

products of the concerted action of DIS and FatM (Bravo et al., 2017; Keymer et al., 2017).  334 

AMF store lipids mainly as tri-palmityl-triacylglyerol (16:0 - TAG) and desaturate the 16:0 335 

fatty acyl chain at a specific ω5 position, permitting distinction of fungal from plant lipids 336 

by using 16:1ω5 FAs as an AMF-specific signature (Olsson et al., 2005). The lipid profile 337 

of dis, fatm and ram2 mutants contained hardly any 16:1ω5 FAs and the fungus R. 338 

irregularis did not form lipid-containing vesicles in mutant roots, suggesting that the 339 

fungus was deprived of lipids (Bravo et al., 2017; Keymer et al., 2017). Lipid transfer from 340 

host plants to AMF was shown by two independent experimental approaches. Luginbuehl 341 

et al. (2017) and Jiang et al., (2017) used a genetic approach and transformed Medicago 342 

hairy roots with the Umbellularia californica fatty acyl–ACP thioesterase gene (UcFatB) 343 

that produces the 12:0 FA lauric acid, which does neither occur in Medicago nor in R. 344 

irregularis. Transgenic Medicago roots carrying UcFatB synthesized lauric acid and it was 345 

also detected in the spores of colonizing R. irregularis (Luginbuehl et al. 2017; Jiang et al., 346 

2017), unequivocally demonstrating that lauric acid containing lipids were transferred from 347 

the host to AMF. Keymer et al. (2017) measured lipid transfer in non-transgenic plants by 348 

isotopolog profiling of 16:0 and 16:1 FAs as markers. To this end Lotus plants and carrot 349 

root organ culture were fed with 13C labelled glucose. The isotopologue profile of 16:0 FAs 350 

in Lotus and carrot roots differed significantly. However, in each case the root profile was 351 

precisely mirrored by the 16:0 FAs in the fungal extraradical mycelium as well as by the 352 

fungus-specific 16:1 FAs (Keymer et al., 2017), demonstrating that the profile was 353 

determined by the plant and therefore, the FAs were transferred from the plant to the 354 

fungus. In the dis, fatm and ram2 mutants, lipid transfer was impaired as well as in str 355 

mutants, which are deficient in an ABC-half transporter gene (Bravo et al., 2017; Jiang et 356 

al., 2017; Keymer et al., 2017). STR together with its complex partner STR2 (Zhang et al., 357 

2010) is considered a good candidate transporter for lipid transfer across the PAM (Gutjahr 358 

et al., 2012; Bravo et al., 2017). 359 

Taken together, these recent findings indicate that AMF are entirely dependent on lipid 360 

supply by the plant for their growth, development and reproduction and that the dependence 361 

on lipids may be the prime reason for their obligate biotrophy. They explain why AMF 362 

store a large amount of lipids in their spores, which are probably used as resources for 363 

membrane construction during spore germination and the first phase of root colonization 364 

until the first developing arbuscules can obtain lipids from the host. These findings also 365 
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change our view on the energy balance of the symbiosis, in which the burden of organic 366 

carbon compound biosynthesis is more significantly shifted towards the plant than was 367 

previously assumed. 368 

 369 

Mechanisms of phosphate transfer from AMF to plant hosts 370 

Phosphorus (P) is predominantly present in soil as low mobile dihydrogen phosphate ion 371 

(H2PO4
−, Pi; Nussaume et al., 2011) and a major macronutrient limiting plant growth. To 372 

overcome Pi starvation stress and increase access to Pi, plants have evolved several 373 

strategies. Under low Pi availability plants activate a Pi starvation response (PSR) system 374 

that regulates root and shoot architecture and physiology (Poirier & Bucher, 2002). In 375 

addition, plants can exploit the AM symbiosis to optimize Pi acquisition. The Pi 376 

contribution via AMF ranges from a small percentage to almost the entire acquired Pi, 377 

depending on plant/AMF combinations (Smith et al., 2004). AMF are equipped with a very 378 

efficient system for Pi capture and translocation. Thanks to the extraradical hyphal network 379 

developed in the soil AMF greatly increase the absorbing surface area (up to 100-fold that 380 

of root hairs) extending well beyond the depletion zone (Javot et al., 2007b). AMF were 381 

also proposed to be able to mineralize soil organic P (Feng et al., 2003; Shibata & Yano, 382 

2003); and this was supported by Sato et al. (2015) demonstrating that extraradical hyphae 383 

of the AMF R. clarus release an acid phosphatase of about 187 kDa, which may be 384 

involved in mobilizing organic P. AMF colonization also induces the expression and 385 

secretion of acid phosphatases on the plant side (Ezawa et al., 2005), indicating that the 386 

symbiosis may also increase the plant ability to solubilize organic P from the soil. 387 

Fungal Pi:H+ symporter (PT), homologs of the yeast high-affinity transporter PHO84 (Bun-388 

Ya et al., 1991), are thought to be responsible for Pi uptake from the soil (Harrison & van 389 

Buuren, 1995; Maldonado-Mendoza et al., 2001; Benedetto et al., 2005; Xie et al., 2016). 390 

Consistently, the fungal PT genes are expressed in the extraradical mycelium (ERM) but 391 

also in the intraradical mycelium (IRM), suggesting an additional role in Pi reabsorption 392 

from the PAS (Benedetto et al., 2005; Balestrini et al., 2007; Fiorilli et al., 2013; Xie et al., 393 

2016). 394 

Once absorbed by ERM, Pi is quickly converted inside vacuoles into polyphosphate 395 

(polyP) chains, linear polymers of three to hundreds Pi molecules (Solaiman et al., 1999; 396 

Ezawa et al., 2003). It has been hypothesized that AMF synthesize polyP through the VTC 397 

complex (Tisserant et al., 2012; Tani et al., 2009), as described in yeast (Hothorn et al., 398 

2009). PolyP is then translocated to the IRM via protoplasmatic streaming and/or along a 399 
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motile a tubular vacuolar network (Olsson et al., 2002; Uetake et al., 2002, Hijikata et al., 400 

2010). Interesting new insights into the mechanism of long-distance polyP translocation in 401 

mycorrhizal associations were obtained from the characterization of R. clarus aquaporin 3 402 

(RcAQP3), an aquaglyceroporin responsible for water transport across the plasma 403 

membrane (Kikuchi et al., 2016). RcAQP3 is strongly expressed in intraradical mycelia and 404 

down-regulation of RcAQP3 via VIGS through the host plant, as well as the suppression of 405 

host plant transpiration, decelerated polyP translocation. Kikuchi et al. (2016) proposed 406 

thus a model in which transpiration provides a primary driving force for polyP translocation 407 

by creating water flow through the fungal RcAQP3 and the mycorrhiza-inducible plant 408 

aquaporins. 409 

PolyP breakdown in the IRM possibly involves acid and alkaline phosphatases (Ezawa et 410 

al., 2001; Aono et al., 2004; Kojima & Saito, 2004). The full dissociation of polyP 411 

produces large amount of negative charges. A compensatory mechanism is set up to 412 

maintain a neutral charge inside the cell: the massive accumulation of polyP in fungal 413 

mycelia is accompanied by near-synchronous and near-equivalent uptake of Na+, K+, Ca2+, 414 

and Mg2+ (Kikuchi et al., 2014). 415 

Pi is delivered to the periarbuscular space, by a still unknown mechanism. It is then 416 

imported by AM-inducible, PAM-localized plant PTs, such as Medicago PT4 and rice 417 

PT11 into the cortical cells (Javot et al., 2007b; Yang et al., 2012). This transport is 418 

suggested to be supported by a H+ energy gradient produced by a H+-ATPase, that has been 419 

found to be important for arbuscule maintenance and AM-mediated phosphate uptake 420 

(Krajinski et al., 2014; Wang et al., 2014). AM-inducible PT genes have been identified in 421 

different host plants (Harrison et al., 2002; Javot et al., 2007a; Paszkowski et al., 2002; 422 

Yang et al., 2012; Rausch et al., 2001; Nagy et al., 2005; Xu et al., 2007; Balestrini et al., 423 

2007; Willmann et al., 2013; Sawers et al., 2017; Hong et al., 2012; Volpe et al., 2016 ; 424 

Loth-Pereda et al., 2011; Xie et al., 2013; Walder et al., 2015). They are homologs of the 425 

yeast PHO84 and belong to the Phosphate transporter 1 (Pht1) class (Poirier & Bucher, 426 

2002) of the plant H+/Pi symporters. In a phylogenetic tree of PHT1 proteins they cluster in 427 

a separate clade, which does not contain Pht1 transporters from AM-incompetent plants 428 

(Yang et al., 2012; Hong et al., 2012), indicating that an AM-specific PT-gene duplication 429 

was maintained in symbiotic Pi transport in the plant kingdom. Interestingly, the root 430 

endophyte Colletotrichum tofieldiae was shown to transfer Pi to Arabidopsis and to 431 

promote plant growth only under P-deficient conditions (Hiruma et al., 2016). During 432 

colonization, several Arabidopsis PT genes of the Pht1 family were induced. It will be 433 
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interesting to investigate, whether they, similarly to AM-specific PTs, localize to perifungal 434 

membranes to directly take up Pi from the fungus. 435 

While promoters of AM-specific PT genes have been mostly reported to be specifically 436 

expressed in arbuscule-containing cells, PT4 from M. truncatula and L. japonicus are also 437 

expressed in root tips when grown at Pi starvation conditions (Volpe et al., 2016). 438 

Interestingly, mtpt4 mutants and Lotus hairy roots expressing a RNAi construct which 439 

silence PT4 do not respond to low Pi conditions with changes in lateral root formation to 440 

the same extend as the wild type (Volpe et al., 2016), suggesting that PT4 is involved in 441 

root architecture responses to low Pi, in addition to symbiotic Pi uptake. 442 

 443 

Phosphate influences AM development  444 

When a fungal PT or plant PT genes essential for symbiosis are mutated or silenced most 445 

arbuscules are stunted (Javot et al., 2007a; Yang et al., 2012; Xie et al., 2016; Volpe et al., 446 

2016), due to accelerated arbuscule turnover (Javot et al., 2007a). This indicates that the 447 

plant removes an arbuscule, which does not deliver Pi, possibly as a mechanism to avoid 448 

fungal parasitism (Gutjahr & Parniske, 2017). Interestingly, the accelerated arbuscule 449 

turnover in the Medicago pt4 mutant can be suppressed when the plant is grown in nitrogen 450 

starvation conditions (Javot et al., 2011; Breullin-Sessoms et al., 2015), indicating that 451 

under these conditions symbiotic nitrogen delivery becomes an advantage even if Pi is not 452 

delivered, according to Liebig’s law of the minimum (Gutjahr & Parniske, 2017). However, 453 

a double mutant of MtPT4 and the PAM-localized ammonium transporter MtAMT2.3 454 

(Breullin-Sessoms et al., 2015) retained a majority of stunted arbuscules, pointing towards 455 

a particular importance of ammonium as compared to nitrate, at least in Medicago. 456 

Together this indicates that fungus-delivered nutrients can act as cell-autonomous signals in 457 

the regulation of arbuscule maintenance. The molecular mechanism for this is currently 458 

unknown, but it has been suggested that PAM-localized PTs could act as transceptors 459 

similar to PHO84 in yeast (Popova et al., 2010; Yang et al., 2012; Breuillin-Sessoms et al., 460 

2015; Volpe et al., 2016). This was based on the observation that the OsPT13 gene, which 461 

is specifically expressed in arbuscule containing cells, is not required for AM-mediated Pi 462 

uptake, in contrast to the major player OsPT11 (Yang et al., 2012). However, mutation of 463 

OsPT13 still leads to accelerated arbuscule turnover, indicating that OsPT13 may be 464 

important for Pi sensing. The same may apply to ammonium transporters, as only AMT2.3 465 

was essential for arbuscule branching in the pt4 mutant background, while the other AM-466 

induced AMT2.2, AMT2.4 and AMT2.5 genes were not required, although AMT2.4 showed 467 
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a higher affinity for ammonium than AMT2.3 in yeast complementation assays (Breuillin-468 

Sessoms et al., 2015). This could indicate that the receptor activity of AMT2.3 is more 469 

important than its transport activity. Remarkably, the recently described PT gene from the 470 

AMF Gigaspora margarita, which is expressed in both ERM and IRM, was shown to act as 471 

a transceptor (Xie et al., 2016). Thus, coupling of Pi uptake and sensing therefore seems to 472 

be also important for the fungus. 473 

An innovative RNAi-based suppressor screen for pt4 focusing on transcription factors led 474 

to the identification of MYB1, the first transcriptional regulator of arbuscule degeneration 475 

(Floss et al., 2017). MYB1 is involved in the regulation of a range of hydrolase genes 476 

possibly involved in clearing the arbuscule from the cortex cell. The myb1 mutant does not 477 

show prolonged arbuscule life-time, although the MYB1 promoter is active in arbuscule-478 

containing cells of the wild-type (Volpe et al., 2013; Floss et al., 2017), but ectopic 479 

expression of MYB1 suppresses AM development (Floss et al., 2017). This indicates 480 

genetic redundancy at the level of MYB1 when Pi is delivered normally. MYB1 interacts 481 

with the GRAS proteins NODULATION SIGNALING PATHWAY1 (NSP1) and the 482 

suppressor of gibberellin signaling DELLA in binary interaction studies (Floss et al., 2017), 483 

pointing towards a link between the regulation of arbuscule degeneration and plant 484 

hormone signaling. 485 

In addition to its cell-autonomous influence on arbuscule maintenance, Pi regulates AM 486 

formation also in a systemic manner. It is long known that AM establishment is repressed 487 

when plants are grown under high Pi supply (Mosse 1973; Branscheid et al., 2010; 488 

Balzergue et al., 2011; Kobae et al., 2016). For suppression to occur the shoot Pi level 489 

seems to be important because in split root experiments, in which only one side of the split 490 

root system was fertilized with high Pi concentrations, AM formation was suppressed on 491 

both sides (Branscheid et al., 2010; Breuillin et al., 2010; Balzergue et al., 2011). 492 

Therefore, members of the miR399 family, which are systemic Pi-starvation signals, have 493 

been proposed as signaling molecules in the regulation of AM by Pi, as they are induced by 494 

AM fungal colonization (Branscheid et al., 2010). However, miR399 overexpression did 495 

not restore AM fungal colonization at high Pi level (Branscheid et al., 2010) suggesting 496 

that other mechanisms are involved. The reason of reduced AM colonization has also been 497 

searched in a perturbed early communication between plant and fungus. However, Ca2+ 498 

spiking in epidermal cells is still generated in response to AMF hyphopodia at high Pi 499 

conditions, indicating that the host plant maintains the ability to perceive and respond to the 500 

fungal partner (Balzergue et al., 2013). On the plant side, SL biosynthesis is reduced under 501 



 16 

high-Pi conditions. However, the exogenous application of GR24, a synthetic SL analogue, 502 

failed to increase AM colonization levels at high Pi (Breullin et al., 2010; Balzergue et al., 503 

2011), suggesting that other factors or phytohormones such as auxin or gibberellin may be 504 

involved in suppressing AM at high Pi (Floss et al., 2013; Carbonnel & Gutjahr, 2014; 505 

Pozo et al., 2015). 506 

Interesting clues are emerging from metagenomics studies: the plant immune system 507 

(Lebeis et al., 2015) and soil nutrient composition (Hacquard et al., 2015; Castrillo et al., 508 

2017) were shown to play a key role in the coordination of root colonization by specific 509 

microbial taxa. Castrillo et al. (2017) demonstrated that the genetic network controlling the 510 

Pi stress response influences the composition of the microbial community of A. thaliana 511 

roots. An Arabidopsis double mutant defective in PHR1 and PHL1, encoding two 512 

redundant master transcriptional regulators of Pi starvation responses (PSR), showed an 513 

upregulation of plant defense genes leading to an atypical composition of a synthetic 514 

bacterial community at low as well as high Pi conditions. These results are in line with the 515 

observation that Arabidopsis roots upregulate defense genes when colonized at high Pi 516 

conditions by the fungal endophyte C. tofieldiae (Hacquard et al., 2016), which promotes 517 

plant growth under low Pi conditions by translocating Pi to the host (Hiruma et al., 2016), 518 

reminiscent of what occurs in AM symbiosis. A similar activation of defense-related genes 519 

was observed in field grown maize when the plants were grown at high soil Pi levels; this 520 

was accompanied with alterations in the root-inhabiting fungal community and with 521 

reduced root length colonization by AMF (Yu et al., 2017). It appears that lowering plant 522 

defenses at low Pi, functions in increasing the chances to recruit beneficial soil microbes to 523 

overcome the nutritional stress. Conversely, it is tempting to speculate that in Pi-sufficient 524 

plants, similar defense mechanisms may participate in suppressing AM formation. 525 

An RNAseq analysis of R. irregularis colonizing Lotus roots represents the first 526 

investigation of fungal responses to high Pi (Sugimura & Saito, 2017). Fungal cell cycle 527 

regulatory genes, cyclin-dependent kinase CDK1 and several DNA replication- and 528 

mitosis-related genes were repressed under high Pi conditions in the IRM (Sugimura & 529 

Saito, 2017). The same genes were not regulated by a high Pi treatment in the ERM 530 

(Kikuchi et al., 2014), suggesting that the transcriptional change in cell-cycle related genes 531 

may be mediated by the Pi-sufficient plant. High Pi treatment also led to down-regulation 532 

of twenty-nine putative secreted proteins, including SL-induced putative secreted protein 533 

(SlS1) (Sugimura & Saito, 2017), pointing to an effect of the reduced SL of a Pi-sufficient 534 

plant. 535 
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IV. The plant-fungus genotype combination determines the outcome of the symbiosis  536 

Plant growth responses cannot be predicted by AMF phylogeny 537 

Despite a rather modest morphological variation, AMF often show a high level of genetic 538 

variability. The characterization of ribosomal sequences revealed an unusually high 539 

sequence divergence, especially in the Internal Transcribes Spacer region (Thiéry et al., 540 

2016). Thus, the small rDNA subunit (SSU) is nowadays commonly used as a more reliable 541 

marker to define species in the Glomeromycotina (Öpik & Davidson, 2016). However, SSU 542 

rDNA may suffer from a limited resolution and many exceptions to the correlation between 543 

SSU alone and morphological species were reported. Indeed, the concept of species for 544 

AMF is currently a matter of debate and resolution of this issue will possibly require 545 

multilocus data (Bruns et al., 2017). 546 

AMF also display a high functional diversity: the efficiency of AMF genera and isolates 547 

belonging to the same species to stimulate plant growth is highly variable. Also depending 548 

on the host plant, the effect can vary in magnitude and in direction, as positive or negative 549 

effects have been recorded (Hart & Reader, 2002; Munkvold et al., 2004; Feddermann et 550 

al., 2008; Antunes et al., 2011; Hong et al., 2012; Fig. 3). However, a high functional 551 

variation, measured as the growth effect on the host plant, contrasts with the low 552 

intraspecific morphological variation shown by isolates of the same species. 553 

In a large comparative study of AMF performance, 56 AMF isolates belonging to six 554 

different families and 17 genera were inoculated on three different host plants (Koch et al., 555 

2017) to look for relationships between fungal traits/phylogenetic position and plant growth 556 

responses. Even if most isolates originated from geographically distant areas, traits such as 557 

extraradical hyphal volume or total spore weight were relatively constant within AMF 558 

families. Surprisingly, AMF phylogeny and species identity could not predict the plant 559 

growth response. Moreover, with the exception of total spore volume, none of the 560 

considered fungal traits (total fungal volume, extra- and intraradical fungal volumes) was 561 

positively correlated with plant performance (Koch et al., 2017), suggesting that molecular 562 

features such as the repertoire of signaling molecules, effectors or the abundance and 563 

efficiency of nutrient transport proteins may play a more important role for plant 564 

performance than AMF growth and morphology. Deciphering the origin of this 565 

intraspecific functional diversity is challenging and will require genomics and functional 566 

genomics investigations at intra- and interspecific levels. The effects on plant performance 567 

are likely under the control of a number of loci showing polymorphisms in coding and/or 568 

regulatory regions at the intraspecific level. As suggested by host-specific expression 569 
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patterns of candidate effector genes (Kamel et al., 2017) the host plant may also play a role 570 

in the regulation of such loci. In addition, plant growth promotion may not be the only trait 571 

that should be considered: other benefits such as tolerance to abiotic or biotic stresses could 572 

provide a different picture. This knowledge will be fundamental to predict the impact of 573 

AMF inoculation on plant performance. 574 

The recent discovery of homokaryotic as well as dikaryotic strains of R. irregularis and the 575 

identification of putative MAT loci (Ropars et al., 1016; Corradi & Brachmann, 2017) 576 

highlighted the potentials of AMF for sexual reproduction. The characterization of MAT 577 

loci will be instrumental to understand, whether they are involved in dikaryon 578 

establishment and, eventually, in karyogamy and meiosis. These new findings and expected 579 

advances in the understanding of AMF genetics and life cycle may even pave the way to 580 

genetic strain improvement for applied purposes. 581 

 582 

Plant responsiveness to AMF is subject to genetic diversity  583 

Not only the AMF, but also the plant genotype strongly affects the outcome of the 584 

symbiosis (Smith et al., 2004; Fig. 4). The performance response of plants to AMF has 585 

been defined as responsiveness and contrasted with dependence, which describes that a 586 

genetically determined nutrient inefficiency can be compensated by AMF (Paszkowski & 587 

Boller, 2002; Janos, 2007; Sawers et al., 2010). Responsiveness can differ among cultivars 588 

of the same species and, in addition, it is affected by soil nutrient content (Sawers et al., 589 

2010; Chu et al., 2013), indicating a complex genotype by environment interaction. Sawers 590 

et al. (2017) identified a first symbiotic parameter, which may determine AM-591 

responsiveness in maize. They investigated AM-responsiveness (R) defined as shoot dry 592 

weight of mycorrhizal plants minus shoot dry weight of non colonized plants (R = SDWM-593 

SDWNC), in 30 American maize lines including the founder lines of a nested association 594 

mapping population (McMullen et al., 2009) when colonized with the fungus 595 

Funneliformis mosseae in greenhouses. Interestingly, the capacity of maize lines to profit 596 

from the symbiosis in terms of shoot dry weight and shoot Pi content correlated with the 597 

amount of associated extraradical hyphae (Sawers et al., 2017; Fig. 4), suggesting an 598 

influence of plant genetics on fungal growth performance and, conversely, an impact of 599 

fungal morphology on plant performance when comparisons are based on only one fungal 600 

isolate. The plant molecular mechanisms determining fungal performance are entirely 601 

unknown and may be related to the amount of carbohydrates and lipids released to the 602 

fungus. Indeed, the expression pattern of monosaccharide transporter genes from the AMF 603 
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R. irregularis in intraradical vs. extraradical hyphae depended on the host plant (Ait 604 

Lahmidi et al., 2016), which may be symptomatic of differences in monosaccharide supply 605 

or plant signals, which influence carbohydrate uptake strategies of the fungus.  606 

Moreover, the analysis of the same cohort of 30 maize lines for an ionomics screen for 19 607 

mineral ions in shoots and roots allowed the identification of clusters of ions, which 608 

showed coordinated changes in response to AMF and to genotype (Ramirez-Flores et al., 609 

2017). It will be interesting to understand how the coordinated uptake of or protection from 610 

certain ions occurs and whether these correlations can also be found in a realistic field 611 

setting. Plant genetic variation also determines the root colonization level of a given 612 

fungus. However, according to our current knowledge the amount of colonization is not a 613 

major determinant of plant performance benefit (Koch et al., 2017; Sawers et al., 2017). In 614 

a large effort, 94 bread wheat genotypes were analysed for root length colonization by a 615 

mixed inoculum of three AMF species and six QTLs associated with colonization level 616 

were identified (Lehnert et al., 2017). Interestingly, these contained genes related to 617 

defense and cell wall metabolism, which may be involved in restraining root colonization. 618 

Some plant genotypes respond to AMF with growth depression. The mechanism behind the 619 

depression is not yet clear and, although it partially depends on soil conditions (Sawers et 620 

al., 2010), it was in other studies on wheat and barley partially uncoupled from Pi uptake as 621 

well as from fungal growth (Li et al., 2008; Grace et al., 2009). It has been suggested that 622 

domestication may have decreased the ability of plants to respond positively to AMF 623 

(Lehmann et al., 2012). This was investigated in a comparison of 27 crops with their wild 624 

progenitors (Martin-Robles et al., 2017). Both wild and domesticated species responded to 625 

AMF at low Pi conditions, however the response was not strictly correlated to Pi in the 626 

green leaves, indicating either a variety of Pi partitioning strategies in the different species 627 

or a range of mechanisms contributing to the growth response. A subset of 14 pairs of wild 628 

and domesticated species was also tested at high Pi conditions. Interestingly, the growth 629 

response of wild progenitors to AMF was similar at low and high Pi, while it was strongly 630 

reduced at high Pi in the domesticated counterparts. In addition, suppression of root 631 

colonization at high Pi was more pronounced in the domesticated plants (Martin-Robles et 632 

al., 2017). Together, this indicates that - at least in the tested species - domestication 633 

selected for AM independence at high Pi levels, which possibly increased yield in absence 634 

of a fungal carbon drain. However, as AMF provide other services to plants such as 635 

increased resistance to abiotic stress and certain pathogens, it remains to be investigated 636 

whether other stresses would enhance AM-responsiveness of domesticated plants under 637 
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high Pi fertilization. 638 

 639 

V. Perspectives 640 

It is now commonly accepted that soil biodiversity promotes multiple ecosystem functions 641 

and that the tailored management of soil communities, including AMF, has the potential to 642 

enhance agricultural sustainability (Bender et al., 2016). Understanding the biology of 643 

AMF and the AM symbiosis is instrumental for their full exploitation. We envisage in the 644 

near future a significant expansion of our knowledge in several fields of AM research. 645 

Comparative genomics and transcriptomics from a larger number of AMF species will 646 

expand our knowledge of their genome organization, genetic and regulatory complexity. 647 

The intricacy of AMF genetics is increased by the presence of endobacteria, which live 648 

inside many AMF (Bonfante & Desirò, 2017) and may influence fungal fitness. For 649 

example, the endobacterium Candidatus Glomeribacter gigasporarum was shown to 650 

increase sporulation, ATP production, reactive oxygen detoxification and responsiveness to 651 

the plant signal strigolactones of the fungal host, G. margarita (Salvioli et al., 2016). Also 652 

viruses can thrive inside AMF; however, our knowledge on the AMF virome is limited to 653 

few Rhizophagus species (Ikeda et al., 2012; Kitahara et al., 2014). In particular, Ikeda et 654 

al., (2012) demonstrated that a virus-free fungal strain produced more spores and promoted 655 

plant growth more efficiently than the virus-containing strain. The full complement of the 656 

microbiota living inside AMF certainly deserves further investigation to define their 657 

influence on the metabolism of the fungal host and the potential impact on plant 658 

performance. 659 

The characterization of AMF putative effectors and the identification of factors involved in 660 

the perception of plant signals, nutrient uptake, transport and metabolism will also be an 661 

active field of research and should involve AMF species-comparisons to foster an 662 

understanding of AMF functional diversity. Current limitations in the direct genetic 663 

manipulation of AMF can be circumvented using heterologous systems such as Nicotiana 664 

benthamiana leaf and legume hairy root transient assays or transgenic expression in 665 

transformable biotrophic fungi such as O. maius (Fiorilli et al., 2016) or pathogenic 666 

oomycetes such as Phytophtora palmivora (Rey & Schornack, 2013). HIGS or VIGS and 667 

the emerging tool SIGS (Spray-Induced Gene Silencing; Wang & Jin, 2017) can be 668 

exploited for silencing fungal genes; however, the efficiency and reliability of these 669 

methods still need to be improved. 670 

We expect to see progress in the description and characterization of plant receptors for 671 
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AMF signalling molecules as well as in the identification of substrates of receptors and 672 

transporters such as D14L/KAI2 and NOPE1 (Gutjahr et al., 2015; Nadal et al., 2017). 673 

Physiological and molecular investigation is needed to resolve mechanisms and regulation 674 

of nutrient transfer between the symbionts and, in particular, the flux of carbohydrates and 675 

lipids towards the fungus (Rich et al., 2017). It becomes increasingly clear, that despite 676 

their large host range, the efficiency of AMF in promoting plant performance differs 677 

strongly among fungal species and isolates and the ability of the plant to respond to the 678 

symbiosis depends on the plant genotype. The molecular basis of AM-responsiveness is 679 

entirely unclear but it may depend on a diversity of strategies for nutrient partitioning, 680 

hormone homeostasis or (in)compatibilities of AMF effector-plant target pairs. The 681 

identification of genetic polymorphisms underlying differences in symbiotic performance 682 

of plants and AMF will be key to smart breeding for profitable application of the AM 683 

symbiosis in sustainable agricultural systems with reduced chemical fertilizer and pesticide 684 

input. 685 
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Figure legends 1241 

 1242 

Figure 1. Molecules involved in the communication between AMF and host plants. Plant 1243 

roots release strigolactones (SL) which stimulate AMF metabolism and hyphal branching to 1244 

promote colonization (Akiyama et al., 2005; Besserer et al., 2006; 2008). The recent 1245 

finding that a plant N-acetylglucosamine (GlcNAc) transporter is required for AM early 1246 

signalling suggests the existence of GlcNAc-based diffusible plant molecules, which may 1247 

trigger presymbiotic fungal reprogramming (Nadal et al., 2017). Also AMF use GlcNAc-1248 

based molecules, which include lipo-chito-oligosaccharides (LCO; Maillet et al., 2011) and 1249 

short chitin tetra- and pentamers (CO; Genre et al., 2013), as pre-contact signals to activate 1250 

plant symbiotic responses. AMF effector candidates, thought to interfere with host cellular 1251 

processes to favor colonization at early and/or late stages of the AM symbiosis, have been 1252 

predicted from fungal genomes and transcriptomes (Sędzielewska Toro & Brachmann, 1253 

2016; Kamel et al., 2017). To note that SL influence the production of chitin oligomer 1254 

(Genre et al., 2013) and effectors (Tsuzuki et al., 2016; Kamel et al., 2017) by AMF. IRM: 1255 

intraradical mycelium; ERM: extraradical mycelium. 1256 

 1257 

Figure 2. Scheme of the variety of symbiotic effectors produced by AMF during the 1258 

interaction with host plants (based on data from Kamel et al., 2017). For a single AMF 1259 

species some effectors are expressed in association with all plant species while others are 1260 

expresssed in a host plant-specific manner. Some effectors are conserved among AMF and 1261 

may play core symbiotic functions. 1262 

 1263 

Figure 3. The magnitude of plant growth promotion depends on the AMF genotype. 1264 

 1265 

Figure 4. Distinct plant genotypes of the same species show differences in responsiveness 1266 

(R) to AMF. In maize, responsiveness is correlated with the ability of the line to promote 1267 

the growth of the extraradical mycelium (ERM) of Funnelliformis mossae (Sawers et al., 1268 

2017). Drawings of maize plants were adopted from www.clipart.co. 1269 


