THE EXPANDING GENETIC HORIZONS OF PRIMARY ALDOSTERONISM

Silvia Monticone¹, Fabrizio Buffolo¹, Martina Tetti¹, Franco Veglio¹, Barbara Pasini², Paolo Mulatero¹

¹ Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Via Genova 3, 10126, Torino, Italy.

² Division of Medical Genetics, Department of Medical Sciences, University of Torino, Italy.

Corresponding author:

Paolo Mulatero, MD, Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Via Genova 3, 10126, Torino, Italy.

e-mail: paolo.mulatero@unito.it

Phone: +390116336959 Fax: +390116336931

Short title: Genetics of primary aldosteronism

Word count: abstract 195; manuscript 3649 (without references and figure captions) 6798 (with references and figure captions)

Key words: primary aldosteronism, familial hyperaldosteronism, aldosterone producing adenoma, KCNJ5, ATP1A1, ATP2B3, CACNA1D, CACNA1H, CTNNB1, APCC
<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Families (n)</th>
<th>Patients (n)</th>
<th>Sex (M/F)</th>
<th>Hypertension (n/tot available)</th>
<th>Spontaneous hypokalemia (n/tot available)</th>
<th>Low renin / elevated ARR (n/tot available)</th>
<th>Elevated hybrid steroids (n/tot available)</th>
<th>Reported symptoms / TOD / CV events / other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sutherland 1966 (1)</td>
<td>CANADA</td>
<td>1</td>
<td>2</td>
<td>2/0</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>n.a.</td>
<td>Headache, LVH, retinopathy, death due to cerebrovascular events in 3 siblings of the index case</td>
</tr>
<tr>
<td>New 1967 (2)</td>
<td>USA</td>
<td>1</td>
<td>1</td>
<td>1/0</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>n.a.</td>
<td>Polyuria, polydipsia, enuresis, headache, LVH, retinopathy.</td>
</tr>
<tr>
<td>Miura 1968 (3)</td>
<td>JAPAN</td>
<td>1</td>
<td>1</td>
<td>0/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>n.a.</td>
<td>Headache, retinopathy. Born from consanguineous hypertensive parents</td>
</tr>
<tr>
<td>Giebink 1973 (4)</td>
<td>USA</td>
<td>1</td>
<td>3</td>
<td>2/1</td>
<td>3/3</td>
<td>2/3</td>
<td>3/3</td>
<td>n.a.</td>
<td>Headache, polyuria, nicturia, retinal arteriolar spasms, LVH. History of cerebral hemorrhage at young age (maternal grandmother)</td>
</tr>
<tr>
<td>Grim 1980 (5)</td>
<td>USA (Dutch Indonesian origin)</td>
<td>1</td>
<td>3</td>
<td>3/0</td>
<td>3/3</td>
<td>0/3</td>
<td>3/3</td>
<td>n.a.</td>
<td>LVH</td>
</tr>
<tr>
<td>New 1980 (6)</td>
<td>USA</td>
<td>2</td>
<td>8</td>
<td>2/6</td>
<td>7/8</td>
<td>n.a</td>
<td>8/8</td>
<td>n.a.</td>
<td>Easy fatiguability, muscle cramps and carpopedal spasms, dizziness, exertional dyspnea, headache. One family member died of cerebral hemorrhage at the age of 21, one of myocardial infarction at the age of 27</td>
</tr>
<tr>
<td>Ganguly 1981 (7)</td>
<td>USA</td>
<td>1</td>
<td>3</td>
<td>1/2</td>
<td>3/3</td>
<td>3/3</td>
<td>3/3</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>Oberfield 1981 (8)</td>
<td>USA</td>
<td>1</td>
<td>5</td>
<td>3/2</td>
<td>3/3</td>
<td>n.a</td>
<td>3/3</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Lee 1982 (9)</td>
<td>MEXICO</td>
<td>1</td>
<td>1</td>
<td>1/0</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Fallo 1985 (10)</td>
<td>ITALY</td>
<td>1</td>
<td>3</td>
<td>2/1</td>
<td>3/3</td>
<td>2/3</td>
<td>3/3</td>
<td>n.a.</td>
<td>The father of the index cases died of stroke at the age of 60</td>
</tr>
<tr>
<td>Woodland 1985 (11)</td>
<td>AUSTRALIA</td>
<td>2</td>
<td>2</td>
<td>2/0</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>n.a.</td>
<td>One patient had strong family history of hypertension; the other was an adopted child</td>
</tr>
</tbody>
</table>
After the identification of the CYP11B1/CYP11B2 chimeric gene

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Families (n)</th>
<th>Patients (n)</th>
<th>Sex (M/F)</th>
<th>Hypertension (n/tot available)</th>
<th>Spontaneous hypokalemia (n/tot available)</th>
<th>Low renin / elevated ARR (n/tot available)</th>
<th>Elevated hybrid steroids (n/tot available)</th>
<th>Reported symptoms / TOD / CV events / other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rich 1992 (16)</td>
<td>USA</td>
<td>1</td>
<td>12</td>
<td>2/10</td>
<td>8/12</td>
<td>1/12</td>
<td>11/12</td>
<td>12/12</td>
<td>Prevalence of iuretic induced hypokalemia 58%. High prevalence of cerebrovascular events in young age as cause of death</td>
</tr>
<tr>
<td>Comiter 1995 (17)</td>
<td>USA</td>
<td>1</td>
<td>1</td>
<td>0/1</td>
<td>1/1</td>
<td>0/1</td>
<td>1/1</td>
<td>1/1</td>
<td>Family history of early onset hypertension and death for cerebrovascular events at young age in 4/10 1st and 2nd degree relatives</td>
</tr>
<tr>
<td>Jamieson 1995 (18)</td>
<td>UK</td>
<td>5</td>
<td>19</td>
<td>10/9</td>
<td>14/19</td>
<td>6/19</td>
<td>19/19</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Pascoe 1995 (19)</td>
<td>FRANCE</td>
<td>1</td>
<td>7</td>
<td>4/3</td>
<td>7/7</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Gates 1996 (20)</td>
<td>USA</td>
<td>2</td>
<td>30</td>
<td>17/13</td>
<td>26/30</td>
<td>4/15</td>
<td>n.a.</td>
<td>n.a.</td>
<td>LVH, retinopathy. Family history of cerebral haemorrhage</td>
</tr>
<tr>
<td>Hsieh 1997 (21)</td>
<td>CHINA</td>
<td>1</td>
<td>1</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Litchfield 1998 (22)</td>
<td>USA</td>
<td>27</td>
<td>167</td>
<td>87/80</td>
<td>43/54</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>18 cerebrovascular events in 15 patients with proven GRA</td>
</tr>
<tr>
<td>Stowasser 2000 (23)</td>
<td>AUSTRALIA</td>
<td>5</td>
<td>26</td>
<td>13/13</td>
<td>n.a.</td>
<td>6/26</td>
<td>17/20</td>
<td>18/18</td>
<td>Family history of stroke in some of the families</td>
</tr>
<tr>
<td>Gates 2001 (24)</td>
<td>UK</td>
<td>4</td>
<td>14</td>
<td>8/3</td>
<td>8/10</td>
<td>2/11</td>
<td>n.a.</td>
<td>n.a.</td>
<td>Family history of cerebral haemorrhage at young age</td>
</tr>
<tr>
<td>Yokota 2001 (25)</td>
<td>JAPAN</td>
<td>1</td>
<td>3</td>
<td>0/3</td>
<td>3/3</td>
<td>0/3</td>
<td>3/3</td>
<td>n.a.</td>
<td>General fatigue, pregnancy induced hypertension. History of not fatal stroke</td>
</tr>
<tr>
<td>Ding 2002 (26)</td>
<td>CHINA</td>
<td>1</td>
<td>4</td>
<td>2/2</td>
<td>3/3</td>
<td>3/3</td>
<td>3/3</td>
<td>n.a.</td>
<td>Headache, muscle weakness, flaccid paralysis, tatany,</td>
</tr>
</tbody>
</table>
Supplemental table S1.

Main clinical and biochemical features of patients affected by Familial Hyperaldosteronism type I before and after the identification of the CYP11B1/CYP11B2 chimeric gene. Hypertension was defined according to the 2013 ESH guideline; hypokalemia was defined as serum K⁺ < 3.5 mmol/L; low renin was defined as PRA < 1 ng/ml/h (12.7 pmol/L/min); elevated ARR was defined as > 30 ng*dL⁻¹/ng*ml⁻¹*h⁻¹ (60 pmol*L⁻¹/pmol*L⁻¹*min⁻¹). TOD = target organ damage; CV events = cardiovascular events; LVH = left ventricular hypertrophy.

* spontaneous hypokalemia was reported at diagnosis of hypertension, but the patient was found to be normokalemic at further evaluations; # one patient had normal PRA (2.06 ng/L*s) under treatment with K⁺ sparing diuretic; § full text not available in English; ^ compared to the original manuscript, one family and three patients have been omitted since they are included in Carvajal 2012 (33).
Supplemental references

Makino H. Japanese family with glucocorticoid-remediable aldosteronism diagnosed by long-
pedigree with glucocorticoid-remediable aldosteronism. Chinese Medical Journal (English)
2002 115 979-982.
Gomez-Sanchez CE & Veglio F. Glucocorticoid remediable aldosteronism: low
morbidity and mortality in a four-generation Italian pedigree. Journal of Clinical
Endocrinology and Metabolism 2002 87 3187–3191. (doi: 10.1210/jcem.87.7.8647)
P & Mulatero P. Coexistence of different phenotypes in a family with glucocorticoid-
(doi:10.1038/sj.jhh.1001636)
Hofebauer S, Epplen JT & Rump LC. A German family with glucocorticoid-remediable
aldosteronism. Nephrology Dialysis Transplantation 2007 22 1123-1130. (doi:
10.1093/ndt/gfl706)
chimeric CYP11B1/CYP11B2 gene in a Korean family with glucocorticoid-remediable
aldosteronism. Journal of Korean Medical Sciences 2010 25 1379-1383. (doi:
10.3346/jkms.2010.25.9.1379)
Avalos C, Loureiro C, Trejo P, Brinkmann K, Giadrosich V, Mericq V, Rocha A, Avila A,
Perez V, Inostroza A & Fardella CE. Frequency of familial hyperaldosteronism type 1 in a

