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Abstract 36 

Heritable symbioses, in which endosymbiotic bacteria (EB) are transmitted vertically between 37 

host generations, are an important source of evolutionary novelties.  A primary example of such 38 

symbioses is the eukaryotic cell with its EB-derived organelles.  Recent discoveries suggest that 39 

endosymbiosis-related innovations can be also found in associations formed by early divergent 40 

fungi in the phylum Mucoromycota with heritable EB from two classes, Betaproteobacteria and 41 

Mollicutes.  These symbioses exemplify novel types of host-symbiont interactions.  Studies of 42 

these partnerships fuel theoretical models describing mechanisms that stabilize heritable 43 

symbioses, control the rate of molecular evolution, and enable the establishment of mutualisms.  44 

Lastly, by altering host phenotypes and metabolism, these associations represent an important 45 

instrument for probing the basic biology of the Mucoromycota hosts, which remain one of the 46 

least explored filamentous fungi. 47 

 48 

1. Introduction 49 

Fungi are increasingly appreciated for their ability to form intimate associations with bacteria 50 

(31, 89).  Among them, the symbioses of early divergent fungi in the phylum Mucoromycota 51 

with an array of heritable endosymbiotic bacteria (EB) from two classes, Betaproteobacteria and 52 

Mollicutes, stand out as the most highly co-evolved and ancient.  The clade of Mucoromycota 53 

includes three subphyla, Mucoromycotina, Mortierellomycotina, and Glomeromycotina (115).  54 

Most Mucoromycota engage in plant-related lifestyles of decomposers of plant debris, plant 55 

mutualists, and plant pathogens (115).  Interactions with animals are uncommon in this group of 56 

fungi. 57 

Partnerships with bacteria formed by Mucoromycota have diverse fitness outcomes, 58 

involve transfer of various goods and services, and represent a range of degrees of co-evolution.  59 

In this review, we will focus on four very distinct symbioses partnering arbuscular mycorrhizal 60 

fungi (AMF, subphylum Glomeromycotina) with ‘Candidatus Glomeribacter gigasporarum’ 61 

(CaGg, Betaproteobacteria, Fig 1) and ‘Candidatus Moeniiplasma glomeromycotorum’ (CaMg, 62 

Mollicutes, Fig 2) as well as on associations of Rhizopus microsporus (Rm, subphylum 63 

Mucoromycotina) with Burkholderia EB (Betaproteobacteria, Fig 1), and Mortierella elongata 64 

(Me, subphylum Mortierellomycotina) with Mycoavidus cysteinexigens (Mc, Betaproteobacteria, 65 

Fig 1).  Despite their marked differences, these Mucoromycota-EB associations provide 66 
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important insights into the host-symbiont biology.  Studies of these symbioses inform 67 

evolutionary models describing the mechanisms that stabilize heritable symbioses, control the 68 

rate of molecular evolution, and lead to the establishment of mutualisms.  In addition, by altering 69 

host phenotypes and metabolism, these partnerships are a valuable source of information about 70 

the biology of Mucoromycota, which remain one of the least explored groups of filamentous 71 

fungi. 72 

Heritable symbioses in which EB are transmitted from one host generation to the next can 73 

range from antagonisms to mutualisms.  Importantly, strictly vertically transmitted symbionts 74 

that lower host fitness are unlikely to persist in a host population (28, 60).  Evolutionary stability 75 

of such antagonistic symbioses requires that, in addition to passaging from parents to offspring, 76 

symbionts engage in horizontal transmission between hosts (28, 60).  Alternatively, harmful 77 

symbionts can be maintained stably if they deliver occasional benefits to the host, forming a 78 

conditional mutualism (40, 61, 62, 105). 79 

Mutualisms are reciprocal exploitations that nonetheless provide net benefits to each 80 

partner (42).  This definition emphasizes an inherent vulnerability of mutualisms to instabilities 81 

and breakdowns, which stem from conflicting interests of the interacting partners.  Vertical 82 

transmission is a powerful mechanism that stabilizes mutualisms over evolutionary time (1, 4, 83 

18, 21, 27, 104, 130).  This stabilizing role is related to the fact that heritability of symbionts 84 

aligns partner reproductive interests and facilitates reciprocal selection.  While coupling of 85 

reproductive efforts maximizes fitness of the partners, it does not eliminate conflicts among the 86 

symbionts.  Such conflicts are a potential source of instabilities in heritable mutualisms.  They 87 

intensify when symbiont populations are genetically diverse due to symbiont mixing, which can 88 

lead to the emergence of rivaling strategies for the utilization of host resources (30). 89 

In established mutualisms, several tactics are possible to control symbiont mixing, 90 

including uniparental inheritance of symbionts (13), transmission of only a fraction of parental 91 

symbionts to each offspring (29), and separation of an intrahost symbiont population into a 92 

reproductive germline and a non-reproductive somatic lineage (29).  Host control over symbiont 93 

mixing evolved independently multiple times in various symbiotic systems, including eukaryotic 94 

cells and their organelles (13) as well as nutritional symbioses of insects that rely on EB for 95 

essential metabolites, such amino acids and vitamins (67, 74).  While beneficial to the host, long-96 

term evolutionary consequences of suppressed symbiont mixing can be detrimental to the 97 
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symbionts and the symbiosis as a whole.  Symbiont population subdivisions, transmission 98 

bottlenecks, and clonality reduce the effective size of a symbiont population and magnify the 99 

impact of genetic drift relative to natural selection (90).  As a consequence, symbiont populations 100 

become vulnerable to accumulation of slightly deleterious (88) and eventual extinction (78).  In 101 

heritable EB, this process is associated with genomic decay and reduction of the genome size (7, 102 

67, 74, 84).  Such degenerative genome evolution has been observed empirically in free-living 103 

bacteria evolving under conditions of a small effective population size (84), and inferred from 104 

molecular evolution patterns in multiple heritable EB that provision insects with essential 105 

metabolites (7, 67, 74).  Another important consequence of degenerative evolution in heritable 106 

EB is acceleration of the molecular evolution rate compared to free-living relatives (73, 87). 107 

Remarkably, most of the Mucoromycota-EB symbioses are ancient (15, 72, 121, 124).  108 

Two are mutualisms (AMF-CaGg and Rm-Burkholderia), one is an antagonism (Me-Mc), and 109 

one remains unresolved in terms of partner fitness outcomes (AMF-CaMg).  As a consequence, 110 

Mucoromycota-EB associations exemplify diverse mechanisms that control evolutionary 111 

stability and longevity in symbioses with vertically transmitted EB.  Moreover, with the 112 

exception of Burkholderia EB, symbionts of Mucoromycota appear to evolve faster than their 113 

free-living relatives (20, 81), and thus offer insights into how molecular rate acceleration is 114 

achieved in EB with different lifestyles.  In addition, these symbioses allow for exploring 115 

theoretical predictions that specify conditions necessary for mutualisms to arise.  Many such 116 

predictions have not been tested rigorously because very few heritable partnerships outside 117 

Mucoromycota are amenable to experimental manipulation. 118 

In this review, we summarize key features of Mucoromycota-EB partnerships, use 119 

molecular evolution patterns apparent in these symbioses to speculate about uncertainties 120 

surrounding some of their aspects, describe how studies of the Mucoromycota-EB associations 121 

inform and validate theoretical models of symbiosis evolution, and detail how they can be used 122 

to generate specific insights into the facets of host biology that historically have been recalcitrant 123 

to investigation.  In the process, we highlight future research directions. 124 

 125 

2. Host-symbiont biology and symbiosis stability 126 

2.1. AMF-CaGg mutualism 127 
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CaGg is a betaproteobacterium (Fig 1) and a mutualist of AMF from the family Gigasporaceae 128 

(9, 64, 72).  AMF are obligate biotrophs that colonize roots of most terrestrial plants and 129 

facilitate plant uptake of mineral nutrients from the soil (114) in exchange for photosynthesis-130 

derived monosaccharides (41) and fatty acids (17, 44, 48, 63) coming from the plant.  The 131 

association that AMF form with plants, arbuscular mycorrhiza, dates back to the Early Devonian, 132 

400 MYA (97), and is one of the oldest mutualisms on the planet.  AMF are increasingly 133 

recognized in agronomy as sustainable biofertilizers of the future (127).  134 

CaGg is vertically transmitted through AMF generations (10) and shows variable 135 

distribution across host populations, with some AMF individuals harboring the EB and some 136 

being CaGg-free (12, 72).  This pattern suggests that CaGg is a nonessential partner of AMF.  137 

Serial sub-culturing of AMF can lead to elimination of CaGg under laboratory conditions (64).  138 

For AMF, phenotypic consequences of CaGg loss include reduced elongation and branching of 139 

pre-symbiotic hyphae that emerge from spores in the presence of plant roots (64) (Fig 3).  At the 140 

subcellular level, the absence of CaGg from pre-symbiotic hosts is accompanied by a decline in 141 

the volume of lipid droplets present in fungal cells (64).  Without CaGg, spore fatty acids 142 

become less abundant, with particular depletion of palmitic acid (106).  Pre-symbiotic AMF are 143 

unable to synthesize palmitate (123) because they lack genes encoding the fatty acid synthase 144 

enzyme complex (118, 129).  Consequently, the efficiency of how spore energy reserves are 145 

utilized is important for the AMF ability to associate with a plant host.  In fungi cured of CaGg, 146 

reductions in lipid droplet volume and fatty acid abundance are accompanied by elevated 147 

expression of genes and proteins involved in beta-oxidation of fatty acids and the pentose 148 

phosphate pathway, suggesting a shift towards pathways that provide reducing power (126).  In 149 

contrast, pre-symbiotic fungi harboring CaGg acquire their reducing power due to elevated 150 

mitochondrial oxidative phosphorylation and ATP biosynthesis (107, 126).  These increases are 151 

associated with respiration rates 50% higher than in the cured fungi (126).  Overall, CaGg 152 

appears to interact with AMF energy metabolism in ways that mobilize ATP and fuel pre-153 

symbiotic growth.  Interestingly, similar effects are caused by strigolactones, plant hormones that 154 

AMF perceive and respond to by enhancing hyphal branching, proliferation of mitochondria and 155 

increasing respiration (8, 54).  Remarkably, the strigolactone treatment also induces a 156 

proliferation of CaGg cells (3), which suggests that the fungal mitochondrion might be the 157 
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primary target of both CaGg and plant strigolactones.  However, the proximate mechanism of 158 

how CaGg regulates pre-symbiotic activities of AMF remains elusive. 159 

As we discussed earlier, in heritable EB that provision insects with essential metabolites, 160 

genes in all functional categories are vulnerable to accumulation of slightly deleterious mutations 161 

and decay (7, 67, 74).  However, the symbiont genes responsible for essential services to the 162 

host, such as those needed for the biosynthesis of amino acids (112) or vitamins (2), maintain 163 

their functionality due to host-level selection (19).  These observations suggest that clues 164 

concerning CaGg factors that interact with AMF metabolism might be gleaned from the CaGg 165 

genomic data.  With sizes ranging from 1.34 Mb to 2.36 Mb (36, 71), the genomes of CaGg are 166 

substantially streamlined compared to their free-living Burkholderia relatives (131).  However, 167 

there are reasons to suspect that the mechanisms of genome contraction in CaGg are different 168 

from those that govern degenerative genome reduction in heritable EB of insects.  In particular, 169 

CaGg rate of mutation accumulation of 2.03 ´ 10-9 substitutions per site per year (71) is 170 

comparable to that of free-living bacteria, and much lower than 2.2 ´ 10-7 substitutions per site 171 

per year estimated in Buchnera aphidicola, Ba (76).  Ba is an essential mutualist that provisions 172 

phloem-feeding aphids with amino acids missing from their sugar-rich diet, and a model for 173 

understanding degenerative genome evolution in heritable EB (77, 112, 117, 128).  Importantly, 174 

unlike heritable essential mutualists of insects, CaGg shows evidence of rare recombination and 175 

host switching/horizontal transmission (71, 72).  This pattern is consistent with a relatively large 176 

effective size of the CaGg population estimated at 1.44 ´ 108 (71) and larger than 1.0 ´ 107 in Ba 177 

(34).  Accordingly, forces of natural selection are expected to operate in the CaGg population, 178 

and in fact, CaGg appears to be as effective at purging slightly deleterious mutations as free-179 

living bacteria (71).  As a consequence, only the genes encoding biosynthesis of costly 180 

metabolites available to CaGg from the host are expected to be lost from CaGg genomes.  181 

Consistent with this prediction, CaGg appears to rely on host-derived arginine as its energy 182 

source (36).  Conversely, EB retains the capacity for the energetically expensive and complex 183 

biosynthesis of vitamin B12 (36), which is a cofactor essential to some bacteria and humans but 184 

has no apparent role in the metabolism of fungi (99, 120).  Consequently, the vitamin B12 185 

biosynthetic pathway must be preserved by CaGg for its own benefit.  These patterns suggest 186 

that identifying genomic clues to how CaGg reprograms the energy metabolism of its fungal host 187 

may not be as simple as in heritable EB with degenerate genomes. 188 
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CaGg is transmitted uniparentally, along clonal lineages of its AMF hosts.  AMF show 189 

no direct evidence of sexual mating and rely on large multinucleate spores for asexual 190 

proliferation.  Intrahost populations of CaGg are genetically uniform (72).  Such genetic 191 

homogeneity could be attributed to a rate of mutation accumulation in CaGg that is comparable 192 

to that of free-living bacteria (71).  This low mutation rate (71) and a relatively large effective 193 

population size in CaGg (71) are also likely to be responsible for the extraordinary evolutionary 194 

longevity of the AMF-CaGg symbiosis, which dates back to the Early Devonian (72). 195 

What remains uncertain are the forces that allow CaGg to maintain a relatively large 196 

population size.  It is possible that the ultimate cause is related to the nature of CaGg association 197 

with AMF.  CaGg services are not essential to AMF, or, in other words, AMF are only 198 

facultatively reliant on CaGg (64, 72).  Such reliance suggests that fitness benefits of carrying 199 

EB vary depending on specific conditions, with certain environments favoring EB presence and 200 

others selecting against it (101, 102).  A variable selective landscape is expected to support 201 

retention of genetic competence for horizontal transmission and recombination (85), which are 202 

present in CaGg (71, 72).  However, the specific environmental factors responsible for AMF 203 

facultative rather than obligate dependence on CaGg are unknown.  It could be speculated that 204 

these factors are related to conditions affecting pre-symbiotic activities of obligately biotrophic 205 

AMF, such as the number of spore germination attempts and the extent of hyphal proliferation. 206 

 207 

2.2. Rm-Burkholderia mutualism 208 

Rm, like most other Mucoromycotina, is a saprotroph that also can act as an opportunistic 209 

pathogen of plants and humans (93, 108).  While multiple Burkholderia EB species have been 210 

found in different isolates of this fungus, such as Burkholderia rhizoxinica, Br (51, 68, 95, 96, 211 

113, 125), Burkholderia endofungorum (94) and Burkholderia sp. (55, 70) (Fig 1), no 212 

Burkholderia EB have been found in other Mucoromycotina (111).  Moreover, even within Rm 213 

some strains do not harbor these EB (55, 93). 214 

The Rm-Burkholderia mutualism has become a model for understanding fungal-bacterial 215 

symbioses because it can be manipulated experimentally, hosts can be cured of symbionts, and 216 

partners separated and reassembled back into a functional symbiosis (51, 55, 68, 70, 95).  This 217 

versatility is related to the genomic makeup of Burkholderia EB.  The 3.75 Mb genome of Br 218 

(52) supports functional capabilities important for Burkholderia EB persistence outside the host 219 
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cellular environment and host recolonization as well as endosymbiotic lifestyle and vertical 220 

transmission (51, 68, 95).  Recolonization of the fungal mycelium is possible due to the activity 221 

of Burkholderia secretion systems.  These systems include the Type II Secretion System, which 222 

translocates fungal cell wall-degrading enzymes chitinase and chitosinase (68) as well as the 223 

Type III Secretion System (51), which delivers effectors for host manipulation directly into the 224 

host cytoplasm (22).  The establishment of symbiosis is associated with alterations of the Rm 225 

lipid metabolism (55).  Host lipids are also important for the maintenance of the symbiosis, as 226 

they likely provide substrates for Burkholderia energy metabolism (52, 53) (Fig 3).   227 

Nearly 10% of the Br genome is comprised of secondary metabolite gene clusters (52, 228 

53).  Secondary metabolites are low molecular weight compounds with potent physiological and 229 

antimicrobial activities often deployed in interspecific interactions (47).  In the Rm-Burkholderia 230 

symbiosis, an antimitotic polyketide rhizoxin is synthesized cooperatively by both partners (95, 231 

108).  In contrast to essential metabolites provisioned by EB to insect hosts (6, 75), rhizoxin is 232 

not essential to Rm survival.  However, it allows Rm to engage in pathogenesis of plants (108).  233 

Such reliance of Rm on its EB for secondary metabolites is an important and lifestyle altering 234 

evolutionary innovation, as Mucoromycota, including Rm, contain only a limited repertoire of 235 

secondary metabolite gene clusters (55, 70, 124).   236 

For vertical transmission, Burkholderia exploits asexual sporangiospores and sexual 237 

zygospores of Rm, exerting different degrees of control over formation of these two types of 238 

propagules (70, 96) (Fig 3).  EB transmission via asexual sporangiospores allows for co-239 

dispersal of partner lineages.  However, the extreme bottleneck size, varying from one to four 240 

Burkholderia cells per Rm sporangiospore (70, 96), suggests that additional mechanisms must be 241 

in place to prevent rapid genomic degeneration of EB genomes.  Like other Mucoromycotina, in 242 

addition to asexual proliferation via sporangiospores, the Rm hosts can mate and form sexual 243 

zygospores (70).  Consequently, it would not be unexpected for the zygospores to provide an 244 

arena for mixing of symbionts associated with host parental lineages.  While this hypothesis 245 

remains to be tested, such mixing would be important for the retention by Burkholderia EB of 246 

molecular evolution patterns resembling those of free-living Burkholderia rather than those of 247 

heritable EB of insects, such as ‘Candidatus Tremblaya princeps’, a closely related nutritional 248 

mutualist of mealybugs (20) (Fig 1). 249 

 250 
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2.3. Me-Mc symbiosis 251 

Mc is a betaproteobacterium (Fig 1) auxotrophic for cysteine, which is provisioned by its Me 252 

host (86).  Like other Mortierellomycotina, Me can be isolated from the soil and roots of trees 253 

(16, 124).  Importantly, not all strains of Me harbor Mc (124).  The Mc genome of 2.6 Mb 254 

represents an intermediate level of contraction compared to the genomes of its close relatives 255 

CaGg and Burkholderia EB of Rm (33, 124).  Elimination of Mc from the Me hyphae results in 256 

improved mycelial growth (59, 124) (Fig 3).  Changes in the colony morphology are 257 

accompanied by accumulation of fatty acids that otherwise fuel Mc energy metabolism (124).  258 

Collectively, the phenotypic effects of Mc elimination suggest that it is a parasite of Me. 259 

 Interestingly, the Me-Mc symbiosis is believed to have originated 350 MYA (124), which 260 

raises questions concerning the exact nature of this association and factors that control its 261 

evolutionary stability.  As mentioned before, it is unlikely for strictly vertically inherited 262 

parasites to persist in a host population (28, 60) unless they engage in horizontal transmission 263 

(28, 60), or in a conditional mutualism (40, 61, 62, 105).  As the population structure of Mc is 264 

unknown, it is not clear whether this heritable EB undergoes horizontal transmission.  However, 265 

as Me is a heterothallic fungus in which sexual reproduction requires two compatible mates (35), 266 

host mating interactions could facilitate horizontal transmission of Mc.  It is also possible that Mc 267 

offers some conditional services to Me.  For example, it could protect its host against more 268 

virulent horizontally transmitted parasites (61, 62).  Alternatively, costs and benefits of the Mc 269 

infection may vary spatially and temporally, and be related to the biosynthesis of secondary 270 

metabolites (40, 105).  Mucoromycota genomes, as we mentioned earlier, contain only a limited 271 

repertoire of secondary metabolite gene clusters (55, 70, 124).  In contrast, the Mc genome 272 

harbors several of them, including one cluster encoding an insecticidal toxin, which potentially 273 

could be expressed under specific environmental conditions to aid the fungal host (33, 124).  274 

Such secondary metabolite complementation would resemble provision of rhizoxin by 275 

Burkholderia EB to Rm (95, 108).  As long as metabolic benefits provisioned by Mc occasionally 276 

outweigh its cost to Me, the symbiosis could be evolutionarily stable (40, 105). 277 

 278 

2.4. AMF-CaMg symbiosis 279 

Like CaGg, CaMg is a heritable EB of AMF (79).  In fact, both CaGg and CaMg can coexist in 280 

a single AMF host (26, 121).  CaMg is an uncultivable mollicute in the Mycoplasma pneumoniae 281 
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group of the family Mycoplasmataceae (79, 80) (Fig 2).  Even though the CaMg host range 282 

extends to all major lineages of Glomeromycotina (79, 83, 121) as well as to other 283 

Mucoromycota, including Endogone (25), not all host populations harbor this EB.  The role of 284 

CaMg in the biology of AMF is unknown.  The CaMg genomes are highly reduced in size, 285 

ranging from 0.66 to 1.23 Mb (80, 122).  Consequently, CaMg is metabolically dependent on the 286 

host, with the major source of energy remaining undiscovered (80, 122).  Presence of the genes 287 

encoding host-interactive proteins as well as genes acquired horizontally from fungi, including 288 

Glomeromycotina and Mortierellomycotina (80, 122), suggests that CaMg is able to manipulate 289 

its host biology.   290 

While the metabolic capacity of the CaMg genomes does not offer obvious clues as to 291 

whether it is a mutualist or antagonist, inferences can be made from the genome architecture (80, 292 

81) and the population structure of CaMg (121).  In contrast to heritable EB that act as 293 

mutualists, CaMg displays uncommon genome plasticity (80, 81), remarkably high levels of 294 

intrahost genetic diversity (83, 121), and population-level recombination (81, 121).  These 295 

patterns could be interpreted as an indication of an antagonistic arms race with the host (80, 81, 296 

121).  Genome plasticity in CaMg could be also viewed as a countermeasure to genomic 297 

degeneration experienced by CaMg (81).  CaMg, while being heritable in AMF, is derived from 298 

horizontally transmitted animal-infecting mycoplasmas (80).  Like its mycoplasma ancestors, 299 

CaMg is missing DNA repair mechanisms, a deficiency that contributes to rapid accumulation of 300 

mutations, resulting in one of fastest rates of evolution among bacteria (81).  As recombination 301 

and mobile genetic element (MGE) activity underlying CaMg genomic plasticity are common in 302 

other mycoplasmas, CaMg must have retained these mechanisms after the host switch to fungi 303 

and the transition from horizontal to vertical transmission (81).  Importantly, the two 304 

explanations of CaMg genomic plasticity, as an adaptation that facilitates exploitation of AMF 305 

versus a countermeasure to genomic degeneration, are not mutually exclusive.  Conversely, it 306 

cannot be dismissed that, with genomic plasticity representing a vestige of its mycoplasma 307 

ancestry, CaMg is a conventional mutualist providing yet unknown benefits to AMF.  It is also 308 

possible that it is a conditional mutualist that aids the host only under specific conditions (40, 61, 309 

62, 105). 310 

The age of the AMF-CaMg symbiosis likely pre-dates the diversification of the 311 

Mucoromycota (121), attesting to considerable evolutionary stability of this heritable association.  312 
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Such stability could be attributed to an apparent balance between the forces contributing to 313 

genomic degeneration versus plasticity experienced by CaMg (81).  In particular, reconstructing 314 

the patterns of accumulation of slightly deleterious mutations during CaMg evolution revealed a 315 

significant acceleration of this process after ancestral CaMg had switched from horizontal to 316 

vertical transmission (81).  In contrast, the evolution rates along terminal phylogenetic branches 317 

leading to present day CaMg (Fig 2) do not appear to be elevated, which suggests that, over 318 

time, CaMg has refined the mechanisms responsible for purging of slightly deleterious mutations 319 

(81). 320 

 321 

2.5. Why are heritable EB common in Mucoromycota? 322 

Fungal-bacterial symbioses are not unique to the phylum Mucoromycota (89).  However, the 323 

associations formed with EB by these early divergent fungi are distinct due to a high degree of 324 

co-evolution between the partners.  It has been proposed that the propensity of Mucoromycota to 325 

host EB is related to the aseptate nature of their hyphae, which allow free migration of EB across 326 

the host mycelium (26).  Another tantalizing explanation is related to the recent discovery that, 327 

unlike Dikarya, early divergent fungi share with bacteria the use of 6-methyladenine (m6A) 328 

DNA modification (69).  6mA is by far the most common type of DNA modifications in 329 

bacteria, important for bacterial cell defense relying on restriction-modification systems (14).  In 330 

contrast to prokaryotes, the role of 6mA in eukaryotes has not been understood until recently (32, 331 

39, 65, 66, 69, 133, 135).  Recent studies revealed that 6mA is not only present in eukaryotes, 332 

but plays an important role in gene expression (39, 49, 133, 135).  Remarkably, the genomes of 333 

early-divergent fungi contain up to 3% of 6mA, a level substantially higher than that in other 334 

eukaryotes (69).  Moreover, 6mA modifications appear to concentrate at the transcriptional starts 335 

of expressed genes, a pattern consistent with gene activation (69).  Consequently, it is attractive 336 

to speculate that the shared use of 6mA DNA modification is a condition predisposing 337 

Mucoromycota to bacterial manipulation, a hypothesis that remains to be tested. 338 

 339 

3. Exploring evolutionary models 340 

3.1. Molecular evolution rate acceleration 341 

The rate of molecular evolution is expected to be higher in a population of a small effective size 342 

that rapidly accumulates slightly deleterious mutations due to genetic drift compared to a 343 
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population of a larger size where such mutations are eliminated by natural selection (87).  344 

Importantly, molecular evolution rate acceleration relative to free-living taxa is one of the 345 

hallmarks of heritable EB (75), including CaGg (20).  However, as we discussed earlier, with its 346 

low mutation rate and a relatively large effective population size (71), CaGg appears to defy 347 

predictions concerning the causes that underlie evolution rate acceleration.  In fact, modeling of 348 

the rates of evolution under various parameters of mutation and recombination suggested that the 349 

evolution rate acceleration in CaGg is a consequence of the long-term maintenance of a largely 350 

clonal population coupled with infrequent recombination (71). 351 

Even though Mc is evolving significantly slower than CaGg, its evolution rate is 352 

accelerated relative to free-living Burkholderia and Burkholderia EB of Rm (Fig 1, Table 1).  353 

The genome of Mc contains multiple genes involved in DNA repair, including polA, dnaQ, mutS, 354 

and mutL (33), which encode DNA polymerase I with proofreading activity, ε subunit of DNA 355 

polymerase III with 3'→5' DNA-directed proofreading exonuclease activity, the MMRS 356 

mismatch repair protein that recognizes and binds mismatched nucleotides, and MMRS 357 

mismatch repair protein with endonuclease activity, respectively.  While retention of these DNA 358 

repair mechanisms suggests that the evolution rate acceleration in Mc is not caused by an 359 

increased supply of mutations, the specific cause has yet to be found. 360 

Unlike CaGg and Mc, Burkholderia EB of Rm evolve at a rate comparable to that of their 361 

free-living relatives (20), which is somewhat surprising in a heritable EB.  In the absence of 362 

specific data, two hypotheses can be formulated that explain such a low evolutionary rate.  First, 363 

the Rm-Burkholderia mutualism is still at an early stage of co-evolution between the partners, 364 

before the population of Burkholderia EB had a chance to decline in effective size and start 365 

accumulating slightly deleterious mutations that disable DNA repair mechanisms.  Alternatively, 366 

the Rm-Burkholderia symbiosis is already ancient.  Yet the genomes of EB are arrested at the 367 

present state of evolution due to the nature of the symbiosis in which EB control host 368 

reproductive biology, are free to mix, and thereby retain a large effective population size that 369 

allows for symbiont-level selection.  A moderate size of the Br genome and its retention of DNA 370 

repair genes polA, dnaQ, mutS, and mutL (52) support both hypotheses.  Accordingly, additional 371 

work is needed to explain the low rate of molecular evolution in Burkholderia EB. 372 

CaMg evolves at a rate that exceeds the rates observed in rapidly evolving animal-373 

associated mycoplasmas and is one of fastest among bacteria (81).  As we indicated earlier, the 374 
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genomes of CaMg are missing genes responsible for DNA repair, which contributes to a rampant 375 

accumulation of mutations (80).  This mutational decay is countered by genome plasticity (80, 376 

82).  In turn, a dynamic equilibrium between the forces that drive the ongoing genome decay and 377 

its restoration contributes to evolutionary antiquity of the AMF-CaMg symbiosis (81).  The same 378 

forces are also likely responsible for the ultra-rapid evolution in CaMg.  Importantly, this 379 

mechanism is distinct from the one governing the rapid evolution of heritable EB with 380 

populations of a small effective size (73, 87).  It also differs from the mechanism operating in 381 

CaGg in which molecular evolution rate acceleration can be attributed to rare recombination 382 

events in a predominantly clonal population with a relatively large effective size (71). 383 

 384 

3.2. Mutualism origins 385 

3.2.1. Antagonism-to-mutualism transition in heritable symbioses.  In the Rm-Burkholderia 386 

symbiosis, elimination of EB from the host mycelium abolishes asexual proliferation of the 387 

fungus (96) and affects its ability to mate, either impeding sex completely or reducing the rate of 388 

zygospore formation (70) (Fig 3).  These two patterns suggest that symbionts interact with host 389 

reproduction and, by doing so, they control their own transmission (70).  According to one of the 390 

theoretical models describing conditions required for mutualism establishment, the symbiont’s 391 

ability to achieve control of its own transmission is the key prerequisite for the antagonism-to-392 

mutualism transition in heritable symbioses (134).  While the evolutionary history of the Rm-393 

Burkholderia mutualism is uncertain, present-day antagonistic interactions between naturally 394 

EB-free (non-host) Rm and Burkholderia isolated from the host suggest that it originated as an 395 

antagonism (55).  The symbiont’s control over own transmission is expected to facilitate 396 

reciprocal selection between the partners, leading to utilization of symbiont services by the host 397 

(134).  In the Rm-Burkholderia symbiosis, these services include EB-mediated synthesis of 398 

rhizoxin, which, as we discussed earlier, enables pathogenesis of plants by Rm (95, 108).  399 

Overall, the Rm-Burkholderia mutualism supports the evolutionary model suggesting that a 400 

heritable mutualism could evolve from an antagonism (134). 401 

 402 

3.2.2. Host addiction to an antagonistic symbiont.  Another theoretical model describing the 403 

antagonism-to-mutualism transition, which gained support from the patterns displayed by the Rm 404 

and Burkholderia partners, is the addiction model (1).  According to this model, a host 405 
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antagonized by a parasitic symbiont will develop mechanisms that counterbalance parasite’s 406 

negative effects.  These mechanisms may make the host addicted to the symbiont’s continued 407 

presence (92).  In the Rm-Burkholderia symbiosis, the non-hosts exhibiting growth inhibition 408 

when confronted by EB isolated from host fungi represent a pre-addiction stage of the fungus 409 

(55).  Mutualism establishment between the cured host and Burkholderia EB as well as bacterial 410 

presence inside the host hyphae in the established symbiosis are associated with elevated 411 

expression of fungal genes involved in lipid metabolism (55, 70).  Activities of these enzymes 412 

result in accumulation of triacylglycerol (TAG) and phosphatidylethanolamine (PE) at a ratio of 413 

about 1:1 (55) (Fig 3).  Perturbation of this ratio in favor of TAG over PE shifts the Rm-414 

Burkholderia interaction into antagonism, suggesting that the accumulation of TAG and PE at a 415 

specific ratio is part of the fungal addiction syndrome to EB. 416 

In addition to EB impact on host lipid metabolism, Rm is addicted to Burkholderia for 417 

reproduction (70).  Bacteria hijacked a component of the host’s reproductive machinery by 418 

gaining control over the expression of ras2-1 (70), a gene encoding a G-protein involved in 419 

asexual and sexual reproduction in other fungi (45, 46, 58).  The exact mechanism of bacterial 420 

control over ras2-1 expression and the evolutionary trajectory that lead to it are unknown.  421 

However, a tantalizing clue comes from observations made in yeast Saccharomyces cerevisiae in 422 

which hyper-activation of Ras signaling induces programmed cell death (38).  Accordingly, it is 423 

attractive to speculate that in the ancestrally antagonistic relationship between Rm and 424 

Burkholderia (55), establishing control over ras2-1 expression by EB was an important 425 

component of co-evolution between the partners, leading to adaptive changes in host regulation 426 

of its Ras2-1 signaling (70). 427 

 428 

4. Fungal-bacterial symbioses: a window into the fungal biology 429 

The phylum Mucoromycota is one of the least understood lineages of filamentous fungi because 430 

its representatives have been remarkably recalcitrant to genetic analysis and manipulation.  431 

However, recent studies of fungal-bacterial symbioses involving Mucoromycota suggest that 432 

novel insights into various aspects of the Mucoromycota biology can be gleaned from a 433 

systematic dissection of these associations.  434 

 435 

4.1. Lipid metabolism of Mucoromycota 436 
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Most Mucoromycota are oleaginous fungi that accumulate lipids to at least 20% of their biomass 437 

(119).  In all Mucoromycota symbioses that can be manipulated experimentally (AMF-CaGg, 438 

Me-Mc, Rm-Burkholderia), symbiont elimination results in alterations of host lipid metabolism 439 

(55, 59, 106, 107, 124, 126) (Fig 3).  While the significance of these perturbations is different in 440 

each of the systems, they all speak to the central role of lipid metabolism in host-EB interactions 441 

involving Mucoromycota.  Importantly, the examination of host responses to EB contributed to a 442 

refined understanding of lipid metabolic pathways in Mucoromycota (55, 59).  It also revealed 443 

that some of the Mucoromycota lipid metabolic enzymes affected by EB are unique to the early 444 

divergent fungi and not found in Dikarya (55). 445 

 446 

4.2. Reproductive biology of Mucoromycotina 447 

Reproductive dependence of Rm on Burkholderia EB established this symbiosis as a model for 448 

understanding how asexual and sexual reproduction is regulated in Mucoromycotina (70, 96).  449 

Several important insights have been already generated in this system.  These findings include a 450 

discovery that only one of the multiple paralogs of Ras2, a small GTPase central to the 451 

reproductive development of other fungi, plays a role during both mating and asexual 452 

proliferation of Mucoromycotina (70).  In addition, a negative impact of cyclic AMP on 453 

Mucoromycotina mating has been confirmed in this system (70).  Lastly, candidate receptors of 454 

mating pheromones unique to Mucoromycotina have been identified (70).  Unlike Dikarya, 455 

Mucoromycotina rely on trisporic acids and their precursors for communication between sexual 456 

partners (132).  While the biosynthesis of these molecules is fairly well understood (132), 457 

mechanisms of their perception have been elusive. 458 

 459 

4.3. Reproductive biology of AMF 460 

Glomeromycotina are one of oldest and most common symbionts of plants (114).  Despite their 461 

close phylogenetic relationship with Mucoromycotina and Mortierellomycotina (115), they 462 

display several phenotypic features that superficially set them apart from these other 463 

Mucoromycota.  First, unlike other predominantly saprotrophic Mucoromycota, 464 

Glomeromycotina are obligate biotrophs.  They have lost the fatty acid synthase, which is the 465 

key enzyme complex responsible for the biosynthesis of fatty acids (118, 129).  As a 466 

consequence, AMF rely on their plant hosts for energy metabolism substrates.  Second, although 467 
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cryptic recombination appears to occur in AMF (23, 24, 98), there is no direct evidence that 468 

these fungi engage in a sexual process in which the union of gametangia leads to the formation 469 

of zygospores typical for Mucoromycotina and Mortierellomycotina.  Third, AMF do not form 470 

asexual sporangiospores that are used for dispersal by most other Mucoromycota, with the 471 

exception of Endogone.  Instead, they generate large multinucleate resting spores that 472 

phenotypically resemble azygospores formed by many Mucoromycotina under several specific 473 

conditions (5, 37, 109, 110).  	474 

The apparent loss of sexual mating and sporangiospore-mediated dispersal in 475 

Glomeromycotina may be attributed to selective pressures exerted by their obligate mutualism 476 

with plants.  In particular, genetic recombination is expected to be disfavored in mutualistic 477 

microbes because new recombinant genotypes are less likely to be co-adapted to common host 478 

genotypes (56, 57, 103).  However, once recombination is lost, accumulation of slightly 479 

deleterious mutations becomes a threat to evolutionary longevity of an asexual population (78).  480 

Under such circumstances, asexual propagation becomes a key modulator of the population load 481 

of deleterious mutations.  Specifically, multinucleate propagules, such as those formed by AMF, 482 

are more effective in purging of slightly deleterious mutations compared to uninuclear 483 

propagules, like sporangiospores (43, 91, 100).  Consequently, they are expected to be favored. 484 

Theoretical considerations suggest that the reproductive biology of extant 485 

Glomeromycotina could be solely a product of their interactions with plants.  However, given the 486 

role of Burkholderia EB in the reproductive biology of Rm (70, 96) and the propensity of AMF 487 

for hosting diverse EB (11, 79), it is tempting to speculate that the loss of mating and 488 

sporangiospore formation might have been facilitated by interactions of ancestral 489 

Glomeromycotina with EB capable of modulating host reproductive biology. 490 

 491 

4.4. Innate immunity in Mucoromycotina 492 

The utility of the Rm-Burkholderia symbiosis as a model for fungal-bacterial interactions is 493 

enhanced by the existence of non-host strains of Rm that do not harbor EB and interact 494 

antagonistically with EB isolated from the host (55).  Specifically, co-cultivation of cured Rm 495 

with its own Burkholderia EB or Burkholderia isolated from other Rm hosts re-establishes a 496 

functional symbiosis whereby bacteria populate fungal hyphae and spores (55, 70).  In contrast, 497 

non-host Rm strains do not become colonized by EB isolated from host Rm strains (55).  A 498 
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similar absence of colonization was observed in other non-host Mucoromycotina such as 499 

Rhizopus oryzae and Mucor circinelloides during co-cultivation with EB of Rm (55).  Moreover, 500 

the non-host fungi are antagonized by these bacteria and change their growth pattern by reducing 501 

hyphal extension around bacterial colonies (55).  These observations indicate that Burkholderia 502 

isolated from Rm offers an excellent probe for exploring innate immunity of Mucoromycotina, 503 

which, as we mentioned earlier, possess a limited repertoire of secondary metabolites that could 504 

be deployed as a defense against bacterial invasions. 505 

 506 

5. Conclusions 507 

Heritable symbioses formed with bacteria by the members of the phylum Mucoromycota stand 508 

out among other fungal-bacterial relationships.  Despite their ecological and metabolic diversity, 509 

these associations are all highly co-evolved and most are ancient.  They have been a source of 510 

important insights into the mechanisms that stabilize heritable symbioses, control the rate of 511 

molecular evolution, and enable the establishment of mutualisms.  They revealed novel aspects 512 

of host-microbe biology and provided a unique framework for exploring genetically intractable 513 

Mucoromycota.  These advances establish heritable symbioses between Mucoromycota and EB 514 

as convenient and versatile research targets.  Importantly, it is highly likely that many 515 

Mucoromycota-EB associations with unique biological properties will soon be discovered.  516 

Consequently, we expect that the current explosion of studies conducted on fungal-bacterial 517 

symbioses is a good prognostic for the future expansion of this research area. 518 

 519 

Summary Points 520 

1. The associations of Mucoromycota with EB exemplify novel host-microbe interactions and 521 

mechanisms that stabilize heritable symbioses over long evolutionary periods. 522 

2. Some EB of Mucoromycota display molecular evolution rate acceleration relative to free-523 

living bacteria that cannot be attributed to accumulation of slightly deleterious mutations in a 524 

population of a small effective size. 525 

3. Studies of the Mucoromycota-EB symbioses allow for testing predictions of theoretical 526 

models describing the origins of mutualisms. 527 

4. Examination of the Mucoromycota-EB symbioses provides insights into the biology of 528 

genetically intractable fungal hosts. 529 
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5. Novel Mucoromycota-EB symbioses are expected to be discovered. 530 

 531 

Future Issues 532 

1. What is the proximate mechanism that allows CaGg for manipulation of pre-symbiotic 533 

AMF? 534 

2. What is the evolutionary age of the Rm-Burkholderia symbiosis? 535 

3. Is the Me-Mc symbiosis a conditional mutualism? 536 

4. What is the nature of the AMF-CaMg symbiosis? 537 

5. Is the shared use of m6A DNA modification predisposing Mucoromycota to harboring EB? 538 

 539 
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Terms and Definitions 889 

AMF: arbuscular mycorrhizal fungi, soil fungi that colonize roots of most terrestrial plants and 890 

facilitate plant uptake of mineral nutrients from the soil in exchange for photosynthesis-891 

derived metabolites 892 

Burkholderia EB: a heritable endosymbiotic bacterium of Rhizopus microsporus 893 

CaGg: ‘Candidatus Glomeribacter gigasporarum’, a heritable endosymbiotic bacterium of 894 

arbuscular mycorrhizal fungi  895 

CaMg: ‘Candidatus Moeniiplasma glomeromycotorum’, a heritable endosymbiotic bacterium of 896 

arbuscular mycorrhizal fungi 897 

EB: endosymbiotic bacteria 898 

Effective population size: a parameter that determines the rate of change in the composition of a 899 

population caused by generic drift 900 

Genetic drift: the process of evolutionary change involving the random sampling of genes from 901 

the parental generation to produce the offspring generation 902 

Mc: Mycoavidus cysteinexigens, a heritable endosymbiotic bacterium of Mortierella elongata 903 

Me: Mortierella elongata, a soil fungus in the subphylum Mortierellomycotina 904 

Rm: Rhizopus microsporus, a soil fungus in the subphylum Mucoromycotina  905 

Horizontal transmission: passage of symbionts between hosts of the same generation 906 

Mutualism: a type of symbiosis in which reciprocal exploitation provides net benefits to each 907 

partner 908 

Symbiosis: the living together of dissimilar organisms 909 

Vertical transmission: passage of symbionts from one host generation to the next 910 

Zygospore: a resting spore formed by fusion of gametangia during sexual reproduction of 911 

Mucoromycota 912 

 913 
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Host lipid metabolism plays a role in the establishment of the Rm-Burkholderia mutualism.  919 

Some lipid metabolic genes active in this process are only found in early divergent fungi. 920 

 921 

70. Mondo SJ, Lastovetsky OA, Gaspar ML, Schwardt NH, Barber CC, et al. 2017. Bacterial 922 

endosymbionts influence host sexuality and reveal reproductive genes of early divergent 923 

fungi. Nature Communications 8: 1843 924 

Burkholderia EB interact with sexual reproduction in Rm.  This interaction revealed 925 

candidate receptors of trisporic acids, mating pheromones unique to Mucoromycotina. 926 
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fungi and plays a role in gene activation. 931 
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Table 1.  The rate of evolution in Mc differs from the evolution rates in other EB and free-living 954 

relativesa. 955 

 956 

Ingroup (GenBank accession no.)  Outgroup (GenBank accession no.)  Relative rate statistica 

Mycoavidus cysteinexigens FMR23-6 

(NZ_DF850521) 

‘Ca. Glomeribacter gigasporarum’ 

BEG34 (NZ_CAFB00000000) 

Burkholderia phytofirmans PsJN 

(NC_010681) 

22.88**** 

Mycoavidus cysteinexigens FMR23-6 

(NZ_DF850521) 

‘Ca. Glomeribacter gigasporarum’ 

IN211 (PRJNA276133) 

Burkholderia phytofirmans PsJN 

(NC_010681) 

17.95**** 

Mycoavidus cysteinexigens FMR23-6 

(NZ_DF850521) 

Burkholderia rhizoxinica HKI454 

(NC_014722) 

Burkholderia phytofirmans PsJN 

(NC_010681) 

506.65**** 

Mycoavidus cysteinexigens FMR23-6 

(NZ_DF850521) 

Burkholderia phytofirmans PsJN 

(NC_010681) 

Ralstonia pickettii 12J (NC_010682) 773.73**** 

Mycoavidus cysteinexigens FMR23-6 

(NZ_DF850521) 

Burkholderia glumae BGR1 

(NC_012724) 

Ralstonia pickettii 12J (NC_010682) 864.33**** 

aResults were obtained using Tajima’s 1D relative rate test (116) implemented in MEGA7 (50) 957 

and conducted on DNA sequences at 27 loci listed in Fig 1. 958 
bThe 1D relative rate statistic distribution is the same as the distribution of c2. 959 

****, significant at P ≤ 0.0001.  960 
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Figure legends 961 

Figure 1.  Evolutionary history of CaGg, Mc and Burkholderia EB reconstructed using 962 

nucleotide sequences at 16S rRNA, 23S rRNA, and 25 protein-coding loci (nusA, pyrG, rplA, 963 

rplB, rplC, rplD, rplE, rplF, rplK, rplL, rplM, rplN, rplP, rplS, rplT, rpmA, rpoB, rpsB, rpsC, 964 

rpsE, rpsI, rpsJ, rpsK, rpsM, and rpsS).  Bayesian posterior probabilities over 0.80 are shown 965 

above branches.  Branches with maximum likelihood bootstrap support over 70% are thickened.  966 

Sequences of EB are in bold: CaGg of Gigaspora margarita BEG34, CaGg of Gigaspora 967 

margarita JA201A-16, CaGg of Racocetra castanea BEG1, CaGg of Cetraspora pellucida 968 

IN211, Mycoavidus cysteinexigens of Mortierella elongata FMR23-6, Burkholderia rhizoxinica 969 

of Rhizopus microsporus, ‘Ca. Tremblaya princeps’ of citrus mealybug Planococcus citri.  970 

Figure modified from (71). 971 

 972 

Figure 2.  Phylogenetic placement of ‘Ca. Moeniiplasma glomeromycotorum’ based on amino 973 

acid sequences at 19 protein-coding loci (dnaG, infC, nusA, rplA, rplB, rplC, rplE, rplF, rplM, 974 

rplN, rplP, rplT, rpmA, rpsB, rpsC, rpsE, rpsJ, rpsS and smpB).  Bayesian posterior probabilities 975 

over 0.90 are indicated above branches.  Branches with maximum-likelihood bootstrap support 976 

over 70 % are thickened.  Sequences of CaMg are in bold: CaMg of Dentiscutata heterogama 977 

FL654, CaMg of Rhizophagus clarus NB112A, CaMg of Racocetra verrucosa VA103A.  Figure 978 

modified from (79). 979 

 980 

Figure 3.  Cartoon representation of phenotypic effects that EB have on their Mucoromycota 981 

hosts.  CaGg improves germ tube extension and branching during pre-symbiotic growth of AMF 982 

(left).  Burkholderia EB interacts with Rm asexual sporulation and mating (center); images 983 

modified from (70).  Mc reduces colony expansion in Me (right).  Red ovals represent EB; fungal 984 

structures, including AMF spores and germ tubes, Rm zygospores and sporangia with 985 

sporangiospores, and Me mycelia, are not drawn to scale.  FA, fatty acids.  986 
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