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Abstract 

Glyphosate is an important broad-spectrum herbicide used in agriculture and residential areas for weed and vegetation 

control, respectively. In our study, we analysed the in vitro clastogenic and/or aneugenic effects of glyphosate by 

chromosomal aberrations and micronuclei assays. Human lymphocytes were exposed to five glyphosate concentrations: 

0.500, 0.100, 0.050, 0.025, and 0.0125 µg/mL, where 0.500 µg/mL represents the established ADI value, and the other 

concentrations were tested in order to establish the genotoxicity threshold for this compound. We observed CAs and 

MNi frequencies significant increased at all tested concentrations, with exception of 0.0125 µg/mL. Vice versa, no 

effect has been observed on the frequencies of nuclear buds and nucleoplasmic bridges, with the only exception of 

0.500 μg/mL of glyphosate that was found to increase in a significant manner the frequency of nucleoplasmic bridges. 

Finally, the cytokinesis-block proliferation index and the mitotic index were not significantly reduced, indicating that 

glyphosate does not produce effects on the proliferation/mitotic index at the tested concentrations. Although the 

limitations due to the small sample size, results obtained in the present paper point to the necessity of further 

investigations in order to establish the real genotoxic potential of glyphosate. 
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Abbreviations 

ABBREVIATIONS 

Ab.C = Aberrant Cells 

ADI = Acceptable Daily Intake  

AF = Acentric Fragments; 

B’ = Chromatid Breaks  

B’’ = Chromosome Breaks 

BNCs = Binucleated Cells 

CAs = Chromosomal Aberrations 

CBPI = Cytokinesis-block Proliferation Index 

DC = Dicentric;  

DMSO = Dimethyl Sulfoxide  

EFSA = European Food Safety Authority  

IARC = International Agency for Research on Cancer  

JMPR = Joint FAO/WHO Meeting on Pesticide Residues  

MI = Mitotic Index 

MMC = Mitomycin-C  

MNC = micronucleated cell 

MNi = Micronuclei  

MRL = Maximum Residue Limits 

NBUDs = Nuclear Buds 

NPBs = Nucleoplasmic Bridges 

R = Rings;  

RfD = Reference Dose  

S.E. = Standard Error; 

TR = Tri-Tetraradials;  

US EPA = United States Environmental Protection Agency  
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 3 

 

Introduction 

Glyphosate is the most commonly used herbicide, employed in agriculture for weed control, in urban areas for 

vegetation control, and during harvesting for crop desiccant (Duke 2017). Because of its massive use, glyphosate is 

routinely detected in foodstuffs (EFSA 2014), air, water and rain (Majewski et al. 2014), food (Ferrer et al. 2011), and, 

consequently, in human biological samples (Hoppe et al. 2017). From ecological point of view, glyphosate was found 

able to reduce the earthworm biomass and the soil microbial diversity (Bai and Ogbourne 2016) and, at  

concentrations over 400 μg/L, it resulted potentially toxic for some aquatic species, including amphibians and fish 

(King and Wagner 2010; Braz-Mota et al. 2015). Glyphosate was also suggested to have endocrine interference 

properties and, in humans, it was associated with various disorders such as diabetes, obesity, asthma, Alzheimer's and 

Parkinson's diseases (Romano et al. 2012; Kwiatkowska et al. 2016).  

At genomic and cellular levels, glyphosate showed a genotoxic potential in in vitro cultured lymphocytes (Lioi et al., 

1998; Mladinic et al., 2009), as well as it was found to affect the cell cycle regulation (Marc et al., 2004). However, 

other authors reported contradictory results or, in some cases, no clastogenic effects for this compound (Šiviková and 

Dianovský, 2006; Piesova, 2005).  

Maximum residue limits (MRL) of glyphosate have been reviewed in 2015 by the European Food Safety Authority 

(EFSA), and generally ranged from 0.025 to 2 mg/kg in different food sources (EFSA 2015).  

Data about carcinogenicity and mutagenicity of glyphosate are discordant. In 2015, the EFSA established that, for this 

compound, there are no strong evidences of cytotoxicity and genotoxicity (EFSA 2015). On the contrary, in the same 

year, the International Agency for Research on Cancer (IARC), citing sufficient evidences of carcinogenicity in 

experimental animals and in in vitro systems, classified glyphosate as probably carcinogenic to humans (IARC 2015). 

However, in 2016, the Joint FAO/WHO Meeting on Pesticide Residues (JMPR) established that glyphosate is not 

carcinogenic in rats, and carcinogenic in mice at very high doses, excluding the same risks to humans from exposure to 

glyphosate through the diet (FAO/WHO 2016). Finally, in 2017, the European Union recently extended the glyphosate 

use from the 15 December 2017 for another 5 years (European Commission 2017). 

Based on available data about carcinogenicity, genotoxicity and cytotoxicity, the US EPA established for glyphosate a 

reference dose (RfD) of 1.75 mg/kg body mass/day (US EPA 2012). Vice versa, the Acceptable Daily Intake (ADI) 

established by JMPR/WHO and FAO/WHO was 1 mg/Kg body mass/day (FAO/WHO 2014; FAO/WHO 2016), 

whereas the EFSA established the more precautionary ADI value of 0.5 mg/kg body mass/day (EFSA 2015).  

Most of the published works were focused on the in vitro effects on human cells of high glyphosate concentrations 

(Mañas et al., 2009; Mladinic et al., 2009; Šiviková and Dianovský, 2006; Koller et al., 2012), whereas few data were 
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reported about the effects of small doses of this compound (Kašuba et al., 2017). For this reason, the aim of the present 

study was to evaluate the in vitro effects on human lymphocytes of low concentrations of glyphosate. We decided to 

test glyphosate concentrations corresponding to 0.5 μg/mL (EFSA ADI value) and its submultiples, by chromosomal 

aberrations (CAs) and micronuclei (MNi) assays, that allow the evaluation of the clastogenic and/or aneugenic 

properties of a single compound or a mixture of different compounds.  

 

Materials and methods 

Study population 

Peripheral venous blood was collected from 6 healthy Italian subjects (2 males and 4 females, mean age±S.D., 

27.50±12.55), non-smoking, not alcoholics, not under drug therapy, and with no recent history of exposure to 

mutagens. All subjects signed the Informed Consent. The study was approved by the University of Turin ethics 

committee and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.  

 

Blood Sample Collection and Lymphocyte cultures 

Blood samples were obtained by venipuncture, collected in heparinised tubes, cooled (4°C) and processed within 2 h 

after collection. Lymphocyte cultures, fixation and staining procedures were performed according to Santovito et al. 

(2018). After 24 h of incubation, 8.6 µL of glyphosate stock solution at concentration of 0.5 mg/mL were added to the 

lymphocyte culture in order to reach a final glyphosate concentration of 0.500 µg/mL. Similarly, 8.6 µL of glyphosate 

stock solution diluted 5, 10, 20, and 40 times with dimethyl sulfoxide (DMSO) were added to the lymphocyte cultures 

in order to reach the final glyphosate concentrations of 0.100 µg/mL, 0.050 µg/mL, 0.025 µg/mL and 0.0125 µg/mL, 

respectively. In particular, 0.500 µg/mL represents the ADI concentration established by EFSA for this compound, 

whereas 0.100, 0.050, 0.025 and 0.0125 μg/mL concentrations were tested in order to evaluate the genotoxicity 

threshold for this compound. Three control cultures were assessed: 1) positive control, by adding only MMC (final 

concentration 0.1 µg/mL culture); 2) 0.1% DMSO solvent control, obtained by adding 8.6 µL of DMSO to the 

lymphocyte culture; 3) negative control culture without both glyphosate and DMSO, obtained adding 8.6 µL of RPMI 

medium to the lymphocyte culture. Only for MNi assay, after 44 h of incubation, cytochalasin-B was added to the 

cultures at a concentration of 6 µg/mL to block cytokinesis. Similarly, only for CAs assay, to arrest cells in mitosis, 

colchicine was added at the concentration of 0.06 μg/mL during the last 2 h of culture. 

 

Cytokinesis-Block Micronucleus Assays  
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Microscope analysis was performed at 40X magnification on a light microscope (Dialux 20, Leica, Germany). MNi, 

nucleoplasmic bridges (NPB) and nuclear buds (NBUD) were scored in 2000 binucleated lymphocytes with well-

preserved cytoplasm per subject (total 12,000 binucleated cells per concentration). Cells containing one of more MNi 

were scored as "micronucleated cell” (MNC). A total of 2000 lymphocytes per donor per concentration were scored to 

evaluate the cytokinesis-block proliferation index (CBPI), according to the following formula: 

[1 × N1] + [2 × N2] + [3 × (N3 + N4)]/N, where N1-N4 represents the number of cells with 1-4 nuclei, respectively, 

and N is the total number of cells scored. 

 

Chromosomal Aberration Assay 

Microscope analysis was performed at 100X magnification on a light microscope (Dialux 20, Leica, Germany). For 

each subject and glyphosate concentration, 200 first-division complete metaphases (for a total of 1200 metaphases for 

each dose) were analysed. Cells containing one of more types of CAs were scored as "aberrant cell” (Ab.C).  In order 

to determine cytotoxicity, the mitotic index (MI) was calculated from the number of metaphases in 1000 cells analysed 

per subject per concentration (a total of 6000 cells per concentration). 

 

Statistical analysis 

Comparison of mean values of the percentage of cells with MNi, MNC, CBPI, NPBs, NBUDs, CAs, Ab.C and MI 

between exposure levels and controls was assessed by the non-parametric Mann-Whitney test. Statistical calculations 

were carried out using the SPSS software package program (version 24.0, Inc., Chicago, IL, USA). All P values were 

two tailed, and P values of 5% or less were considered statistically significant for all tests carried out. 

 

Results 

Effect of glyphosate on CAs formation 

Glyphosate was found to induce the following structural CAs: gaps, chromatid and chromosome breaks, dicentric 

chromosomes, rings, tri-tetra radials, and acentric fragments. This last, together to chromatid breaks, represent the most 

frequent observed aberrations (Table 1). Because of the conflicting opinions about the possibility to consider gaps as 

indicators of genomic damage, we decided to exclude gaps from statistical analysis. 

Glyphosate was found to significantly (P = 0.004) increase the CAs and Ab.C frequencies at all tested concentrations 

when compared with the solvent control, including the concentration of 0.025 μg/ml (P = 0.006), but with the 

exception of 0.0125 μg/mL (P = 0.181). A dose-effect was also observed, since the regression analysis revealed a 

significant correlation between glyphosate concentrations and the CAs and Ab.C frequencies (Table 2). Vice versa, no 
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 6 

significant differences (P>0.05) were found between the DMSO solvent-control and the negative control, whereas the 

cultures treated with the MMC showed a significant increase of the cytogenetic damage with respect to all 

concentrations of glyphosate. Finally, no significant differences were found in the MI values between solvent control 

and all tested concentrations of glyphosate, although at 0.500 μg/mL the P-value resulted to be borderline (P = 0.058).   

 

Effect of glyphosate on MNi formation 

Similarly to what we already observed with the CAs assay, our results indicated that glyphosate significantly increased 

(P = 0.004) the MNi frequency at all tested concentrations, with exception of 0.0125 μg/mL (P = 0.360) (Table 3). 

Vice versa, no effect has been observed on the frequencies of NBUDs and NPBs, with the only exception of 0.500 

μg/mL of glyphosate that was found to increase in a significant manner the frequency of NPBs with respect to the 

solvent control (P = 0.004). Also in this case a relationship between the frequency of MNi and the concentrations of 

glyphosate was observed (Table 2), as well as the DMSO solvent-control cultures did not show significant differences 

(P = 0.071) with respect to the negative controls.  MMC was found to significantly increase the MNi, NPBs and 

NBUDs formation compared with the negative control solvent controls and all tested concentrations of glyphosate (P 

<0.001), with exception of 0.500 μg/mL (0.373). After 48-h exposure, a significant reduction of the CBPI value in 

cultures treated with glyphosate was not observed (P = 0.522 for 0.500 μg/mL and P = 0.336 for all other 

concentrations of glyphosate), indicating that, at the tested concentrations, glyphosate does not seem to produce effects 

on the proliferation index. Finally, at 0.500 μg/mL, glyphosate significantly (P = 0.004) induced the NPBs formation, 

whereas no differences were found in the frequency of NBUDs between DMSO solvent control and all glyphosate 

concentrations. 

 

 

 

Discussion 

Glyphosate is an active ingredient of most widely used herbicides. Although it is believed to be less toxic than other 

herbicides, data about its possible genotoxicity are controversy and IARC classified this compound as probably 

carcinogenic to human (IARC 2015).  

The genotoxic effects of high concentrations of glyphosate have been documented, although with contradictory results, 

in a great number of scientific papers (for a review see Kier and Kirkland, 2013), as well as in evaluation reports of 

different international agencies (EFSA, 2015; FAO/WHO, 2016; IARC, 2015). On the other hand, the effects of low 

concentrations of this compound, likely to be encountered in everyday life, were poorly investigated (Kašuba et al., 

2017). 
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Results of our study provided information about in vitro clastogenic and/or aneugenic effects of glyphosate on human 

lymphocytes at the low ADI concentration of 0.500 μg/mL and its submultiples. Based on the obtained data, it can be 

concluded that glyphosate significantly increase the CAs and MNi levels in human lymphocytes at the ADI 

concentration of 0.500 μg/mL established by EFSA and at its submultiple concentrations, up to 0.025 μg/mL. The 

mechanisms underlying genotoxic potential of glyphosate alone or in complex with other compounds are unknown, 

although the exposure to glyphosate was found to trigger oxidative processes involved in the increase of the genomic 

damage (Marques et al. 2014).  

Also other authors analysed in vitro the genotoxic potential of glyphosate in lymphocytes, but at exposure levels of 

higher magnitude orders (Kier and Kirkland, 2013). For example, Mladinic et al. (2009), in human lymphocytes 

cultured without S9 and in presence of glyphosate at concentrations of 3.5, 92.8, and 580 μg/mL, observed a slight 

increased frequency of MNi and a significant tail length increase after a comet assay. Other authors evaluated the 

induction of CAs and MNi in blood cells of other animal models. Lioi et al. (1998) reported positive clastogenic and 

genotoxic effects of glyphosate on bovine peripheral lymphocytes cultured in vitro with herbicide concentrations 

ranging from 17 μM (2.874 μg/mL) to 170 μM (28.740 μg/mL), whereas Šiviková and Dianovský (2006) reported no 

CAs effect of glyphosate at concentrations ranging from 28 (4.734 μg/mL) to 1120 μM (189 μg/mL). Contradictory 

results were obtained by Piesova (2005), who observed, after 48 h of treatment without S9, a statistically significant 

increase in MNi frequency at 280 µM (47.34 µg/mL) but not at 560 µM (94.68 µg/mL) of glyphosate in one donor, and 

the opposite in a second donor (positive at 560 µM but not at 280 µM). Finally, Alvarez-Moya et al. (2014), in in vitro 

experiments based on comet assay, showed that 7 mM of glyphosate (1183 µg/mL) caused DNA damage in b0lood 

cells of Nile Tilapia (Oreochromis niloticus). 

Concentrations of glyphosate similar to those evaluated in the present paper were tested by Kašuba et al. (2017) in 

HepG2 cells by the MNi assay. Similarly to what we observed in human lymphocytes, these authors found a 

significantly higher number of MNi at the ADI value of 0.500 μg/mL, as well as at the residential exposure level of 

2.91 μg/mL, after 4 h of treatment. Vive versa, negative results on Hep-2 cells were obtained by Mañas et al. (2009) 

with CAs assay at glyphosate concentrations of 0.20 mM (33,8 μg/mL), 1.20 mM (203 μg/mL) and 6.00 mM (1014 

μg/mL). 

Significant levels of DNA damage were also observed in human buccal epithelial cells exposed to glyphosate 

concentrations ranging between 10 and 20 mg/L (Koller et al. 2012), whereas Kwiatkowska et al. (2017), showed that, 

in peripheral blood mononuclear cells, glyphosate induce DNA damage in the concentrations range from 0.5 mM 

(84.54 μg/mL) to 10 mM (1690 μg/mL), and a significant decrease of global DNA methylation at concentration of 0.25 
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mM (42.27 μg/mL).  Interestingly, the same authors also observed a significantly increased methylation of p53 

promoter at concentrations of 0.25 mM and 0.5 mM (42.27 and 84.54 μg/mL). This hyper-methylation was found to be 

able to down-regulate the p53 gene expression and to activate proto-oncogenes, with consequent genomic alterations 

and cancer risk. The possibility of glyphosate causing cancer promotion in skin cells and proliferation in breast cells 

has been also observed in vivo and in vitro studies by mouse and human models, respectively (George et al. 2010; 

Thongprakaisang et al. 2013). In this scenario, the results obtained in the present study require attention. Indeed, 

increased CAs and MNi frequencies in peripheral blood lymphocytes have been positively associated with increased 

cancer risk and early events in carcinogenesis, respectively (Bonassi et al. 2004; 2011). 

Moreover, it should be emphasized that, beyond the cases of intoxication where glyphosate content in blood was found 

to range from 0.6 to 150 μg/mL (Zouaoui et al. 2013), in subjects who were indirectly exposed to this substance, 

glyphosate was found in blood at concentrations of 0.074± 0.028 μg/mL (Aris and Leblanc 2011), a value about seven 

times lower with respect to the established ADI value (EFSA 2015), but in the range of concentrations we tested (from 

0.5 to 0.0125 μg/mL).  

At the same time, the genotoxicity of a compound should not be evaluated only after single administrations in in vitro 

or in vivo systems, but also, and especially, after chronic administration of the same compound, even at lower 

quantities than those established by the competent agencies. In this sense, the clastogenicity and aneugenicity we 

observed at concentrations of 0.100, 0.050 and 0.025 μg/mL represent an important signal, especially in view of a 

chronic exposure to these glyphosate concentration levels.  

Finally, no significant differences in CBPI and MI values were found between all tested concentrations and the solvent 

control, indicating that, at these concentrations, glyphosate do not influence in a significant manner the replicative 

capacity of the cells. These data differ from those found by Šiviková and Dianovský (2006) who observed a reduction 

of mitotic and proliferation indices in bovine lymphocytes, but at higher glyphosate concentrations (94.68 μg/mL and 

189 μg/mL). Similarly, other authors described increased levels of MI for other herbicides or insecticides, also in this 

case, at concetrations much higher than those tested in the present work (Kocaman et al., 2014; Yüzbaşioğlu et al., 

2006).  

 

Conclusions 

In the present work we provided evidences for clastogenic and/or aneugenic effects of glyphosate on cultured human 

lymphocytes. Despite the limitations of an in vitro study due to the reduced sample size, it is our opinion that the 

increased cytogenetic damage observed by our group at glyphosate concentrations equal and lower than the established 

ADI value requires further investigations in order to establish the effective genotoxicity threshold of this extensively 
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 9 

used compound. Indeed, the glyphosate concentrations tested in the present work represent more realistic 

concentrations, likely to be encountered in everyday life, with respect to the higher doses evaluated in other published 

papers. In this scenario, in order to draw conclusions about the effects associated to the chronic exposure to low doses, 

in vitro studies are useful tools to investigate the dose response effects, the molecular mechanisms of action of different 

environmental xenobiotics and their genotoxicity. This last, compared to other types of toxicity, may result in severe 

consequences that can be also inherited after long periods following exposure. The same DNA damage that occurs in a 

single cell, caused by low but chronic exposure to genotoxic compounds, can cause unexpected severe consequences in 

the long run. 
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Table 1 – Induction of chromosomal aberrations by Glyphosate in human lymphocytes in vitro.  

Number of scored metaphases for each concentration = 1200 

 

 

 

 

 

 

 

 

 

 

 

CAs = chromosomal aberrations; Ab.C = aberrant cells (cells with 1 ore more aberrations); MI = Mitotic Index; NC = Negative Control;  

MMC = Mitomycin-C; B’: chromatid break; B’’: chromosome break; DC: dicentric; R: ring; TR = tri-tetraradials; AF = acentric fragments;  

S.E. = standard error; Gly = Gliphosate  
a P = 0.004; b P < 0.006 (significantly differs from the DMSO solvent control, Mann-Whitney test).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Test 

substance 

(μg/ml) 

Structural CAs 

  

 Gaps     B’       B’’     DC     R      TR      AF       

Total 

CAs 

Total 

CAs + 

Gaps 

Total 

Ab.C 

Total 

Ab.C + 

Gaps 

(%) CAs/Cell 

± S.E.  

 

(%) Ab.C/Cell 

± S.E.  

 

 

 

(%) MI ± S.E. 

NC 8 8 2 0 0 0 7 17 25 17 25 1.417±0.154 1.417±0.154 5.567±0.042 

0.1% DMSO 10 9 4 1 0 6 7 27 37 27 37 2.250±0.335 2.250±0.250 5.433±0.056 

MMC (0.100) 41 46 30 9 10 14 36 145 186 127 168 12.083±0.300 a 10.583±0.473 a 4.200±0.058 a 

Gly (0.500) 17 41 12 12 3 0 28 96 113 95 112 8.000±0.428 a 7.917±0.375   a  5.300±0.026 

Gly (0.100) 23 31 10 7 2 2 23 75 98 75 98 6.250±0.359 a 6.250±0.359  a  5.333±0.080 

Gly (0.050) 9 21 6 7 0 0 16 50 59 50 59 4.167±0.167 a  4.167±0.167  a 5.367±0.095 

Gly (0.025) 10 15 4 4 3 0 20 46 56 46 56 3.833±0.211 b 3.833±0.211 b 5.383±0.040 

Gly (0.0125) 8 14 5 1 0 0 14 34 42 34 42 2.833±0.211 2.833±0.211 5.400±0.037 

Table 1



Table 2. Multiple regression analysis between Glyphosate concentrations 

Biomarker β-co 
95% CI 

(Lower) – (Upper) 
P-value 

CAs 

Cells with CAs 

MI 

MNi 

Cells with MNi 

CBPI 

NPBs 

NBUDs 

0.914 

0.919 

-0.275 

0.908 

0.935 

0.269 

0.674 

0.395 

(2.112) – (2.988) 

(2.099) – (2.935) 

(-0.666) – (0.099) 

(4.025) – (5.075) 

(3.639) – (4.527) 

(-28.171) – (4.571) 

(0.268) – (0.665) 

(0.023) – (0.444) 

<0.001 

<0.001 

0.141 

<0.001 

<0.001 

0.151 

<0.001 

0.031 

CAs = Chromosomal Aberrations; MI = Mitotic Index; MNi = Micronuclei; 

CBPI = Cytokinesis-block Proliferation Index; NPBs = nucleoplasmic bridges 

NBUDs = nuclear buds  
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Table 3 – Induction of micronuclei by Glyphosate in human lymphocytes in vitro.  

Number of scored binucleated cells for each concentration of the test substance = 12,000 

 

Test 

substance 

(μg/ml) 

Distribution of 

BNCs 

according to the 

number of MNi 

  1        2      3     4     

MNi 

 

MNC 

 

MNi/BNCs 

± S.E. (%) 

MNC/BNCs  

± S.E. (%) 
CBPI ± S.E 

Frequency of 

BNCs with 

NPBs 

 (‰) 

Frequency of 

BNCs with 

NBUDs 

 (‰) 

NC 27 0 0 0 27 27 0.225±0.021 0.225±0.021 1.713±0.003 0.417±0.083 0.8333±0.105 

0.1% DMSO 33 1 0 0 35 34 0.292±0.024 0.283±0.025 1.589±0.076 0.500±0.129 1.083±0.154 

MMC (0.100) 129 9 3 2 164 143 1.367±0.067 a 1.192±0.015 a  1.366±0.019 2.333±0.357 a  3.083±0.473 a 

Gly (0.500) 132 6 2 1 154 141 1.283±0.017 a 1.175±0.021 a  1.545±0.054 1.667±0.211 a 1.6657±0.247 

Gly (0.100) 107 7 0 0 121 114 1.008±0.030 a  0.950±0.029 a  1.556±0.017 0.883±0.105 1.333±0.167 

Gly (0.050) 93 6 1 0 108 100 0.900±0.053 a  0.833±0.046 a 1.576±0.015 0.750±0.111 1.250±0.1112 

Gly (0.025) 68 5 0 0 78 73 0.650±0.048 a 0.608±0.035 a 1.585±0.010 0.667±0.105 1.167±0.105 

Gly (0.0125) 39 0 0 0 39 39 0.325±0.021 0.325±0.021 1.589±0.008 0.583±0.083 1.167±0.167 

BNCs = Binucleated cells; MNi = micronuclei; MNC = cells with 1 or more micronuclei; CBPI = Cytokinesis-Block 

Proliferation Index; NPBs = nucleoplasmic bridges; NBUDs = nuclear buds; S.E. = Standard Error; NC = Negative Control; 

MMC = Mitomycin-C; Gly = Gliphosate. 
aP = 0.004 (significantly differs from the DMSO solvent control, Mann-Whitney test) 
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Figure 1 – Example of complete metaphase carrying an acentric fragment (A) and  

other four different metaphases details showing some examples of observed chromosomal 

aberrations. The arrows  indicate, respectively: acentric fragment (Figure A), tetraradial (Figure B), 

dicentric chromosome (C), and ring (Figure D). All these aberrations were observed at 0.500 μg/mL 

concentration of glyphosate, with exception of the tetraradial aberration observed at 0.1 μg/mL 

concentration. 
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Figure 1



 

 
 

Figure 2 – Examples of observed micronuclei in bi-nucleated cells (A and B), tri-nucleated cell with 

a micronucleus (C) and tetra-nucleated cell with micronuclei (D). According to standardized 

procedures, micronuclei of tri- and tetra-nucleated cells were not scored in the evaluation of the 

total genomic damage. All these cells were observed at 0.500 μg/mL concentration of glyphosate. 

Examples of bi-nucleated cells with nuclear buds (E) and bi-nucleated cell with nucleoplasmic 

bridge are also reported (F).  
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