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Abstract   

Flow intermittence occurs in an increasing number of streams, due to climate change, local land-use 

alteration and water abstraction. In particular, droughts represent a new element in Alpine river 

regimes, and their ecological consequences are poorly explored. We here used artificial streams to 

investigate the resilience of macroinvertebrates to drought in Alpine streams based on the presence 

of pools (i.e., refuges) and drift (i.e., recolonization). Four flumes were selected: one with 

permanent flowing water (Control), while the other three (Drift+Pools, Only Drift, Incoming Drift) 

subjected to two consecutive drought-rewetting phases. The effects of droughts on benthic 

invertebrate communities and their recovery were assessed in terms of composition, structure, 

diversity and stability. Droughts dramatically reduced the biodiversity, especially with regard to the 

most sensitive and specialized macroinvertebrates, such as EPT, shredders and scrapers. 

Macroinvertebrate assemblages of the flumes that experienced drying phases were dominated by 

few generalist taxa and showed a higher degree of dissimilarity. Overall, no significant differences 

were observed in relation to the presence of pools, suggesting a limited role of this habitat in the 

recovery process. This finding seems to indicate that in shallow and fast-flowing Alpine lotic 

ecosystems the drift rather than pool availability represents the main driver of the macroinvertebrate 

resilience to droughts. Since the magnitude of droughts in Alpine streams and their frequency are 

expected to increase in the next decades due to the combined effects of local and global pressures, 

understanding which factors facilitate the recovery of aquatic communities assumes a fundamental 

importance. 
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1. Introduction 

An increasing number of lotic ecosystems are currently experiencing drying conditions and water 

shortage (Arthington, 2012; Humphries & Baldwin, 2003; Ledger & Milner, 2015). Although these 

phenomena are typical features of the natural flow regime in some areas, such as Mediterranean 

regions (Bonada, Rieradevall, & Prat, 2007b; Vannucchi, López-Rodríguez, de Figueroa, & Gaino, 

2013), in the last decades they have been spreading out in other climatic regions where rivers are 

usually perennial. For example, in Northern Italy, Alpine streams are facing an intensification in 

both the magnitude and frequency of droughts due to the combined effects of global and local 

pressures (Chiogna et al., 2016; Fenoglio, Bo, Cucco, Mercalli, & Malacarne, 2010; McGregor, 

Petts, Gurnell, & Milner, 1995). Indeed, global warming is producing a raise in temperature 

regimes, a reduction in ice cover and a shift in the spatial and seasonal amount of precipitations 

(Beniston, 2012; Middelkoop et al., 2001). Moreover, these lotic ecosystems are increasingly 

impacted by heavy flow regulation and water abstraction. Therefore, Alpine streams are changing 

from perennial to intermittent systems with possible but still largely unknown detrimental 

ecological effects (Gorbach, Shoda, Burky, & Benbow, 2014; Leigh et al., 2016; Pinna et al., 2016). 

In this context, a great attention has been paid on the response of stream macroinvertebrates because 

their importance in terms of biomass, diversity and functionality (Allan & Castillo, 2007). The 

negative effects of droughts on benthic invertebrate communities briefly include: loss of 

biodiversity, especially with regard to the most sensitive species (Smith, McCormick, Covich, & 

Golladay, 2017; Storey, 2016), reduction in the organism abundance (Calapez, Elias, Almeida, & 

Feio, 2014; Řezníčková, Pařil, & Zahrádková, 2007) and changes in the functional composition and 

structure (Bonada, Doledec, & Statzner, 2007a; Ledger, Brown, Edwards, Milner, & Woodward, 

2013; McKay & King, 2006). Little is actually known on which factors drive the resilience of 

benthic communities in perennial streams recently affected by droughts. The capacity of lotic 

systems to self-recover from disturbances mainly depends on their high heterogeneity and 

dynamicity over spatial and temporal scales and, last but not least, on the degree of natural integrity 

of biological communities at reach or basin scale (Boulton & Lake, 2008; Lake, 2000). In this 

context, beta-diversity (i.e., among sampling units) has been commonly used as an indicator of 

community stability and integrity in microbial ecology (Barberán & Casamayor, 2011; Zaneveld, 

McMinds, & Thurber, 2017), but similar approaches are available in stream ecology. For example, 

Gutiérrez‐Cánovas, Millán, Velasco, Vaughan, & Ormerod (2013) evaluated patterns in beta-

diversity between the macroinvertebrate communities affected by natural and anthropogenic 



pressures, while Datry, Moya, Zubieta, & Oberdorff (2016) used this metric with regard to the 

hydrological regime, comparing assemblages from intermittent and perennial sites.  

One of the most important factors to guarantee resilience of benthic invertebrate communities is the 

presence of in-stream refuges. A set of different micro-habitats have been suggested as refuge zones 

for macrobenthos during a period of water shortage: pools (Chester & Robson, 2011; Verdonschot, 

Oosten‐Siedlecka, Braak, & Verdonschot, 2015), the hyporheic zone (Brunke & Gonser, 1997; 

Fenoglio, Bo, & Bosi, 2006; Otermin, Basaguren, & Pozo, 2002; Wood, Boulton, Little, & 

Stubbington, 2010), wet sediments, seeps, lateral aquatic habitats and the organic debris (Robson, 

Chester, & Austin, 2011). Recovery of invertebrate communities after droughts occurs not only by 

upward movements from subsurface (hyporheic) refuges, but also by downstream migration, 

notably by drift, and also hatching or reactivation of drought-resistant stages, upstream movements, 

and aerial re-colonization either by adults or through oviposition (Lake, 2000). However, drift 

represents the primary and fastest mechanism used by larvae of some aquatic insects to quickly 

recolonize vacant habitats (Fowler, 2004; Paltridge, Dostine, Humphrey, & Boulton, 1997; 

Robinson, Tockner, K., & Burgherr, 2004). Despite the great emphasis on the specific role played 

by each of these re-colonization sources, quantitative data are scarce and this is essentially due to 

the difficulties associated to data collection in field. Indeed, droughts are generally unpredictable: 

the inter-annual variability in the flow regime may result in differences in the magnitude and extent 

of the drying phase and this could interfere with the response of communities. In turn, this 

variability can affect the occurrence and availability of in-stream refuges within the same river 

section over the time and spatial scales. This highly variable situation makes difficult to compare 

the findings and draw general conclusions. In this context, the use of artificial streams and 

manipulative approaches can provide valid and replicable methods for overcoming the above-

mentioned critical aspects (Bunn & Arthington, 2002; Lamberti & Steinman, 1993; Poff et al., 

2003).  

In this study we investigated the response of benthic invertebrate communities to drought in Alpine 

streams using outdoor artificial streams. Simulated droughts in artificial streams have been carried 

out in other studies (Lancaster & Ledger, 2015; Ledger, Edwards, Brown, Milner, & Woodward, 

2011; Ledger, Harris, Armitage, & Milner, 2012), varying on average around 6 days in accordance 

with the size of the flumes. In particular, the aims of this work were: i) to assess the effects of 

drought on taxonomical and functional composition, structure, diversity and degree of stability of 

macroinvertebrate assemblages; ii) to evaluate the role of in-stream refuges (i.e., pools) and 

incoming drift on the recovery pattern of macroinvertebrate communities to short-term droughts. 

We hypothesized that drought strongly altered all the structural and compositional attributes of 



benthic invertebrate communities and that pools partially buffered the detrimental effects of the 

drying phase, facilitating the resilience of macroinvertebrates.  

 

2. Material and Methods 

 

2.1 Experimental design 

The study was performed in a set of outdoor artificial streams consisting of five 20-m long, 30-cm 

wide and 30-cm deep metal flumes (bottom surface area: 6.0 m2), directly fed by a second-order 

pristine Alpine stream (Fersina stream, Trento, NE-Italy). Invertebrates freely colonize the flumes 

by drift or bottom downstream movements. For more details on the flumes setting, see Bruno, 

Cashman, Maiolini, Biffi, & Zolezzi (2016). 

For this study, four flumes were used, corresponding to different drought treatments (Figure 1): one 

maintained flowing water during all the experiment (Control: C), while the other three were 

subjected to drying phases. In one of the flumes, we artificially created pools using plastic buckets 

(39x28x14 cm). At the beginning of the experiment 16 plastic buckets were placed in the flume, 

flush with the bottom, and filled with cobbles (diameter: 8-10 cm) and fine gravel (diameter: 0.2-2 

cm). This composition was the same as the substrate conditions within the artificial flumes during 

the whole experiment. When the buckets were submerged there were 7 cm from their upper edge 

and the surface of water, so that the artificial shape of the buckets did not hinder the water flow 

inside the flume. This flume represented the Drift+Pools (DP) treatment because the recovery 

pattern of benthic invertebrates was expected to be influenced by both factors. The second treatment 

flume (Drift Only: DO) was characterized by the absence of pools: it represented a condition where 

no refuges were provided to benthic invertebrates and their post-drought recovery was expected to 

depend exclusively on the drift from the upstream sections (i.e., from the river). We placed 16 

standardized circular and drilled baskets (diameter: 22 cm) in each flume, filled with gravel and 6 

cobbles of the same size of those in the flume. These baskets represented our sampling units for the 

macroinvertebrates. The third treatment flume (Incoming Drift: ID) had no pools nor baskets, and 

was used only to collect the incoming drift from upstream with a drift net (30 x 30 cm; 350 μm 

mesh size) placed at the water inflow. This flume was affected by the same dewatering and 

rewetting phases as the two treatment ones described above. The water velocity at the entrance of 

all the flumes was 0.4 m s
-1

 and discharge 0.005 m
3
 s

-1
and they were kept consistent during the 

rewetting phases for flumes DO, DP and ID, and throughout the entire experimental period in C. In 

summer 2016, two sets of simulations were performed to evaluate the effects and the recovery 

pattern of macroinvertebrate communities to short-term droughts.  



We adopted a before-after-control-impacted (BACI: Smith, 2002) experimental design (Figure 2): 

after 21 days of natural colonization of the sampling units we collected benthic invertebrates from 

all the flumes. Then, we closed the gates of the DP, DO and ID flumes producing a 3 days-drought 

followed by 23 days of rewetting. At the end of this period we sampled the benthic invertebrates 

from all the flumes and we repeated this treatment twice, for a total of three sampling sessions. In 

this study three days of dewatering represented an acceptable trade-off between the need of 

producing drought conditions inside the flumes and prevent catastrophic alterations of the water 

characteristics inside the plastic buckets, guaranteeing their role as refuge. The dewatering period 

here applied is in accordance with other studies and it was effective to drain away the water from 

the flumes. During each sampling session, four randomly selected baskets from each flume were 

collected. All the content of the baskets was transferred in trays: cobbles were vigorously rinsed to 

remove all the invertebrates adhering to their surface. After each 3 days-drought event, samples of 

drifting invertebrates were collected from the net for the entire rewetting phase and the drift was 

expressed as N. ind. m
-3

.The benthic and drift samples were filtered through a 350-um mesh and the 

invertebrates preserved in 70% ethanol solution. In the laboratory, macroinvertebrates were, sorted, 

counted, and identified to genus for Ephemeroptera and Plecoptera and family for the other groups 

following Campaioli, Ghetti, Minelli, & Ruffo (1994; 1999). In addition, taxa were classified into 

Functional Feeding Groups (Merritt, Cummins, & Berg, 2008).  

 

2.2 Statistical analysis 

Statistical analyses were performed in the R environment (R Development Core Team, 2015), using 

the “vegan” package (Oksanen et al., 2015). We first visually evaluated the differences in the 

composition and structure of benthic invertebrate communities with a Non-metric Multidimensional 

Scaling (NMDS), performed with a Bray-Curtis similarity matrix. A Permutational Analysis of 

Variance (PERMANOVA) was used to test significant effects of the “drought treatment” (i.e. 

comparing C, DO and DP), “sampling session” (i.e. Before, Drougth1 and Drougth2), as well as 

their interaction on the benthic community composition. In a second step, we tested the effects of 

different treatments on the stability of the assemblages, by evaluating the dissimilarity among 

sampling units within each treatment, i.e. beta-diversity. Following the procedure proposed by 

Gardener (2014), we used the Bray-Curtis index as a metric of similarity between the samples and 

this analysis was performed using presence/absence data and the R function “vegdist”. The 

differences in the beta-diversity, measured with the “betadisper” function (Anderson, 2006) as 

distance from the median in relation to the drought treatment and sampling sessions were visually 

assessed with a Principal Coordinate Analysis (PCoA). We tested the effects of treatments, sessions 



and their interaction on beta-diversity, benthic invertebrate biodiversity and Functional Feeding 

Groups (FFGs), expressed as differences in the total taxa richness, EPT richness and evenness index 

by running a two-way Analysis of Variance (ANOVA). For this analysis, count data were log(x+1) 

transformed and proportion data of all FFGs were arcsin-transformed to achieve the normal 

distribution of residuals. The drought treatment and the sampling session variables were used as 

fixed factors. The Tukey’s HSD test was used for the post-hoc comparisons. Among biodiversity 

metrics, besides the total taxa richness, we focused on the EPT taxa richness because they are a key 

component of benthic assemblages in Alpine streams and also the most sensitive taxa. In addition, 

the evenness index (i.e. 1-Simpson’s dominance index) for each sample was calculated to further 

investigate the consequences of the dewatering and rewetting on the structure of macroinvertebrate 

communities. Moreover, to evaluate the different contribution of each flume to the total diversity, 

we calculated the ratio between the total number of taxa for each flume in each sampling occasion 

(i.e. pooling together the four samples) divided for the total number of taxa recorded in this study. 

This operation allowed us to evaluate the cumulative effects of pools and drift on the dwelling 

invertebrate communities and to estimate the loss of biodiversity due to the droughts. Finally, drift 

data collected in the additional flume (ID) were used to draw a taxa accumulation curve to evaluate 

the temporal contribution of drift to richness during the rewetting phase. The samples of the two 

rewetting phases were pooled together into a unique database for this purpose. Moreover, the mean 

drift density of each taxon was calculated to account for the taxon-specific response.  

 

3. Results 

The NMDS ordination (2 axes, stress = 0.19) showed that drought events caused marked changes in 

the composition and structure of benthic invertebrate communities (Figure 3). In particular, the 

results of the PERMANOVA illustrated significant effects of the drought treatment, the sampling 

session and also their interaction on community composition (Table 1). Before the drought events, 

the composition of the benthic communities in all the artificial flumes was very similar, confirming 

that the colonization period was adequate to exclude any confounding effect and provide 

comparable conditions among the different drought treatments. After the two consecutive short-

term droughts only the Control flume (C) maintained a composition and structure of benthic 

invertebrate community similar to that observed at the Before session. On the contrary, the 

macroinvertebrate assemblages in the DO and DP flumes at the end of the simulations differed 

markedly from the initial ones.  

The similarity among sampling units was used to test the stability of the benthic assemblages 

among the experimental conditions, and we observed significant differences both for drought 



treatment (P < 0.01) and sampling session (P < 0.01). When the treatments were compared with a 

PCoA (Figure 4a), DP and DO showed a significantly higher dissimilarity than the Control. This 

result indicated that the degree of similarity among samples in the Control was high throughout the 

experiment, while in the flumes affected by the drought the dissimilarity markedly increased. 

However, the post-hoc comparisons showed significant differences only between the C and DP (P < 

0.01), while no significant differences were observed between the C and DO , although the P-value 

was close to the significant threshold (P = 0.059). When the variation in beta-diversity among 

sampling sessions was analyzed with the PCoA (Figure 4b), we detected significant differences 

between the Before samples and those collected in the two consecutive sampling dates. In other 

words, before the droughts benthic communities had a high level of similarity regardless of the 

flume, whereas in the two consecutive sampling occasions the degree of dissimilarity between 

Control and treated flumes increased remarkably (P < 0.01). 

The results of the two-way ANOVA showed significant effects of the drought treatment, the 

sampling session and also their interaction on taxa richness (Table 1). Before the droughts, all the 

flumes showed the highest and comparable values of taxa richness (Figure 5a), ranging from 13 to 

18 taxa (mean = 15.5, SD = 1.4). Conversely, after both the dewatering and rewetting phases, the 

richness dropped significantly in the DO (mean = 9.0, SD = 0.8) and DP (mean = 9.6, SD = 2.7) 

flumes in comparison to the Control (mean = 15.6, SD = 1.5). No statistical differences in the total 

taxa richness were observed between the DO and DP with regard to the post-drought sampling 

sessions. Similar results were obtained by the analysis of Ephemeroptera, Plecoptera and 

Trichoptera richness was analyzed (Figure 5b). The EPT richness was significantly affected by the 

treatment, the session and their interactions (Table 1). Before the drying phases, high and 

comparable values of EPT richness, varying from 8 to 11 taxa (mean = 9.5, SD = 0.9), were 

recorded in all flumes. Droughts significantly reduced the EPT richness in the DO (mean = 3.8, SD 

= 0.5) and DP (mean = 4.6, SD = 1.2), while the Control maintained values similar to the initial 

ones (mean = 8.5, SD = 1.3). We did not find statistical differences in the number of EPT taxa 

between the DO and DP flumes in both the post-drought sampling sessions.  

Analogous results were obtained in terms of relative richness (Figure 5c): before the drought events 

the C, DO and DP flumes accounted respectively for 0.70, 0.76 and 0.66 of the total richness 

collected in this study. Again, these values markedly dropped in the flumes subjected to the drying 

phase compared to the Control, but this reduction was different in the two flumes. In presence of 

pools (DP) the proportion of taxa remained relatively high after the first drought event (% richness 

= 0.63 for Drought1), and it decreased to 0.46 after the second event (Drought2). By contrast, in the 



flume characterized by the absence of pools (DO) the % richness after the two drought events was 

respectively 0.43 and 0.46.  

Droughts affected also the evenness of benthic invertebrate communities (Figure 5d). Results of the 

ANOVA showed a significant effects of drought treatment, while no significant differences were 

detected in relation to the session and their interaction (Table 1). In general, drought reduced the 

evenness within the benthic invertebrate communities, facilitating the dominance of few generalist 

taxa. Baetis sp., Chironomidae and Simuliidae represented the most dominant macroinvertebrates in 

the present experiment: they together constituted an average of 80% of the total abundance before 

the drying phases. However, after the drought events, their relative abundance increased over the 

95% both in the DO and DP flumes and no statistical differences were observed in the evenness 

between these two treatments. This trend, instead, was not recorded in the Control flume for which 

the relative abundance of these taxa remained similar to the initial one. 

With the exception of filterers, we found significant results of the droughts on the functional 

composition of benthic invertebrate (Figure 6), with particularly evident impacts on scrapers and 

shredders, for which we recorded an effect of sampling session and the interaction between this 

factor and the drought treatment (Table 1). Scrapers instead were significantly affected only by this 

latter factor. Before droughts, the proportion of scrapers and shredders was on average 6.6% and 

2.4%, respectively. The percentage of abundance of scrapers in the flumes affected by the drying 

phases fell to 0.9% (DO) and 1.3% (DP) after the first drought and 0.6% (DO) and 0.3% (DP) after 

the second drought. A similar trend was observed for shredders: their initial percentage abundance 

was on average 2.4%, and after the droughts it collapsed to 0% (Drought1) and 0.3% (Drought2) in 

the DO, and 0.2% and 0% in the DP. Elmidae, Heptageniidae and Ancylus sp. represented the most 

abundant scrapers, while the most common taxa among shredders were Leuctra sp. and Sericostoma 

sp. Results of the ANOVA showed a significant effect of the session on the percentage abundance 

of predators (Table 1), while we did not find any effect of the drought treatment or their interaction 

on this FFG. On average, the initial proportion of predators was 1.9% and then it was reduced to 

0.5% (DO) and 0.75% (DP) after the two consecutive short-term droughts respectively. Large 

stoneflies, such as Isoperla sp. and Dinocras sp., and Rhyachophilidae represented the main 

predator taxa. The percentage abundance of collector-gatherers was statistically affected only by the 

drought treatment (Table 1). This FFG was the most abundant throughout all the experiment: 

several taxa were grouped in this category but Baetis sp., Serratella sp. and Chironomidae were the 

most abundant. However, the proportion of collector-gatherers was slightly higher in the DO and 

PD compared to the control. No significant differences in the percentage abundance of filter-feeders 

were observed. This group was represented by two families: Simuliidae and Hydropsychidae. 



The majority of macroinvertebrate taxa quickly re-colonized the artificial flumes by drift (Figure 

7a). The accumulation curve illustrates that few days of rewetting were effective to rapidly increase 

the number of drifting taxa, enhancing the total richness in the flume. However, we found that the 

drift density varied markedly among the macroinvertebrates (Figure 7b), with Baetis sp. showing 

the highest values (0.0042±0.0009 ind. m
-3 

mean±SE), followed by Simuliidae (0.0018±0.0004 ind. 

m
-3

) and Chironomindae (0.0014±0.0003 ind. m
-3

). The large majority of taxa showed drift rates 

less than 0.0001 individuals m
-3

. 

 

4. Discussion 

The occurrence and intensification of flow intermittency in naturally perennial rivers is a recent 

phenomenon (Ledger & Milner, 2015). Notwithstanding a growing number of studies, the 

consequences of this alteration on the diversity and survival of aquatic biota are still poorly 

explored. The objective of this experimental study was to examine the response of benthic 

invertebrate communities to repeated, short-term summer droughts in Alpine streams using artificial 

streams, and the importance of instream refuges (i.e. pools) versus incoming drift in determining 

post-drought recovery. Our findings demonstrate that droughts strongly alter the composition and 

structure of benthic invertebrate communities, with negative impacts on all the descriptors of 

biodiversity. When the beta-diversity was calculated to assess the stability of the invertebrate 

communities, we observed that droughts increased the dissimilarity among the samples. Despite the 

initial colonization period and the rewetting phases consisted in a very comparable amount of time 

(21 and 23 days respectively), we found a higher dissimilarity among the post-drought communities 

in relation to the Control ones or those collected before the simulations. This result suggests that the 

re-colonization of macroinvertebrates in the flumes affected by droughts probably needs a longer 

time to reach a stable composition, comparable to the pre-drought levels. Moreover, 

macroinvertebrate assemblages affected by drying phases showed a marked reduction in taxa 

richness. This depletion in biodiversity was mainly driven by the loss of the EPT (Ephemeroptera, 

Plecoptera and Trichoptera) taxa, which are typically the dominant groups in the Alpine streams as 

well as the most sensitive taxa. While few other studies employed artificial flumes to study the 

ecological impact of droughts (Lancaster & Ledger, 2015), our work is probably the first to assess 

in artificial conditions the relative importance of refuges and pool in post-drought recovery process. 

We found that the benthic invertebrate communities in the flumes affected by droughts were 

dominated by few generalist taxa, such as Baetis sp., Chironomidae and Simuliidae. These taxa 

have been associated to the early stages of the recovery from several sources of impact, including 

droughts (Otermin et al., 2002; Ledger et al., 2011).  



Benthic invertebrate communities facing drying conditions appear impoverished, especially in 

relation to their key faunal components, altered and characterized by an unstable composition. 

Therefore, they may be more susceptible and vulnerable to the effects of other concomitant 

stressors. Taxonomical changes are often coupled with functional ones and impacts of droughts on 

the functional composition and structure of benthic communities have been demonstrated by several 

authors (Acuña et al., 2005; Bogan & Lytle, 2007; Fenoglio et al., 2007; Maamri, Chergui, & 

Pattee, 2005). According to these works, in the present study we recorded a significant decline of 

the proportion of scrapers and shredders in the communities experiencing the drying phases, with 

consequent repercussions on the other biological components of the food webs.  

One of the main aims of this work was to evaluate the role of pools and drift in the post-drought 

recovery of macroinvertebrate communities. Conversely, to our hypothesis, we did not find 

significant differences between the flumes with incoming drift and with or without instream refuges 

(pools) for all the diversity metrics. Nevertheless, it is interesting to note that when the richness was 

calculated in terms of percentage of taxa, the loss of biodiversity after the first drought event was 

lower in presence of pools than in their absence. However, after the second drought event we did 

not detect statistical differences between these two flumes. These findings seem to indicate that 

pools in shallow and fast-flowing systems like Alpine streams may buffer the effects of water 

scarcity, acting as a refuge for benthic invertebrates only in relation to occasional droughts. On the 

contrary, repeated droughts seem to offset their contribution in the recovery pattern. These results 

are in disagreement with the evidences provided by other authors: for example Vander Vorste, 

Malard, & Datry (2015) observed that the post-drought recovery of macroinvertebrates was mainly 

accounted for other refuges, such as the hyporheic zone, rather than the drift. A manipulative 

approach was also adopted by Verdonschot et al., (2015) who observed that pools represented the 

main refuge habitat for benthic invertebrates. However, both these studies were carried out in a 

lowland and alluvial river, thereby different from the mountain stream here considered. By contrast, 

Fowler (2004) investigated the post-drought recovery of benthic invertebrate communities in two 

New Zealand streams, comparing down-stream intermittent sites with up-stream perennial ones. 

The author observed a very quick response: 95% of the macroinvertebrate taxa recolonized the sites 

within 7 days, indicating a substantial contribution of drift for the up-stream sections. Our results on 

drift seem to corroborate the latter hypothesis: we generally found a quick re-colonization by 

drifting taxa. However, drift rates varied largely among taxa and such differences could account for 

the dominance and evenness recorded in the post-drought communities. Based on these results, drift 

seems to be the main factor driving the post-drought recovery of benthic invertebrate communities 

in our study system.  



Like all the experiments carried out in artificial streams, our study suffers some limitations due to 

the experimental conditions (Lamberti & Steinman, 1993). These include for example the attributes 

of the pools here used (i.e. plastic buckets isolated from the bottom) and the characteristics of the 

simulated drought-rewetting treatments. We are aware of this and further studies are needed to 

validate our results, involving the adoption of field surveys and manipulative approaches. However, 

artificial flumes have been successfully used and recommended in scientific literature for 

investigating the response of benthic organisms to several abiotic conditions, especially for those 

being difficult to isolate and quantify in the field (Bunn & Arthington, 2002; Lancaster & Ledger, 

2015; Ledger et al., 2011; 2012; Poff et al., 2003;).  

In conclusion, our experiment provides quantitative data on the impacts of droughts on Alpine 

macroinvertebrate communities and sheds light on the role of pools and drift in the re-colonization 

dynamics. Since the magnitude of droughts in Alpine streams and their frequency are expected to 

increase in the next decades due to the combined effects of local and global pressures, 

understanding which factors facilitate the recovery of aquatic communities assumes a fundamental 

importance.  
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Tables 

 

Table 1. statistics (F- and P-values) for (a) PERMANOVA and two-way ANOVAs for (b) diversity 

metrics and (c) Functional Feeding Groups (FFGs) in relation to the drought treatment, sampling 

session and their interaction. 

 

  Drought treatment   Sampling session   Interaction 

F2,26 P   F2,26 P   F4,26 P 

         

PERMANOVA 4.809 < 0.01  12.25 < 0.01  2.242 < 0.01 

         

Diversity metrics 
        

Taxa richness 19.116 < 0.001 
 

17.668 < 0.001 
 

5.679 < 0.01 

EPT richness 37.937 < 0.001 
 

53.882 < 0.001 
 

7.393 < 0.001 

Evenness index 6.811 < 0.01 
 

1.532 > 0.05 
 

0.798 > 0.05 

 
        

FFGs 
        

Scrapers (Sc) 37.403 < 0.001 
 

8.716 < 0.01 
 

15.329 < 0.001 

Shredders (Sh) 0.606 > 0.05 
 

5.117 < 0.05 
 

4.661 < 0.01 

Predators (P) 0.459 > 0.05 
 

5.499 < 0.05 
 

1.850 > 0.05 

Collector-gatherers (Cg) 4.195 < 0.05 
 

0.688 > 0.05 
 

0.318 > 0.05 

Filterers (F) 1.127 > 0.05   2.058 > 0.05   0.693 > 0.05 



 

 

 

 

  



Figure legends 

 

Figure 1. Representation of the experimental design: letters indicate the drought treatment: C 

(Control), DO (Drift Only), DP (Drift+Pools) and ID (Incoming Drift). Circles with the ellipses 

inside represent the sampling units (i.e. drilled baskets filled with cobbles), while the blue areas 

indicate the flowing water in the C flume and the pools (i.e. plastic buckets) in the DP flume. The 

grey area in the ID flume indicate the drift net placed at the sluice gate. 

 

Figure 2. Experimental design: the black line represents flowing water inside the flumes, dashed 

line represent the 3-days of drought. Sampling sessions were performed before starting the 

simulations, and after each drought-rewetting phases. 

 

Figure 3. Ordination of the sampled macroinvertebrate communities according to the first two 

NMDS axes. Colors indicate the drought treatments: Control (C, black), Drift Only (DO, dark grey) 

and Drift+Pools (DP, light grey); symbols indicate the sampling sessions: Before (circle), Drought1 

(square) and Drought2 (triangle). 

 

Figure 4. Principal Coordinate Analysis (PCoA) ordination plots based on the dissimilarity matrices 

(Bray-Curtis). In each plot, symbols represent the benthic community samples according to the: (a) 

drought treatment (C = Control; DO = Drift Only; DP = Drift+Pools) and (b) sampling session (B = 

Before; Dr1 = Drought1; Dr2 = Drought2). The lines link each sample with its corresponding 

centroid. 

 

Figure 5. Boxplots represent the variation in: (a) all invertebrate taxa richness, (b) EPT 

(Ephemeroptera, Plecoptera and Trichoptera) richness; (d) evenness for the different drought 

treatment and sampling session. Black line: median value; box: quartile interval; whiskers: 

minimum and maximum values. Bars indicate the percentage of taxa recorded in each flume after 

each session (c). 

 

Figure 6. Stacked bars illustrate the percentage abundance of the Functional Feeding Groups (Sh = 

shredders, Sc = scrapers, P = predators, F = filterers, Cg = collector-gatherers) in each flume (C = 

Control; DO = Drift Only; DP = Drift+Pools) for each sampling session (Before, Drought1, 

Drought2). 

 



Figure 7.  Taxa accumulation curve calculated on the drift samples (a): the black line represents the 

mean number of taxa in each sample, while the grey area indicates the 95% confidence interval. The 

drift density of the benthic invertebrate taxa (b): the grey bars represent the mean values (+SE). 


