Biallelic variants in the ciliary gene TMEM67 cause RHYNS syndrome

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1675054 since 2019-02-12T20:07:35Z

Published version:
DOI:10.1038/s41431-018-0183-6

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
Biallelic mutations in the ciliary gene TMEM67 cause RHYNS syndrome

Running Title: Recessive TMEM67 mutations cause RHYNS syndrome

Francesco Brancati1,2, Letizia Camerota2*, Emma Colao3*, Virginia Vega-Warner4*, Marco Castori5, Alfredo Caglioti6, "Undiagnosed Disease Network Italy", Federica Sangiulio7, Giuseppe Novelli7, Nicola Perrotti8, Edgar A. Otto9

1Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
2Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
3Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
4Department of Pediatrics and Communicable Diseases, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
5Division of Medical Genetics, IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
6Nephrology and Dialysis Unit, Mater Domini University Hospital, Catanzaro, Italy
7Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
8Department of Health Sciences, University of Catanzaro Magna Graecia, Catanzaro, Italy
9Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA

*These authors contributed equally to this work

Corresponding author:
Francesco Brancati
Department of Life, Health and Environmental Sciences
University of L’Aquila
Piazzale Salvatore Tommasi 1
67100 – Coppito (AQ)
Italy
Phone: +39 0862 434716
Email: francesco.brancati@univaq.it

Conflict of interests
The authors declare that they have no conflict of interests
ABSTRACT

A rare syndrome was first described in 1997 in a 17-year-old male patient presenting with Retinitis pigmentosa, HYpopituitarism, Nephronophthisis and Skeletal dysplasia (RHYNS). In the single reported familial case, two brothers were affected, arguing for X-linked or recessive mode of inheritance. Up to now, the underlying genetic basis of RHYNS syndrome still remains unknown. Here we applied whole-exome sequencing in the originally described family with RHYNS to identify compound heterozygous mutations in the ciliary gene TMEM67. Sanger sequencing confirmed a paternally inherited nonsense (p.Arg208*) and a maternally inherited missense mutation (p.Asp430Gly). Overall, TMEM67 showed one of the widest clinical continuums observed in ciliopathies ranging from early lethality to adults with liver fibrosis. Our findings extended the spectrum of phenotypes/syndromes resulting from biallelic TMEM67 mutations to now eight distinguishable clinical conditions including RHYNS syndrome.

Key words: ciliopathy; nephronophthisis; retinitis pigmentosa; MKS3; TMEM67
INTRODUCTION

RHYNS syndrome (OMIM 602152) was defined in 1997 by the acronym of Retinitis pigmentosa, HYpopituitarism, Nephronophthisis and mild Skeletal dysplasia in a 17-year-old man\(^1\). A closely resembling phenotype with liver fibrosis has been previously described in a boy\(^2\), while Hedera and collaborators reported a similar condition in a family with two affected brothers\(^3\). The observation of affected males only and recurrence in a sib suggested either an X-linked or autosomal recessive inheritance pattern. Yet, the underlying genetic basis has remained unexplained, although the pattern of associated clinical features was compatible with a hereditary ciliary disorder. In this study, we reported the 20-year follow-up of the original patient with RHYNS syndrome. Whole-exome sequencing led to the identification of a compound heterozygous mutation in the gene \(TMEM67\). The assignment of RYHNS syndrome as part of the wide spectrum of \(TMEM67\)-related ciliopathies is discussed.

SUBJECTS AND METHODS

Patient

The index male patient was re-evaluated at the age of 38 years, still in search of a molecular diagnosis after receiving a clinical diagnosis of RHYNS syndrome at young age\(^1\). In brief, he was born with congenital palsy of the III and IV cranial nerve on the right resulting in complete ophthalmoplegia and upper eyelid ptosis and congenital palsy of the VI cranial nerve on the left with exotropia. At the age of 4 years, he measured 90 cm (-4.9SD) and showed delayed bone age. Growth hormone (GH) and thyreotropin releasing hormone (TSH) deficiency were diagnosed and treated with replacement therapy until young adulthood. At this age, radiological examination
showed mild signs of skeletal dysplasia consisting of osteopenia, thin tubular bones, epiphyseal hypoplasia and hypoplastic iliac bones with irregular acetabular margins. At age 11, retinitis pigmentosa and left sensorineural hearing loss were first diagnosed. Abnormal renal function was evident by age 12 years, when a renal biopsy demonstrated a histological pattern consistent with nephronophthisis. Due to the worsening of renal function he underwent a first kidney transplantation from a deceased donor at age 29; but it was rejected. Subsequently, he was started on hemodialysis and, at age 34, a second renal transplantation from deceased donor was performed. Since then, his clinical condition remained stable.

We have evaluated the patient at age 38 years, when he measured 152 cm of height with weight 63.5 kg. Generalized and severe osteoporosis was diagnosed by DEXA examination (femoral head: T-Score -3.5, Z-Score -3.0, BMD 0.458 g/cm²; lumbar region: T-Score -3.1, Z-Score -3.0, BMD 0.752 g/cm²). A novel skeletal survey detected moderately shortened long bones, bowed radii, short femoral neck, brachydactyly at hands and feet with more severe involvement of middle phalanges, distal phalanx of the thumbs and metacarpals, moderately thickened calvarium, rotoscoliosis of mild degree, and a posterior arch defect of the sacrum. Diffuse reduction of the bone density with thinning of the diaphyseal cortex, was evident, particularly on hands (Figure 1).

Hormonal dosage showed increased parathyroid hormone (PTH) levels in the blood (164 pg/ml, reference range 14-72 pg/ml), despite having received kidney transplantation. Beside this, all other hormonal levels (including thyroid, pituitary and steroid hormones) were repeatedly checked to be within the normal range. Of note, liver enzymes were repeatedly tested normal as was dedicated liver ultrasound.
Audiometry showed pantonal left-sided moderate-to-severe sensorineural hearing loss.

Ophthalmologic examination confirmed no residual visual acuity and complete extinguishment of the electroretinogram in both eyes.

Neuropsychological evaluation excluded functional deficits while brain imaging was normal. He obtained the chartered accountant qualification and he was completely self-sufficient in all daily life activities, although he did not have an employment.

Whole-Exome Sequencing

In order to determine the genetic etiology of the RHYNS syndrome, WES was performed hypothesizing an-underlying autosomal recessive inheritance pattern. Exome capture and next-generation sequencing was carried out at Otogenetics Ltd. (http://www.otogenetics.com) on an Illumina HiSeq2000 (Illumina, San Diego, CA) platform and indexed libraries were subjected to paired-end (2×100 bp read length) sequencing-by-synthesis using fluorescent reversible terminators. Exome enrichment was conducted following the protocol for the SeqCap EZ Human Exome beads (Roche NimbleGen, Inc., Madison, WI, USA). Three µg DNAs, isolated from peripheral blood of the affected patient, his parents and two unaffected brothers were submitted for WES. Sequence reads were mapped to the human reference genome assembly (GRCh37/hg19) using CLC Genomics Workbench™ software (CLC bio, Aarhus, Denmark). Variants were called, filtered, and prioritized according to their pathogenicity scores obtained from the MutationTaster, CADD, and Polyphen-2 web interfaces. Furthermore, variants were cross-referenced with the Human Gene Mutation Database (HGMD, http://data.mch.mcgill.ca/phexdb), and genes known to be implicated in ciliopathy-related disorders were prioritized.
RESULTS

Two mutations in \textit{TMEM67} (NM_153704.5; MIM*609884) were identified in the proband, each inherited from a heterozygous parent, consistent with compound heterozygosity and autosomal recessive inheritance. The two identified mutations were confirmed by Sanger sequencing, namely, a nonsense mutation (c.622A>T, p.Arg208*) in exon 6 (paternal allele), and a missense mutation (c.1289A>G, p.Asp430Gly) near the splice acceptor site of exon 13 (maternal allele). The two healthy brothers were carriers of the nonsense mutation only (Figure 2). The missense variant was absent from the 1000 Genomes Project, the Exome Aggregation Consortium (ExAC, \url{http://exac.broadinstitute.org}) and the Genome Aggregation Database (gnomAD, \url{http://gnomad.broadinstitute.org}); conversely, the nonsense mutation was present at extremely low frequency in population databases (17 and 49 heterozygous individuals in ExAC and gnomAD, respectively). The nucleotide and deduced protein change were predicted as “disease causing” by the \textit{in silico} pathogenicity prediction program MutationTaster (\url{http://mutationtaster.org}) which also predicted for the c.1289A>G a potential alteration of the acceptor splice site. In particular, using the Human Splicing Finder software (\url{http://www.umd.be/HSF3/index.html}) this mutation was predicted to abolish the canonical acceptor site with formation of a novel site leading to a shorter (-4 bases) exon 13. The software also predicted the formation of an exonic splicing silencer and the alteration of exonic splicing enhancer.

DISCUSSION

In this study, we report the identification of biallelic mutations in the \textit{TMEM67} gene as
the underlying genetic defect causative of RHYNS syndrome. These findings extend the
spectrum of phenotypes resulting from \textit{TMEM67} mutations to now eight distinguishable
ciliopathies (Table 1). Their clinical manifestations display a wide range of
presentations ranging from lethal phenotypes to patients with organ-specific
involvement. Mutations in this gene were initially identified in Meckel syndrome, a
lethal disorder displaying central nervous system (CNS) malformations, typically
occipital encephalocele, multicystic kidneys, ductal plate dysplasia with congenital
hepatic fibrosis (CHF) and postaxial polydactyly4. Subsequently, Baala and
collaborators identified \textit{TMEM67} mutations in three patients with \textit{pure} (isolated)
Joubert syndrome (JS), thus defining the sixth JS locus (JBTS6)5. Indeed, different
subtypes of JS were associated to \textit{TMEM67} mutations with distinct genotype-phenotype
correlations within the spectrum of JS-related disorders (JSRDs), a group of pleiotropic
ciliopathies which share in common the Molar Tooth Sign (MTS) at brain imaging6. In
particular, the strongest correlation was defined with JS and CHF, since around 70%
patients affected by so-called COACH syndrome (Cerebellar vermis hypo/aplasia,
Oligophrenia, congenital Ataxia, ocular Coloboma, and Hepatic fibrosis) carried
biallelic \textit{TMEM67} mutations7.
In addition to Meckel syndrome and JSRDs, about 10\% of patients affected by
nephronophthisis (NPHP) and CHF without neurological involvement and normal brain
imaging (NPHP11; MIM #613550) had \textit{TMEM67} mutations8. Interestingly, the same
gene was also mutated in three children with a unique association of polycystic kidney
(mimicking autosomal recessive polycystic kidney disease - ARPKD), NPHP, CHF and
midbrain-hindbrain abnormalities within the MTS spectrum9. More recently, Tarailo-
Graovac et al.10 described a young adult patient with two mutations in \textit{TMEM67}, who
displayed, in addition to the MTS and cerebellar atrophy at brain imaging, mild intellectual disability, adolescent-onset dementia, vertical gaze palsy, ataxia, and progressive hepatic fibrosis, overlapping Niemann-Pick type C manifestations. Lastly, *TMEM67* was mutated in an otherwise healthy adult patient affected by isolated congenital hepatic fibrosis, which represented so far, the mildest end of the *TMEM67*-related spectrum.

This intriguing clinical heterogeneity associated with mutations in one and the same gene calls for the delineation of specific genotype-phenotype correlations. The allelic spectrum of *TMEM67* includes missense, truncating and splice site mutations, as well as rare multiexon deletions. Two truncating mutations (either frameshift, nonsense or splice site mutations) occur with high frequency in Meckel syndrome and are not reported in non-lethal phenotypes. Conversely, two missense mutations or a combination of truncating /splicing and missense mutations are prevalent in less severe phenotypes within the JSRD spectrum, i.e. JS and COACH. Hypomorphic mutations in *TMEM67* are associated with NPHP and liver fibrosis (NPHP11), while more than half of these patients display ocular involvement. Interestingly, our patient carried one truncating and one splicing mutation and his phenotype was mainly characterized by retinitis pigmentosa, NPH without any neurologic involvement or liver fibrosis. The absence of either neurologic or hepatic involvement is surprising since these are major manifestations of *TMEM67* mutations (Table 1). Altogether these observations emphasize the role of, yet unidentified, modifier factors in other genes modulating the penetrance of clinical manifestations. Of note, mutations at different loci interacting epistatically under a “multiallelic” inheritance has been proposed as a model for disease penetrance in ciliopathies such as Bardet-Biedl syndrome and nephronophthisis.
In addition, our patient had hypopituitarism without structural abnormalities of the pituitary gland on brain MRI. Interestingly, growth hormone deficiency was not considered a major feature of JS, but recently two distinct genes (*KIAA0753* and *CELSR2*) were associated with such endocrine anomalies in ciliopathies, strengthening the importance of ciliary function also in the development of the pituitary gland15,16. In conclusion, our data place RHYNS syndrome within the spectrum of *TMEM67*-related ciliopathies. This is one of the widest clinical continuums resulting from recessive mutations in a single gene, ranging from early lethality to adults with liver fibrosis. More studies are encouraged to decipher modifier factors influencing the penetrance of clinical manifestations in ciliopathies.
List of abbreviations:

ARPDK: Autosomal Recessive Polycystic Kidney Disease

CHF: congenital hepatic fibrosis

CNS: central nervous system

COACH: Cerebellar vermis hypo/aplasia, Oligophrenia, congenital Ataxia, ocular Coloboma, and Hepatic fibrosis

EDTA: ethylenediaminetetraacetic acid

ExAC: Exome Aggregation Consortium

GH: growth hormone

gnomAD: Genome Aggregation Database

HGMD: Human Gene Mutation Database

JS: Joubert syndrome

JSRDs: Joubert syndrome related disorders

MTS: molar tooth sign

NPHP: nephronophthisis

PTH: parathyroid hormone

RHYNS: Retinitis pigmentosa, HYpopituitarism, Nephronophthisis and Skeletal dysplasia.

TSH: thyreotropin releasing hormone

WES: whole exome sequencing
APPENDIX:

List of the members of the “Undiagnosed Disease Network Italy”: Domenica Taruscio (Rome, Italy); Marco Salvatore (Rome, Italy); Maria Chiara De Stefano (Rome, Italy); Federica Censi (Rome, Italy); Giovanna Floridia (Rome, Italy); Francesco Brancati (L’Aquila, Italy); Giuseppe Novelli (Rome, Italy); Erica Daina (Ranica, Italy); Paraskevas Iatropoulos (Ranica, Italy); Alessandra Ferlino (Ferrara, Italy); Marcella Neri (Ferrara, Italy); Dario Roccatello (Turin, Italy); Simone Baldovino (Turin, Italy); Elisa Menegatti (Turin, Italy); Bruno Bembi (Udine, Italy)

Declarations:

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Authors’ contributions

FB and EO had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. FB, EO and NP were responsible for the study supervision. LC drafted the manuscript and interpreted the data. EC collected clinical data. VVW performed sequencing analysis. LC, EC and VVW equally contributed to the manuscript. AC is in charge of the patient and contributed relevant clinical data for phenotypic delineation. MC reviewed the skeletal X-Ray images and contributed relevant clinical data for phenotypic delineation. A critical revision of the manuscript for important intellectual content was carried out by FS, GN and NP. UDNI contributed to the administrative, technical and material support. All authors contributed to the study concept and design. All authors were responsible for drafting of the manuscript, contributed to the acquisition, analysis and interpretation
of data, read and approved the final manuscript.

Consent for publication

The participants included in the study signed a written informed consent to publish their data.

Ethics approval and consent to participate

The research protocol, in accordance with the tenets of the Declaration of Helsinki and their reviews, was approved by the Ethics Committee. The patients included in the study signed a written informed consent to participate in the study.

Acknowledgements

We thank the proband and his family for their participation in this study.

Figure 1: Radiological skeletal survey of the proband at age 38 years. (a) Thickened calvarium. (b) Short and bowed radius. (c) Brachydactyly at hands with more severe involvement of middle phalanges, distal phalanx of the thumbs and metacarpals. Generalized reduction of bone density with thinning of the diaphyseal cortex is observed. (d) Rotoscoliosis. (e) Posterior arch defect of the sacrum and short femoral necks.

Figure 2: Pedigree of the RHYNS family and TMEM67 electropherograms. (a) Family tree showing the proband (filled square symbol) and two healthy sibs. Circles and squares indicate females and males, respectively. (b) Genomic sequence electropherograms demonstrate a nonsense mutation (c.622A>T, p.Arg208*) in the father (I-1) and all 3 sons (II-1, II-2, II-3) and a missense mutation (c.1289A>G, p.Asp430Gly) in the affected son (II-1) and his mother (I-2). Arrows indicate a compound heterozygous mutation in the affected son and heterozygous changes in all other individuals.

Legend to table:

Table 1: TMEM67-related phenotypes and distinctive clinical manifestations.
TMEM67 exon 6
 c.622A>T, p.Arg208*

TMEM67 exon 13
 c.1289A>G, p.Asp430Gly
Table 1. TMEM67-related phenotypes and distinctive clinical manifestations.

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Major clinical features</th>
<th>Number of reported patients</th>
<th>Representative references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meckel syndrome</td>
<td>• Occipital encephalocele • Cystic dysplastic kidneys • Ductal plate malformation • Hepatic fibrosis • Postaxial polydactyly</td>
<td>49</td>
<td>Smith et al.⁴ Khaddour et al.¹⁷</td>
</tr>
<tr>
<td>Joubert syndrome</td>
<td>• Molar tooth sign • Intellectual disability (variable) • Hypotonia • Irregular breathing pattern • Eye movement abnormalities</td>
<td>30</td>
<td>Baala et al.⁵ Vilboux et al.⁶</td>
</tr>
<tr>
<td>COACH</td>
<td>• Molar tooth sign • Intellectual disability (variable) • Ataxia • Ocular coloboma • Hepatic fibrosis • Medullary cystic renal disease • Nephronophthisis</td>
<td>31</td>
<td>Brancati et al.⁷ Doherty et al.¹⁸</td>
</tr>
<tr>
<td>NPHP11</td>
<td>• Nephronophthisis • Hepatic fibrosis</td>
<td>8</td>
<td>Otto et al.⁸ Srivastavaa et al.¹⁹</td>
</tr>
<tr>
<td>ARPKD-like</td>
<td>• Molar tooth sign-like • Speech apraxia • Polycystic kidneys • Nephronophthisis • Hepatic fibrosis</td>
<td>3</td>
<td>Gunay-Aygun et al.⁹</td>
</tr>
<tr>
<td>Niemann-Pick C phenocopy</td>
<td>• Molar tooth sign • Cerebellar atrophy at young age • Intellectual disability • Gaze palsy • Ataxia • Adolescent-onset dementia • Hepatic fibrosis</td>
<td>1</td>
<td>Tarailo-Graovac et al.¹⁰</td>
</tr>
<tr>
<td>Isolated congenital liver fibrosis</td>
<td>• Hepatic fibrosis in an otherwise healthy adult man</td>
<td>1</td>
<td>Vogel et al.¹¹</td>
</tr>
<tr>
<td>RHYNS</td>
<td>• Retinitis pigmentosa • Gaze palsy • GH- and TSH-deficiency • Nephronophthisis • Skeletal dysplasia • Sensorineural hearing loss</td>
<td>1</td>
<td>This report</td>
</tr>
</tbody>
</table>

Table legend: ARPDK: Autosomal Recessive Polycystic Kidney Disease; COACH: Cerebellar vermis hypo/aplasia, Oligophrenia, congenital Ataxia, ocular Coloboma, and Hepatic fibrosis; GH: growth hormone; NPHP: Nephronophthisis; RHYNS: Retinitis pigmentosa, HYpopituitarism, Nephronophthisis and Skeletal dysplasia; TSH: thyreotropin releasing hormone