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ABSTRACT

In this paper we explore detection and tracking of astral micro-
tubules, a sub-population of microtubules which only exists during
and immediately before mitosis and aids in the spindle orientation
by connecting it to the cell cortex. Its analysis can be useful to deter-
mine the presence of certain diseases, such as brain pathologies and
cancer. The proposed algorithm focuses on overcoming the prob-
lems regarding fluorescence microscopy images and microtubule
behaviour by using various image processing techniques and is then
compared with three existing algorithms, tested on consistent sets of
images.

Index Terms— Medical diagnostic imaging, fluorescence mi-
croscopy, image segmentation, kalman filter, microtubules

1. INTRODUCTION

Microtubules are a type of protein polymer that make up the cel-
lular cytoskeleton, an array of filaments that are used to establish
cell shape and assist with cell division, by forming a structure called
the mitotic spindle, which segregates the chromosomes into the two
daughter cells.

Microtubule behaviour can be described as two alternating
states: polymerization (growth) and depolymerization (shrinkage).
In a population of microtubules, a subset of microtubules is rapidly
growing while others are quickly shrinking (although sometimes
they are in a paused state) and individual microtubules randomly
switch between the two states [1], thus complicating the process of
tracking them. This property is often called dynamic instability [1].

For this project, we are considering microtubules in doped cells,
in order to have better knowledge regarding their behaviour. The
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used drugs are taxol and nocodazole. At high concentration, both
agents have a similar effect on the mitosis process and, by increasing
the dosage, it is possible to inhibit the growth of microtubules, thus
making their behaviour more predictable.

Microtubules are analyzed via fluorescence microscopy, thanks
to fluorofores that selectively bind the plus-end of these polymers.
Fluorescence microscopy images have two main issues: the pres-
ence of shot noise, which cannot be reduced with standard additive
noise-removal techniques, as it depends on the signal itself, and the
dynamic instability of microtubule behaviour, which makes tracking
very challenging. Nowadays, detection and tracking of microtubules
is still, for the most part, manually done, which is a tedious and time-
consuming process. Thus, in the last few years, a lot of attention was
put in developing algorithms that could automatically carry out this
task.

2. BACKGROUND

One of the main issues of the goal we pursued is represented by
the resolution of the microscopes: even the best performing micro-
scopes have a resolution of about 100 nm [2], which is greater than
the typical size of microtubules (25 nm [1]). Thus, it is hard to de-
termine whether an element is a structure of interest or just part of
the background.

Another major issue is the presence of shot noise, which entails
a very low SNR (Signal-to-Noise Ratio). This problem is present
when the images are in vivo and the lighting intensity is reduced to
a minimum value to prevent the damaging of the cells and photo-
bleaching, which is the photochemical alteration of a dye or a fluo-
rophore molecule such that it permanently is unable to fluoresce. For
this project, the adopted measure to evaluate the SNR is the PSNR
(Peak Signal-to-Noise Ratio) defined as PSNR = 10 log10

P2

MSE
,

where P is the maximum intensity value of the pixels (peak) and
MSE is the mean squared error between the considered images and
an image containing only noise. Determining the latter is not a trivial
task and there is no automatic way to achieve it. In this case, the im-
ages were analyzed and a region that was assumed containing only
noise was used for this purpose.

3. THE PROPOSED TECHNIQUE

The algorithm is divided into three main steps: enhancement, detec-
tion and tracking.

The enhancement process focuses on reducing the amount of
noise affecting the image. Microscope images are affected by clas-
sic shot noise with Poisson distribution caused by photon counting.
The method we adopt to reduce shot noise is based on the classic



Fig. 1: Fluorescence microscopy images of microtubules. The plus
ends of the latter are highlighted by the fluorophores during the poly-
merization phase.

Anscombe transform [3] pre-processing, which turns random vari-
ables with a Poisson distribution into a Gaussian distribution with
an approximately constant standard deviation. This amounts at map-
ping each input image f onto the transformed image g according
to:

f → g = 2

√
f +

3

8
(1)

Then denoising is applied in the Anscombe domain using
Wiener filtering [4], getting ĝ = hw ∗ g, where hw denotes the
impulse response of the filter and operator ∗ represents the convo-
lution. As a further enhancement step, we apply a Difference of
Gaussians (DOG) filter [4]. The standard deviations of the filter
pair, denoted as σ1 and σ2, need to be tuned according to the image
Signal-to-Noise Ratio (see experimental section for details). Finally,
the denoised image is obtained by applying the inverse Anscombe
transformation given by

f̂ →
( ĝ

2

)2
− 3

8
(2)

In Fig. 2b the effect of the enhancement stage is visually shown.

(a) (b)

Fig. 2: Example of original image (a) and enhanced image (b).

The detection phase focuses on locating microtubules and iden-
tifying the peak (local maxima) in each region corresponding to one
microtubule plus-end. The peak is the pixel that will be used for the
following tracking phase. In this stage we relied on both gray-scale
and binary morphological transformations to limit the effect of noise
on the following segmentation.

The gray-scale erosion operator defined as

f̂e = (f̂ 	 b)(s, t) = min{f̂(s+ x, t+ y)− b(x, y)|
(s+ x), (t+ y) ∈ Df ; (x, y) ∈ Db}

is applied to image f̂ in order to reduce noise and even out the back-
ground. The structuring element b is defined as a 3 × 3 window,

which is invariant with respect to the x and y axes, as no assumption
can be made regarding the orientation of the microtubules. Then, a
binary image is computed as m = f̂e > 0, i.e. every pixel with
an intensity greater than 0 is set to 1. Finally, the binary mask m is
refined with an area opening morphological operation followed by
dilation: the first step in order to remove spurious components that
are smaller than a predefined area, the second to avoid having single
microtubules segmented into different pieces.

(a) (b)

Fig. 3: Enhanced image (a) and corresponding binary mask m (b).

The last step of the detection phase is to define the local intensity
maxima in order to identify the microtubules with a single pixel at a
given location. This is done by masking the enhanced image f̂e with
the binary mask m obtained above. The masked image will ideally
contain only the regions representing microtubules, which are used
to calculate the local maxima. In order to get smoother regions that
simplify the computation of the local maxima, the masked image is
further blurred with a Gaussian filter with parameter σ3. Finally,
to identify the peaks, a 5× 5 window is used: the local maxima are
defined as those pixels that, compared to their 24 neighboring pixels,
have the highest intensity. Fig. 4 visually summarizes the process we
described showing the original image (a), the segmentation mask m
(b) and the location of microtubules peaks (c), respectively.

(a) (b) (c)

Fig. 4: Original image (a), segmentation binary mask m (b) and
masked image with microtubules peaks highlighted in red.

Tracking is the final step and it allows to retrieve information
regarding velocity, length and number of microtubules from a given
stack. Once the microtubules are detected in every image, it is nec-
essary to define their trajectory. The tracking process is achieved by
using the Kalman filter.

Tracking is based on the assumption that microtubules ex-
hibit a uniform rectilinear motion [1]. Let us denote as ~Xt =
(xt,1, xt,2, . . . , xt,N ) and ~Yt = (yt,1, yt,2, . . . , yt,N ) the pixel co-
ordinates of the N microtubules peaks identified in the t-th frame
of the image stack. The coordinates 〈 ~Xt, ~Yt〉 define the state for
a certain frame t and are used, along with the dynamic model, i.e.
rectilinear uniform motion, to predict the positions 〈X̂t+1, Ŷt+1〉 of



the microtubules in the subsequent frame t+1. Such predictions are
compared with the detected peaks’ coordinates in frame t + 1 and
possibly put into a one-to-one correspondence.

〈 ~Xt, ~Yt〉
prediction−−−−−→ 〈X̂t+1, Ŷt+1〉

assignment←−−−−− 〈 ~Xt+1, ~Yt+1〉 (3)

The assignment is based on the Euclidean distances between the
detected peaks and the predictions; the Hungarian method [5] has
been used in order minimize the distances between every pair. In
turn, the assignments allow one determine the path followed by a
given microtubule (let us say the k-th one) that we denote as a track
T k = 〈 ~Xk, ~Y k〉, where ~Xk = (x1,k, x2,k, . . . , xt,k) and ~Y k =
(y1,k, y2,k, . . . , yt,k) represent the temporal sequence of peak coor-
dinates occupied by the given microtubule. The low SNR of the pro-
cessed images makes the assignment phase in (3) very critical. Usu-
ally, assignments characterized by an Euclidean distance between
prediction and actual detection larger than a given threshold, are
considered to be unlikely and discarded. In this work we propose
a simple, yet effective, strategy for the computation of the threshold;
moreover, the threshold is adjusted adaptively, taking into account
the dynamics of each track. To this end, for each track, we define the
temporal disparity at time t as

dkt =
√

(xt,k − xt−1,k)2 + (yt,k − yt−1,k)2

At time t the dynamic behavior of T k is characterized by the average
disparity and corresponding standard deviation, estimated by

d̄kt =

∑t−1
i=1 d

k
i

t− 1
(4)

σk
t =

√∑t−1
i=1(dki − d̄kt )2

t− 2

Finally, assignment of k-th track in frame t is accepted only if the
distance between prediction and detection is lower than threshold
τk = d̄kt + σk

t .
After the assignment step, the detected peaks that do not corre-

spond to any previous path are used to start new tracks in frame t. At
the same time, previous tracks estimates that cannot be matched in
frame t are flagged by increasing a penalty score Sk; the estimated
coordinates 〈x̂t,k, ŷt,k〉 are temporarily considered as the new posi-
tion of the microtubule for future tracking attempts. If a new assign-
ment is found for track k with Sk ≤ ∆ then track T k is considered
as an active one (flag is reset as Sk = 0), in the opposite case it
is ended. This allows us to consider as single tracks microtubules
that momentarily disappear due to depolymerization (i.e. depoly-
merization does not activate the fluorophore). In Fig. 5 an example
of the evolution of the tracked microtubules (red dots) in 3 frames
with t = 1, 10, 20 is shown.

Fig. 5: Evolution of tracked microtubules (red dots) in 3 frames with
t = 1, 10, 20 from left to right.

After all frames in the stack have been processed one gets a list
of microtubule tracks, whose behaviour can be analyzed. In particu-
lar, in this work we consider the space covered by each microtubule,
usually termed as length, and the corresponding velocity.

4. PERFORMANCE EVALUATION

Our results are based upon fluorescence microscopy image stacks
made available by the Department of Molecular Biotechnology
and Health Sciences, University of Torino. A HeLa Kyoto cell
line, expressing the fluorescent protein EB3-td Tomato, was cho-
sen to carry out the experiments [6]. The cell culture was main-
tained in DMEM-GlutaMAX (Invitrogen) medium supplemented
with 10% fetal bovine serum, 100 U ml−1 penicillin, 100 µg ml−1

streptomycin, 200 µg ml−1 geneticin (Sigma) and 0.5 µg ml−1

puromycin. Interphase cells were treated with increasing concentra-
tions of nocodazole and taxol: 0 nM (control), 10 nM and 100 nM.
Even though their actions on microtubule dynamics are different
and to some extent not completely explained, the neat effect of these
drugs, at high concentrations, is an inhibition of dynamic instability.
After 1 hour incubation, videos of astral microtubules were acquired
using a Leica TCS SP5-AOBS 5-channel confocal system, equipped
with a 561 nm DPSS laser. During the acquisition, cells were stored
in the microscope incubator at 37 ◦C with CO2 5%. The main
characteristics of the image stacks are summarized in Table 1.

Description Value
Frame size 256× 256 pixels
Frame rate 2 fps

Number of frames per stack 120
Pixel resolution 64 nm

Bit depth 8

Table 1: Main characteristics of employed images.

To evaluate the proposed algorithm, five stacks have been con-
sidered for each concentration of nocodazole and taxol. Results have
been worked out in terms of track velocity and length, and number of
detected microtubules. The results obviously depend on the chosen
parameters for the algorithm, which are displayed in Table 2.

Parameters Description Value
σ1 First Gaussian kernel (DOG) 1
σ2 Second Gaussian kernel (DOG) 3-4 (*)
σ3 Gaussian kernel (local maxima) 1
∆ Allowed penalties (Kalman) 3

(*) σ2 = 3 if PSNR < 24.5 dB; σ2 = 4 if PSNR ≥ 24.5 dB.

Table 2: Algorithm parameters.

The obtained results have been compared with those yielded by
two existing algorithms: Applegate [7] and Sironi [8]. However, it
is worth pointing out that these algorithms have been tested on dif-
ferent data, not made available by the authors. A further approach,
being developed at the Politecnico of Torino (Polito) [6], is being
tested on the same stacks. The algorithm [6] does not use morpho-
logical operators to reduce false positive detections but it comprises
a calibration phase. Preliminary comparison results are included in
this paper.



4.1. Nocodazole results

Table 3 reports the mean value µ and the standard deviation σ of
microtubule velocity and length, as well as the number of detected
tracks, evaluated on cell cultures doped with nocodazole.

NOCODAZOLE
Conc. µ Vel. σ Vel. µ Len. σ Len. MT number
0 16.23 13.43 1.00 1.41 393.8
10 19.92 15.53 1.12 1.49 461.6
100 11.20 10.51 0.34 0.40 180.0

Table 3: Nocodazole results

First of all, it can be appreciated that at concentration 100 nM,
all values are significantly lowered. This is coherent with the well
known fact that high-concentration nocodazole inhibits polymeriza-
tion. On the other hand, at concentration 10 nM, average velocity
and track length turn out to be increased with respect to controls.
This can be explained noticing that, at low concentrations, nocoda-
zole inhibits microtubule dynamic instability [9], thus favouring the
growth of polymerizing microtubules and the shrinkage of depoly-
merizing ones. As microtubule plus-ends are visible only during the
polymerization phase, higher velocities and lengths are observed. It
is worth pointing out that this result, although theoretically sound,
has been seldom verified in actual experiments.

As for the number of detected microtubules, it turns out to be
quite high, especially if compared with those which can be manually
tracked. This is due to specific parameter choices, and implies that
also very short tracks, which cannot be manually appreciated, are
taken into account by the algorithm. This can possibly yield lower
average track lengths, but we have verified that it has little impact on
the average track velocity.

4.2. Taxol results

Table 4 displays the results regarding taxol effects on microtubule
dynamic behaviour. Taxol is known to inhibit polymerization in a
way that is directly dependent on its concentration [10]. Our re-
sults are coherent with this consideration, as they show a monoton-
ically decreasing behaviour of both track velocity and length, with
the largest gap between 0 nM and 10 nM.

TAXOL
Conc. µ Vel. σ Vel. µ Len. σ Len. MT number
0 22.67 17.92 1.20 1.70 428.0
10 11.06 9.34 0.45 0.55 177.0
100 8.66 8.86 0.29 0.34 38.4

Table 4: Taxol results

4.3. Comparison

Fig. 6 reports comparisons among our algorithms and other similar
methods already published in literature, in terms of average velocity
and length as functions of different drug concentrations.

From figure 6, it is clear that the algorithms labelled Applegate
and Sironi return different values for both velocities and lengths,
as they were tested on different stacks. Thus, the only meaning-
ful comparison is on trends and orders of magnitude of the quan-
tities involved. As a general consideration, we can appreciate that

the algorithms yield the same order of magnitude of both velocity
and length. However, our algorithm, with respect to Applegate and
Sironi, is able to put into evidence the non monotonic behaviour of
velocity as a function of nocodazole concentration. As already dis-
cussed, this result confirms a feature of this drug that was theoreti-
cally hypothesized but seldom verified in practice.

As for the comparisons with the algorithm labelled Polito, we
can notice that the trends yielded by the two algorithms are com-
parable. Both of them put into evidence the typical behaviour of
nocodazole-doped cells. In the case of taxol-doped cultures, the
trend of track velocity is similar, with our algorithm yielding slightly
lower values. As for lengths, it is worth noticing that our algorithm
provides lower values especially at high drug concentrations. Actu-
ally, the Polito algorithm makes a different choice in the track se-
lection stage. In fact, tracks whose length is below 5 frames are
discared, as they are assumed not to match the uniforn rectilinear
motion assumption. Clearly, this slightly polarizes the results in term
of a lower average length provided by our algorithm.

(a) Nocodazole velocity (b) Nocodazole length

(c) Taxol velocity (d) Taxol length

Fig. 6: Results for nocodazole (figures 6a and 6b) and taxol (figures
6c and 6d) given by the different algorithms. In red are highlighted
the results of the proposed algorithm.

5. CONCLUSIONS AND FUTURE WORKS

The proposed algorithm is able to efficiently detect and track mi-
crotubules in fluorescence microscopy images, by adopting various
image processing techniques. Our method focuses on limiting false
positives in order to have accurate results. The obtained results are
promising if compared with the expected microtubule behaviour at
increasing concentrations of both nocodazole and taxol. Moreover,
by analyzing the sequence of images displaying the tracks, it is clear
that the algorithm successfully detects microtubules without captur-
ing false positives, given by noise affecting the images.

Future works include defining a more robust way to compute the
SNR, which is used to define the σ values of the difference of Gaus-
sians, which, at the moment, depend on the single stacks; implement
the algorithm as an ImageJ plug-in in order to provide a user-friendly
interface and an out-of-the-box usable application.
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