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Abstract 

A characteristic feature of spheroidal weathering is the rounding of rock block edges, which 
affects the mechanical stability of slender rock blocks and, consequently, that of slopes 
prone to toppling. We analysed the influence of this erosion phenomenon on block toppling 
stability, first discussing the geological environments that produce this kind of phenomena 
and then reviewing classic limit equilibrium equations for block toppling that account for 
the role played by rounded edges. On the basis of this approach, it is clear that rounded 
edges do not greatly affect stability against sliding. However, since the equation to compute 
stability against toppling tends to overestimate the stability of slopes with round-edged 
slender blocks, we propose a modification that results in a more accurate estimation. 

In physical model testing in the laboratory, we compared results for sharp-edge block 
models and artificially weathered rounded-edge blocks, confirming our formulated 
hypothesis and enabling us to explain the failure of sets of a small number of not-so-slender 
blocks. Fieldwork case studies confirm that rounded edges may play a role in stability 
against toppling. We suggest that our proposed approach may be an appropriate tool to take 
this effect into account. 

Keywords: Block toppling, spheroidal weathering, rock slope stability, limit 
equilibrium, physical modelling. 

Corresponding author: iperez@uvigo.es 

 

1. Introduction 

Toppling failure mechanisms tend to occur in slopes in rock masses containing a 
discontinuity set striking more or less parallel to the slope and dipping towards it. Although 
slope instability failures associated with toppling are not easy to identify, detailed analyses 
have shown that this mechanism lies behind a good number of problems identified in rock 
cuts (De Freitas and Waters, 1973; Sagaseta et al., 2001), open pit mine walls (Sjöberg, 1999; 
Martin, 1990) and natural slopes (Giraud et al., 1990; Cruden and Hu, 1994; Gischig et al., 
2011). Sjöberg (1995) suggests that this type of failure mechanism seems to be much more 
common than initially thought. A better understanding of toppling phenomena and its 
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features would therefore be very useful in improving understanding, prediction and 
management of this type of instability. 

Ashby (1971), in a seminal study, first documented the occurrence of toppling in rock, 
whereas Goodman and Bray (1976) made the first serious attempt to analyse this type of 
failure. More than a simple failure mechanism, in fact, toppling phenomena could be 
involved in a number of processes that negatively affect the stability of a slope. A simplified 
classification provided by Goodman and Bray (1976) referred to block toppling, flexural 
toppling and block-flexural toppling. 

However, more complex phenomena that combine toppling with other basic failure modes 
(circular, planar or wedge failure) do occur and were described, among others, by Hoek and 
Bray (1974) and Wyllie and Mah (2004). These include failure mechanisms with toppling 
failure and circular failure in the upper and lower parts, respectively, like those described 
by Alejano et al. (2010) and Manera Bassa et al. (2014), or in the lower and upper parts, 
respectively, like those described by Mohtarami et al. (2014) and Stead et al. (2006). Other 
combinations of simpler mechanisms include sliding and toppling failure in the upper and 
lower parts, respectively (Cravero et al., 2003), or in the lower and upper parts, respectively 
(Gu and Guang, 2016; Coulthard et al., 2001). Even more complex failures involving toppling 
combined with two other mechanisms have been described in the literature (Böhme et al., 
2013; León-Buendía et al., 2014).  

Unlike other simpler failure mechanisms (e.g., planar or wedge failure), toppling tends to be 
controlled by a good number of discontinuities with variable geometry, features and 
behaviour. It is therefore not surprising that our ability to accurately estimate the stability 
of these slopes is much more limited than for simple mechanisms.  

Within this framework, we observed that blocks with rounded corners were more prone to 
toppling than blocks with sharp corners and a study explaining, quantifying and 
demonstrating this phenomenon in relation to a single block was reported in due course 
(Alejano et al., 2015). Here we describe an extension of that study that focuses on how 
rounded corners in blocks affect the stability of slopes prone to block toppling. This study 
can be considered an extrapolation of the Goodman and Bray (1976) approach to analysing 
the role played by round-edged blocks in stability. 

Below we describe how the basic equations of the Goodman and Bray (1976) approach were 
modified to account for rounded corners and then the modified equations are applied to a 
number of analyses. We tested the validity of our approach by means of physical models 
and used the results to eventually explain how and why block toppling occurred in a 
moderately weathered granite rock formation in a mountain area of NW Spain. 

 

2. Fundamentals  

2.1. Analysis of a single block 

Alejano et al. (2015) studied the influence of rounded corners on stability for a single rock 
block, indicating that, in the analytical solution for the factor of safety (FoS) against toppling 
of a single block with sharp edges (Eq. 1), stability depends solely on the slenderness of the 
block for a given inclination of the base (α). 
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This means that there is a critical inclination at which FoS = 1. The angle of failure can be 
physically observed in laboratory tilt tests, consisting of observing block behaviour on a 
progressively tilted surface.  

The stability of blocks with rounded corners was analysed in different ways in Alejano et al. 
(2015): for specimens built by collating different pieces of the same rock, for artificially 
eroded blocks for which the radii of curvature were appropriately estimated and, finally, 
using a numerical approach and UDEC (Itasca, 2010). The analytical approach considered 
the radii of curvature of block corners by displacing the rotation axis and then calculating 
the moments in the computation of the FoS, as shown in Eq. 2 and Figure 1: 
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Figure 1. Factor of safety for a single block with sharp edges (1) and rounded edges (2). 

2.2. Block toppling in rock slopes 

In rock slopes, toppling involves the overturning of interacting columns or rock blocks 
around a fixed base (Goodman and Bray, 1976). This phenomenon usually happens when 
the strike of the rock mass joint sets (fault, stratification, etc) and of the slope are the same 
and when another set dips steeply into the rock mass. The most frequent failures of this 
kind are classified by Goodman and Bray (1976) as block toppling, flexural toppling and 
block flexural toppling. These mechanisms, illustrated in Figure 2, are briefly described 
below following Wyllie and Mah (2004). 
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Figure 2. Common toppling failures as described by Willye and Mah (2004). a) Block toppling of slabs 
of rock with widely spaced normal joints: a.1) block toppling on a road in Salamanca (Spain); a.2) 
block toppling in the Pyrenees (Spain). b) Flexural toppling of slabs of rock dipping steeply into face: 
b.1) flexural toppling in a bench of the Tharsis copper open-pit mine in Huelva (Spain); b.2) flexural 
toppling near a riverbank in Sort near the Pyrenees (Spain). c) Block-flexural toppling characterized 
by pseudo-continuous flexure of long slabs through accumulated motions along various cross joints: 
c.1) block flexural toppling in a slate quarry in La Cabrera in León (Spain); c.2) block flexural toppling 
in a riverbank near Gerri de la Sal in Lleida (Spain). 

 

Block toppling takes place in hard rock when individual blocks or columns are formed by 
two orthogonal joint sets, when the main set strikes parallel to the slope crest and dips 
steeply into the face. The upper blocks tend to topple and push forward on the short 
columns in the slope toe. Flexural toppling typically occurs in thinly bedded slate in which 
orthogonal jointing is not well developed; consequently, the basal plane is not as well 
defined as in block toppling. The general condition for flexural toppling is therefore when 
continuous columns of rock dipping steeply towards the slope break in flexure and tilt 
forward. Finally, block-flexural toppling is a complex mechanism characterized by pseudo-
continuous flexure along long blocks that are divided by a number of cross-joints. 

Cases of toppling have been widely reported in literature. Wyllie and Mah (2004) illustrated 
a case of pit-crest toppling that resulted in a circular failure in the upper slope. Hutchison et 
al. (2000), Coulthard et al. (2001) and Cravero et al. (2003) described complex failure 
mechanisms associated with toppling. Stead et al. (2006) reported and analysed a failure 
that occurred in the Delabole (UK) slate quarry that included toppling in the crest and 
circular failure in the lower part of the slope. 
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2.3. Geological framework 

Weathering — the process by which rock deteriorates until eventually breaking down to a 
soil — is highly dependent on climatic influences (Selby, 1993). Weathering often works in 
from free surfaces where chemicals in water attack the parent rock, eventually leaving a 
framework or corestones of more or less fresh rock separated by weathered zones that are 
easily eroded (Ollier, 1975).  

Joint sets found in rock masses are frequently orthogonal; two sets occur perpendicular to 
each other and at the same time perpendicular to some other planar fabric such as bedding, 
exfoliation or flow banding in an igneous pluton (Hencher, 2012b). When the spacing of one 
vertical joint set is smaller than that of the others, corestone development — due to 
weathering and subsequent denudation with finer weathered material — may produce rock 
block structures consisting of a series of contiguous sub-vertical round-edged blocks prone 
to toppling.  

Although this kind of structure with toppling potential typically occurs in granite 
formations, it may also develop in other rock mass lithologies. Thus, similar rock structures 
may be produced by varying kinds of differential erosion and disintegration of sub-
horizontally bedded and sub-vertically jointed sedimentary or volcanic rock in 
mountainous areas in temperate climate regions. 

 

 

Figure 3. Examples of geological environments where the toppling phenomena under scrutiny may 
take place. a) Monte Pindo (A Coruña, Spain), b) Peneda Gêres National Park (Portugal), c) El Torcal 
de Antequera (Málaga, Spain), and d) Arches National Park (Utah, USA). 
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Some examples of toppled blocks in granite formations include Monte Pindo (Vidal Romaní, 
1989) in the province of A Coruña in Spain and the Peneda Gerês National Park in Portugal 
(Vidal Romaní, 1990) (Figures 3.a and 3.b). Examples for other lithologies are El Torcal de 
Antequera karstic limestone formation in Málaga, Spain (Sanz de Galdeano, 1990) and the 
sandstone fins in Arches National Park in Utah, USA (Figures 3.c and 3.d). In these last 
formations, the rock pinnacles or fins were moulded by differential weathering and erosion 
of vertically jointed rock masses presenting horizontal beds of low-strength interbedded 
rock. 

 

3. Analytical approach 

3.1. Rounded corners in block toppling 

Since rounded edges in blocks may appear in rock blocks in slopes prone to toppling, we 
propose an analytical approach to calculating the corresponding FoS based on first 
revisiting the limit equilibrium equations described in Goodman and Bray (1976). The 
analysis of a single block demonstrated that the impact of rounded corners on sliding 
mechanisms is negligible (Alejano et al, 2015). However, as illustrated in Figure 4, the 
rotation axis is displaced in toppling blocks.  

 

Figure 4. Geometry and forces acting on a block with rounded edges. 

 

Proposed here is a modification of the equation used to calculate the force necessary to 
prevent a block from toppling, in which the moments are calculated taking into account the 
rounding of block edges. To simplify calculations, circular curvature of the edges is 
suggested as a hypothesis. The modified equation (Eq. 3) — used in further calculations for 
blocks with rounded edges — is as follows: 
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3.2. Analysis of standard cases 

With the modification represented by Eq. (3) in mind, repercussions for the stability of 
slopes were analysed. Variations in the FoS against the radii of curvature of the edges were 
evaluated for two standard cases from the literature, namely, Goodman and Bray (1976) 
and Alejano and Alonso (2005). 

The Goodman and Bray (1976) example refers to a 92.5-m high slope composed of 16 x 10-
m wide blocks. The specific weight of the rock was assumed as 25 kN/m3. For a friction angle ϕ = 38.18° (for base and block contacts) the FoS of the slope was 1. The Alejano and Alonso 
(2005) example refers to a 10.95-m high slope composed of 12 x 1.75-m wide blocks, with 
the same specific weight as in the Goodman and Bray (1976) example. Two different friction 
angles were assumed for the calculations, one for the block bases and the other for the joints 
between blocks (ϕb=͵Ͳ⁰ and ϕj=ͶͶ⁰, respectively). For these parameters the slopes were in 
limit equilibrium. Other geometrical parameters for both examples were as indicated in 
Figure 5.  

With these two examples, starting from limit equilibrium with sharp edges, the FoS of the 
slopes were calculated for different radii of curvature of the corners. The results were then 
plotted in a graph for comparative purposes. In this graph — shown in Figure 6 — the radius 
of curvature was reflected as the ratio between the radius of curvature and block width 
(rc/ΔxȌ. Computations were carried out up to the point when rc was 30% of block width — 
a reasonable value given observations in the field. It can be readily observed that, from limit 
equilibrium, the FoS decreased to below 0.85 when corners became rounded. This would 
indicate that the rounding of rock block edges does indeed affect the stability of slopes with 
a relatively small number of blocks prone to toppling.  

 

 

Figure 5. Geometrical parameters for the Goodman and Bray (1976) slope (a) and the Alejano and 
Alonso (2005) slope (b). 
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Figure 6. Variations in the factor of safety according to the radius of curvature to block width ratio, 
rc/Δx . 

 

4. Physical models 

4.1. Introduction and description of the models 

Experience acquired in wall slope failure cases — studied through physical modelling of 
stability for small-scale slopes formed of rock blocks with stability controlled by contact 
friction (Alejano et al., 2011) — suggested that a similar physical modelling approach could 
shed light on the phenomenon under scrutiny.  

Taking the modified Eq. (3) into consideration, the block toppling mechanism was 
reproduced in the laboratory using two 10-block saw-cut Rosa Porriño granite models as 
illustrated in Figure 8. The models were cut from a 31-mm wide granite specimen, roughly 
finished on one side and polished on the other side. Two sets of 48.5-mm wide blocks were 
cut to heights of 15, 30, 45, 60, 75, 90, 105, 90, 75 and 60 mm. One set was left with saw-cut 
sharp edges and the other underwent 12 hours of mechanical weathering in a slake 
durability machine to obtain rounded edges.  

Both models were tested on a tilt table (Alejano et al., 2012) using four different bases: a flat 
wooden base, a flat polished granite, a flat rough granite and, finally, a stepped wooden base 
consisting of 10 x 10.3-mm high and 31.19-mm wide steps (Figure 8). The tilt machine 
consists of a flat tilting surface controlled by an electric motor. A variable-frequency drive 
allows the tilting rate to be regulated and movement is controlled by means of three buttons 
(raise, tilt and stop).  
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Figure 7. Two sets of 10 blocks, with sharp edges (a) and with rounded edges (b). 

 

 

Figure 8. Geometrical parameters for the flat and stepped bases. 

 

Reproducing the Goodman and Bray (1976) physical model meant that the inclination of the 
tilt table at limit equilibrium — i.e., the failure angle, α — could be predicted. Eq. (3) was 
used to assess the stability of the model of blocks with rounded corners. 
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4.2. Defining parameter measurements 

The blocks were measured to obtain the parameters for the limit equilibrium calculations. 
These parameters were width, length, height, weight and submerged weight (to calculate 
density).  Tables 1 and 2 list these measurements for sharp-edge and rounded-edge blocks, 
respectively. 

For the rounded blocks, the radii of curvature were calculated following Alejano et al. 
(2015). Table 3 shows the geometrical and weight values of slab-like blocks (B-width, L-
length and H-height) after slaking them for some hours to obtain rounded block edges. The 
operative radius of curvature is the radius at the mid-location of the edges. The value used 
to calculate limit equilibrium was the average of all the operative radii of curvature. 

 
2

3

av

M cr r=   (4) 

Table 1. Geometrical and weight data for the sharp-edge blocks. 

Block # B L H Weight Submerged 
weight 

Density from 
sunken weight 

 [mm] [mm] [mm] [g] [g] [g/cm3] 

1 31.21 47.74 15.66 60.13 37.36 2.64 

2 31.06 47.77 30.36 116.64 72.2 2.62 

3 31.10 47.56 47.50 169.73 104.85 2.62 

4 31.17 47.89 59.34 229.4 141.86 2.62 

5 31.23 47.64 75.36 290.37 179.61 2.62 

6 31.37 47.92 89.84 349.8 216.4 2.62 

 7 31.35 47.90 104.31 404.7 250.18 2.62 

8 31.33 48.14 89.50 349.04 215.76 2.62 

9 31.20 47.65 74.42 285.97 178.83 2.67 

10 31.13 47.65 59.97 230.16 142.44 2.62 
     

Average 2.63 

 

Table 2. Geometrical and weight data for rounded-edge blocks. 

Block # B L H Weight Submerged 
weight 

Density from 
sunken weight 

 [mm] [mm] [mm] [g] [g] [g/cm3] 

1 31.27 47.80 15.74 58.3 36.52 2.67 

2 31.09 47.78 30.41 112.8 70.08 2.64 

3 31.10 47.55 44.63 164.1 100.71 2.59 

4 31.17 48.32 59.42 225.2 137.85 2.58 

5 31.35 47.77 64.83 288.2 175.97 2.57 

6 31.34 48.26 89.72 345.3 212.93 2.61 

7 31.40 47.50 104.27 404.6 247.56 2.58 

8 31.38 47.97 89.48 345.3 210.64 2.56 

9 31.22 47.52 74.50 284.0 174.4 2.59 

10 31.20 47.71 60.06 229.8 142.16 2.62 
     

Average 2.60 
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Table 3. Original and final weights of blocks after slaking and radius of curvature calculation results. 

Block # Weight of 
sharp-edge 
block 

Weight of 
rounded-
edge block 

Weight loss Average radius 
of circular 
rounding 

Operative 
radius of 
curvature 

 [g] [g] [%] [mm] [mm] 

1 60.13 58.33 2.99 2.916 1.944 

2 116.63 112.76 3.32 3.955 2.637 

3 169.71 164.11 3.30 4.490 2.990 

4 229.38 225.24 1.80 3.653 2.435 

5 290.35 288.16 0.75 2.423 1.62 

6 349.79 345.34 1.27 3.425 2.28 

7 410.81 404.62 1.51 3.841 2.56 

8 349.01 345.27 1.07 3.140 2.09 

9 285.97 284.01 0.68 2.389 1.593 

10 230.14 229.78 0.16 1.080 0.72 

  Average 1.70 3.13 2.09 

  Std. Dev. 1.14 0.983  

 

The main parameters affecting the results were the friction angles, which were estimated 
by means of tilt testing following the procedure described in Alejano et al. (2012). The 
friction angles were obtained for the contacts between the blocks and the different bases 
(ϕb) and for the joints (ϕj). Results between tests varied considerably, and there was also a 
decrease in friction angle results due to wear of the tilt surface (Hencher, 2012). Hence, the 
results of these tests should be considered as estimative. The tests were performed four 
times for each contact and physical model. The median was chosen as the estimated value 
given that outliers may well feature in this kind of test (Alejano et al., 2012).  

 

Table 4. Friction angle estimates for contacts with different bases and for joints. 

Test # Sharp Edges Rounded Edges 

Wooden 
Base 

Rough 
Granite 

Polished 
Granite 

Block 
Joints 

Wooden 
base 

Rough 
Granite 

Polished 
Granite 

Block 
Joints 

1 26.8 23.9 18.5 18.2 26.8 20.3 23.5 24.9 

2 32.3 22.1 22.0 17.8 26.7 18.5 19.3 27.5 

3 26.4 20.9 16.0 19.9 23.6 21.6 19.7 27 

4 25.9 17.9 17.6 21.6 25.1 21.2 17.5 26.2 

Median 26.6 21.5 18.05 19.05 25.9 20.75 19.5 26.6 

Average 27.85 21.2 18.52 19.37 25.55 20.4 20 26.4 

St. Dev. 2.99 2.52 2.54 1.74 1.52 1.38 2.52 1.13 

 

From the measurement data it was possible to calculate the failure angle and predict the inclination of the tilt table, α, at failure in order to compare theoretical and laboratory 
results. The geometrical parameters used in the calculations are shown in Figure 8 (above). 
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Note that all the angles depend on the inclination of the base (α). Predictions were computed 
using an Excel application (created by Carranza-Torres) that calculated slope FoS against 
toppling taking into account the rounding of rock block edges.  

4.3. Tilt testing and results  

For the tilt tests, the models were placed on the tilt table in contact, in turn, with the four 
different bases. Before placement, blocks were lightly wiped with a dry cloth and then they 
were slightly pushed against each other to force contact between blocks. Special attention 
was paid to positioning on the stepped wooden base to avoid block overhang.  

The tilt table was raised at a rate of ͳͲ⁰/min and stopped once block movement was 
observed. The inclination angle of the table at the moment of instability was recorded using 
a Leica Disto D5 laser electronic distance meter with precision to one decimal place. Each 
model was tested five times for each base. To compensate for possible deviations in cuts, 
the blocks were turned upside down and the procedure was repeated.  

Tables 5-7 show the angles at which model failure occurred and, for comparative purposes, 
the theoretical predictions. Tables 5 and 6 show the results obtained for each model and 
test and Table 7 summarizes results according to the median for each set and also compares 
the laboratory failure angle results with theoretical FoS failure angle predictions according 
to the updated Goodman and Bray (1976) approach.  

 

Table 5. Sharp-edge model results for four different bases. 

Base  Flat Wooden  Rough Granite  Polished Granite  Stepped Wooden  

Position Normal Upside 
Down 

Normal Upside 
Down 

Normal Upside 
Down 

Normal Upside 
Down 

1 21.8 21.9 20.4 21.1 18.2 17.9 19.2 18.9 

2 21.4 20 21.6 21.3 18 18.5 18.7 18.8 

3 21.3 20.5 20.1 19.9 14.6 15.4 19.2 18.5 

4 21.9 22.1 20.4 20.2 17.5 17.1 18.7 18.5 

5 21 20.2 19.9 20.4 15.1 17.5 18.8 18.8 

Median 21.4 20.5 20.4 20.4 17.5 17.5 18.8 18.8 

Average 21.48 20.94 20.48 20.58 16.68 17.28 18.92 18.7 

St Dev 0.370 0.986 0.661 0.597 1.699 1.171 0.259 0.187 

 

Table 6. Rounded-edge model results for four different bases. 

Base  Flat Wooden  Rough Granite  Polished Granite  Stepped Wooden  

Position Normal Upside 
Down 

Normal Upside 
Down 

Normal Upside 
Down 

Normal Upside 
Down 

1 19.40 17.10 17.80 18.30 15.50 16.60 16.40 15.80 

2 19.70 19.30 14.70 16.70 13.40 17.40 20.00 15.20 

3 19.60 17.10 18.60 17.40 14.40 17.40 16.30 16.50 

4 20.00 17.00 17.50 18.20 15.10 17.40 16.60 15.60 

5 18.60 20.00 17.90 18.70 12.20 18.30 16.60 16.10 

Median 19.6 17.1 17.8 18.2 14.4 17.4 16.6 15.8 

Average 19.46 18.1 17.3 17.86 14.12 17.42 17.18 15.84 

St Dev 0.527 1.437 1.508 0.802 1.337 0.602 1.582 0.493 
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Table 7. Average values of results shown in Tables 5 and 6. 

Base Sharp-Edge Model Rounded-Edge Model 

Prediction Results Prediction Results 

Flat Wooden  20.9 21.4 20.5 19.4 19.6 17.1 

Rough Granite 19.4 20.4 20.4 17.9 17.8 18.2 

Polished Granite 17.5 17.5 17.5 17.4 14.4 17.4 

Stepped Wooden 18.7 18.8 18.8 16.6 16.6 15.8 

 

 

4.4. Results interpretation in terms of FoS against toppling  

To ensure a fair comparison between the physical model results and the theoretical 
predictions in terms of limit equilibrium, FoS values at failure were computed to evaluate 
the accuracy and precision of the results regarding the stability of the models.  

Figures 9-12 graphically compare the predicted behaviour and laboratory results obtained 
for the sharp-edge models (SE, continuous lines) and rounded-edge models (RE, broken 
lines) for each of the four bases, depicting the predicted variation in the FoS against the 
inclination of the base (α). Individual observations are indicated by black circles and 
triangles and the mean of the two medians obtained for each set is indicated by a white 
circle or triangle. The FoS values were computed in an Excel spreadsheet application 
(created by Carranza-Torres) that calculated slope FoS against toppling taking into account 
the rounding of rock block edges.  
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Figure 9. Model behaviour for the flat wooden base.  

 

Figure 10. Model behaviour for the polished granite base. 
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Figure 11. Model behaviour for the rough granite base.  

 

It can be observed that results varied widely depending on the model and the base. The 
greatest variability occurred in the tests carried out on the polished base (standard 
deviation of around 1.5⁰), indicating that in occasion, the model failed when the overall 
computed FoS was right off 1.5. 

 

Figure 12. Model behaviour for the stepped wooden base.  
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The most consistent results were found for the rough granite base, with a standard deviation of Ͳ.͸⁰ for sharp edges and Ͳ.ͳ͸⁰ for rounded edges. However, in terms of 
measurement precision, it can be observed that the stability prediction regarding the sharp-
edge model tends to be slightly underestimated, whereas that of the rounded-edge model 
tends to be overestimated. However, this level of variability is very small in comparison to 
that typically encountered in most rock engineering studies.  

The fact that the mean values for the sharp-edge model were closer to the predicted values 
than the mean values for the rounded-edge model may be attributable to measurement 
error and forward estimates of actual operating radii of curvature.  

 

4.5. Analysis and discussion of the failure mechanisms 

When the failure mechanism of each block was analysed, the theoretical and laboratory 
approaches agreed almost completely for both the sharp-edge and rounded-edge models. 
Figure 13 depicts the models at the moment of failure and Table 8 compares the 
theoretically predicted failure mechanisms with the observed failure mechanisms.  

It can be observed that the theoretical and laboratory approaches agreed, except in regard 
to the wooden bases for the rounded-edge models. For the stepped wooden base, Block 9 
was predicted to topple yet remained stable in the laboratory model, and for the flat wooden 
base, block 3 was predicted to topple but instead slid. It can therefore be concluded that the 
predictions were quite reliable, indicating that the mechanism was well captured by the 
approach, even if some local variation in geometry or frictional response may have 
produced slight inaccuracies in numerical outputs (discussed further in the next section).  

 

Figure 13. Four models at failure: a) sharp-edge model on flat wooden base, b) rounded-edge model 
on flat wooden base, c) sharp-edge model on stepped wooden base, and d) rounded-edge model on 

stepped wooden base. 
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Table 8. Summarized failure mechanisms for the models reflected in Figure 13. T stands for 
theoretical and L for laboratory. 

Block Sharp-Edge Models Rounded-Edge Models 

Flat Wooden Base Stepped Wooden Base Flat Wooden Base Stepped Wooden Base 

T L T L T L T L 

10 Stable Stable Stable Stable Stable Stable Stable Stable 

9 Toppling Toppling Stable Stable Toppling Toppling Toppling Stable 

8 Toppling Toppling Toppling Toppling Toppling Toppling Toppling Toppling 

7 Toppling Toppling Toppling Toppling Toppling Toppling Toppling Toppling 

6 Toppling Toppling Toppling Toppling Toppling Toppling Toppling Toppling 

5 Toppling Toppling Toppling Toppling Toppling Toppling Toppling Toppling 

4 Toppling Toppling Toppling Toppling Toppling Toppling Toppling Toppling 

3 Sliding Sliding Toppling Toppling Toppling Sliding Toppling Toppling 

2 Sliding Sliding Sliding Sliding Sliding Sliding Sliding Sliding 

1 Sliding Sliding Sliding Sliding Sliding Sliding Sliding Sliding 

 

4.6. Discussion of the laboratory results  

The tests and calculations confirm that, as predicted, stability is reduced by the rounding of 
block edges. Our results indicate that rounded-edge models fail 2-3⁰ before sharp-edge 
models. 

It should be noted that where the geometry of the blocks is controlled and well known, as 
was the case here, the friction angle is the parameter that most influences the theoretical 
estimates. Therefore, prediction accuracy greatly relies on accurate calculations of the 
friction angle. However, friction angle precision in measurements was lower than that of 
the failure angle of the models. Since the standard deviation of the model outputs was 
smaller than that of the friction angle measurements, it can be concluded that the overall 
geometry compensated for the individual variations.  

Failure for the polished granite base occurred when only block 1 or blocks 1 and 2 and not 
the whole model slid. This implies that even though the results were influenced by the 
overall geometry of the model more than by the friction angle, variations in the contacts 
may have significantly influenced overall model stability, especially when the predominant 
failure mechanism was sliding rather than toppling and the friction angle of the base was 
rather low. This means that the prediction and the results were in conflict. However, 
discarding those results meant that the prediction satisfactorily estimated the behaviour of 
the physical model.  

As for prediction accuracy, this can be considered rather satisfactory, except for the rough 
granite base, where the discrepancy between predictions and results may be due to an 
underestimation of the friction angle of the base. Indeed, base friction angle measurements 
for this kind of surface are often erratic. For the rounded-edge model, even though 
predictions may differ slightly from the experimental results, they were still quite close to 
the observed values.  

The values obtained for the polished granite base were much lower than the predicted 
values when the first couple of blocks slid first. The low friction angle in these contacts may 
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be due to the lower normal stress associated with the smaller size of these blocks. However, 
when the whole model failed, the failure angle was closer to the predicted value. 

Finally, a possible source of error — other than that related to friction angle measurement 
— may have been a slight rounding of the blocks with sharp edges. Moreover, in line with 
observations by Alejano et al. (2015), for the stepped wooden base, block overhang may 
have influenced results and produced a lower failure angle. Additionally, possible 
imprecisions in measurements of the radii of curvature need to be acknowledged, along 
with irregularities in the circularity of the curved surfaces.  

Summing up, it is evident that rounded block edges affect the overall stability of physical 
models, with laboratory failure angles for rounded-edge models dropping by 2-3⁰ compared 
to values for the sharp-edge blocks. It can therefore be reasonably concluded that artificial 
weathering of the rock blocks indeed influenced the stability of the rounded-edge model.  

The proposed modified equation (Eq. 3) has been demonstrated to be quite accurate despite 
the variations in the friction angles attributable to external factors. Note also that precision 
was similar for both model types, with errors observed in the order of a mere 0.1⁰ — a level 
of inaccuracy well below that typically found in rock mechanics practice and usually 
overcome when the FoS is applied to slope design.  

 

5. Field evidence 

Probably the most important implications of the studied mechanism refer to geological risk 
assessment for natural mountain slopes and geomorphology issues.  Below we illustrate the 
role played by this erosion-triggered instability phenomenon, calculating the influence of 
weathering on block stability by studying blocks subject to toppling mechanisms where 
rounded edges played a relevant role.  

To study the influence of block-edge rounding at field scale in natural slopes, we analysed 
different sets of blocks from Monte Pindo (also known as O Pindo), located in the 
municipality of Carnota, A Coruña, between the Rías Baixas and Cape Fisterra (NW Spain). 
Monte Pindo is part of one of the most representative granitic massifs of the late Variscan 
(Hercynian) orogeny. The rocks in this area are predominantly biotite granite, pink in colour 
with a medium to fine grit and largely isotropic. 

The main characteristic of these granites is the presence of abundant discontinuities, 
generated during the last stages of the intrusion event when these rocks were not exposed 
to the surface (Pueyo–Morer et al., 1995). The massif is crossed by NE-SW and NNW-SSE 
vertical faults, several kms long, caused by a distension movement resulting from post-
kinematic strains that created a dense set of blocks. Another set of discontinuities is 
represented by sheet joints, associated with the batholite structure in the area of the core 
of Mount Pindo (A Moa) — caused by its dome form (Twidale and Vidal–Romaní, 2005) and 
also a consequence of the elastic domain at this stage. 

Chemical alteration moulded the lithology, with spheroidal weathering playing a primary 
role. Spheroidal weathering is also the form of weathering that most influenced this study. 
Jones (1859) described this type of weathering as percolating water flowing through 
fractures or cracks and decomposing adjacent rock masses. Since corners are attacked from 
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three sides, they are the most affected and become more spheroidal. Several theories 
describe the process such rocks undergo until eventually achieving their present shape.  

The Monte Pindo area has a large number of weathered boulders, including toppled 
specimens, mostly single blocks (e.g., Figure 14), but also sets of blocks that had apparently 
experienced toppling failure (e.g., Figure 15).  

 

 

Figure 14. Toppled single block on Monte Pindo (A Coruña, NW Spain). 

 

Figure 15. Apparently toppled series of blocks showing rounded corners on Monte Pindo (A 
Coruña, NW Spain). 
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Although several series of toppled blocks were identified in situ, the geometry of some of 
them was too complex (influenced by three-dimensionality) to make straightforward 
stability calculations for demonstrative purposes. Two cases with a relatively simple 
geometry were selected for analysis, as described below.  

 

5.1. Case study 1 

The first case study referred to a set of four blocks (Figure 16). As found, two blocks were 
already toppled, but another rock was preventing them from falling to the ground, and yet 
another block lay on the ground. The possibility of a fifth block that had already fallen down 
the hill was also taken into account in calculations, although the likelihood of just four blocks 
produced more coherent results. 

 

 

Figure 16. Set of four blocks analysed in case study 1: picture on site (a) and simplified cross-cut 
view (b). 

 

To analyse the role of the rounded edges in the failure of the set, Goodman and Bray (1976) 
calculations were performed to obtain the FoS for both rounded and sharp edges. Set 
geometry (summarized in Table 8) was measured in the field using measuring tape for block 
dimensions, a set-square for corner rounding, a compass with inclinometer to orientate 
rock contacts and standard rock mechanics field equipment. Note that the geometry 
measurements were simplified to make calculations more straightforward, so the results 
must be taken as an overall estimate.  

 

Table 9. Case study 1 block measurements. 

Block Yn (m) Δx ȋmȌ rc (m) 
4 3.8 1.2 0.2 
3 3.8 1.4 0.3 
2 3 0.9 0.23 
1 2 1 0.2 

Note: Blocks are enumerated from the bottom position to the top position. 
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Other relevant geometrical parameters were base inclination α=ͳʹ⁰, assumed friction 
angles of the contacts ϕb=͵ͷ⁰ and ϕj=͵Ͳ⁰, and rock specific weight γ=ʹͷ.ͷ kN/m3. The 
height of the step separating the base of the block 1 and 2 from that of blocks 3 and 4was 
40 cm. By using these parameters for the calculations, the FoS values for blocks with sharp 
edges and rounded edges were found to be 2.71 and 0.93, respectively, thereby justifying 
the present state of the slope. 

 

5.2. Case study 2 

Downhill from the location of the first analysed set of blocks was another set of toppled 
blocks, stable because a block at the end was preventing further toppling (Figure 17).  

 

Figure 17. Set of five blocks analysed in case study 2: picture on site (a) and simplified cross-cut 
view (b). 

  

This second set of five blocks with different thicknesses and sizes was measured for the 
same parameters as the first set of blocks (Table 9). Specific weight and friction angles were 
assumed to be the same since they would be typical values for granitic rocks in this location. 
The base inclination was α=ͳͲ⁰ and the base where all the blocks rested was assumed to be 
planar. The FoS values for blocks with sharp edges and rounded edges were found to be 
3.27 and 0.91, respectively, again justifying the present state of the slope and a clear 
indicator of how rounded corners affected the stability of this natural slope. 

 

Table 10. Case study 2 block measurements. 

Block Yn (m) Δx ȋmȌ rc (m) 

5 1.7 0.6 0.25 

4 2.3 0.7 0.25 

3 2.3 0.4 0.2 

2 2.3 0.5 0.25 

1 2 1.2 0.25 
Note: Blocks are enumerated from the bottom position to the top position. 
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5.3. Discussion of the case study results 

The numeric analysis of the two block sets observed in the field revealed a considerable 
reduction in the FoS after weathering when compared to the FoS before weathering. In the 
first case, the FoS dropped from 2.71, indicating stability, to 0.93, indicating instability. 
Similar results were obtained for the second case, in which the initial FoS of 3.27 fell to 0.91 
when edge rounding was taken into account.  

From these results, it can be concluded that weathering resulting in rounded edges was 
decisive in the failure of these sets of blocks. Water from rainfall — very frequent in this 
area — may also have had some influence on the failure mechanisms. 

 

6. Conclusions 

Although the role played by rounded edges in the stability of rock slopes prone to block 
toppling has featured in the literature, as far as we are aware, no comprehensive approach 
to rigorously analysing this type of problem has been reported. In this study, stability 
against toppling by blocks with rounded edges was assessed from the analytical and 
modelling perspectives at laboratory scale and briefly at field scale.  

On the analytical side, the Goodman and Bray (1976) limit equilibrium equations for 
stability against block toppling were revisited, with a modification introduced to take into 
account the rounding of block edges.  

For physical models tilt-tested in the laboratory, it was observed that the rounded-edge 
model was significantly less stable than the sharp-edge model. When equation accuracy was 
checked against the analytical approach, we found a standard deviation of 1⁰, which is quite 
an acceptable value for the rock mechanics discipline. 

It could also be observed that the impact of edge rounding on stability largely depended on 
the overall slope geometry and on the friction angles, particularly for the contact base. When 
sliding was more relevant, the influence of rounded edges was limited. As demonstrated in 
two case studies of granite blocks on a natural slope, for a small number of not-so-slender 
blocks, the impact of rounded edges on stability tends to grow dramatically. Likewise, 
rounded corners do not play a significant role when there is a large number of slender 
blocks but they do for a small number of thicker blocks.   

In view of our analysis, it can be concluded that — using the expressions presented in this 
article — the role played by the rounding of block corners can be incorporated with a 
reasonable level of accuracy in both analytical approaches to single block stability and 
stability analyses of toppling. 
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Table 1. Geometrical and weight data for the sharp-edge blocks. 

Block # B L H Weight Submerged 
weight 

Density from 
sunken weight 

 [mm] [mm] [mm] [g] [g] [g/cm3] 

1 31.21 47.74 15.66 60.13 37.36 2.64 

2 31.06 47.77 30.36 116.64 72.2 2.62 

3 31.10 47.56 47.50 169.73 104.85 2.62 

4 31.17 47.89 59.34 229.4 141.86 2.62 

5 31.23 47.64 75.36 290.37 179.61 2.62 

6 31.37 47.92 89.84 349.8 216.4 2.62 

 7 31.35 47.90 104.31 404.7 250.18 2.62 

8 31.33 48.14 89.50 349.04 215.76 2.62 

9 31.20 47.65 74.42 285.97 178.83 2.67 

10 31.13 47.65 59.97 230.16 142.44 2.62 
     

Average 2.63 

 

Table 2. Geometrical and weight data for rounded-edge blocks. 

Block # B L H Weight Submerged 
weight 

Density from 
sunken weight 

 [mm] [mm] [mm] [g] [g] [g/cm3] 

1 31.27 47.80 15.74 58.3 36.52 2.67 

2 31.09 47.78 30.41 112.8 70.08 2.64 

3 31.10 47.55 44.63 164.1 100.71 2.59 

4 31.17 48.32 59.42 225.2 137.85 2.58 

5 31.35 47.77 64.83 288.2 175.97 2.57 

6 31.34 48.26 89.72 345.3 212.93 2.61 

7 31.40 47.50 104.27 404.6 247.56 2.58 

8 31.38 47.97 89.48 345.3 210.64 2.56 

9 31.22 47.52 74.50 284.0 174.4 2.59 

10 31.20 47.71 60.06 229.8 142.16 2.62 
     

Average 2.60 

 

 

 

 

 

 

 

 

 

 



Table 3. Original and final weights of blocks after slaking and radius of curvature calculation results. 

Block # Weight of 
sharp-edge 
block 

Weight of 
rounded-
edge block 

Weight loss Average radius 
of circular 
rounding 

Operative 
radius of 
curvature 

 [g] [g] [%] [mm] [mm] 

1 60.13 58.33 2.99 2.916 1.944 

2 116.63 112.76 3.32 3.955 2.637 

3 169.71 164.11 3.30 4.490 2.990 

4 229.38 225.24 1.80 3.653 2.435 

5 290.35 288.16 0.75 2.423 1.62 

6 349.79 345.34 1.27 3.425 2.28 

7 410.81 404.62 1.51 3.841 2.56 

8 349.01 345.27 1.07 3.140 2.09 

9 285.97 284.01 0.68 2.389 1.593 

10 230.14 229.78 0.16 1.080 0.72 

  Average 1.70 3.13 2.09 

  Std. Dev. 1.14 0.983  

 

 

Table 4. Friction angle estimates for contacts with different bases and for joints. 

Test # Sharp Edges Rounded Edges 

Wooden 
Base 

Rough 
Granite 

Polished 
Granite 

Block 
Joints 

Wooden 
base 

Rough 
Granite 

Polished 
Granite 

Block 
Joints 

1 26.8 23.9 18.5 18.2 26.8 20.3 23.5 24.9 

2 32.3 22.1 22.0 17.8 26.7 18.5 19.3 27.5 

3 26.4 20.9 16.0 19.9 23.6 21.6 19.7 27 

4 25.9 17.9 17.6 21.6 25.1 21.2 17.5 26.2 

Median 26.6 21.5 18.05 19.05 25.9 20.75 19.5 26.6 

Average 27.85 21.2 18.52 19.37 25.55 20.4 20 26.4 

St. Dev. 2.99 2.52 2.54 1.74 1.52 1.38 2.52 1.13 

 

 

Table 5. Sharp-edge model results for four different bases. 

Base  Flat Wooden  Rough Granite  Polished Granite  Stepped Wooden  

Position Normal Upside 
Down 

Normal Upside 
Down 

Normal Upside 
Down 

Normal Upside 
Down 

1 21.8 21.9 20.4 21.1 18.2 17.9 19.2 18.9 

2 21.4 20 21.6 21.3 18 18.5 18.7 18.8 

3 21.3 20.5 20.1 19.9 14.6 15.4 19.2 18.5 

4 21.9 22.1 20.4 20.2 17.5 17.1 18.7 18.5 

5 21 20.2 19.9 20.4 15.1 17.5 18.8 18.8 

Median 21.4 20.5 20.4 20.4 17.5 17.5 18.8 18.8 
Average 21.48 20.94 20.48 20.58 16.68 17.28 18.92 18.7 

St Dev 0.370 0.986 0.661 0.597 1.699 1.171 0.259 0.187 



 

Table 6. Rounded-edge model results for four different bases. 

Base  Flat Wooden  Rough Granite  Polished Granite  Stepped Wooden  

Position Normal Upside 
Down 

Normal Upside 
Down 

Normal Upside 
Down 

Normal Upside 
Down 

1 19.40 17.10 17.80 18.30 15.50 16.60 16.40 15.80 

2 19.70 19.30 14.70 16.70 13.40 17.40 20.00 15.20 

3 19.60 17.10 18.60 17.40 14.40 17.40 16.30 16.50 

4 20.00 17.00 17.50 18.20 15.10 17.40 16.60 15.60 

5 18.60 20.00 17.90 18.70 12.20 18.30 16.60 16.10 

Median 19.6 17.1 17.8 18.2 14.4 17.4 16.6 15.8 

Average 19.46 18.1 17.3 17.86 14.12 17.42 17.18 15.84 

St Dev 0.527 1.437 1.508 0.802 1.337 0.602 1.582 0.493 

 

 

Table 7. Average values of results shown in Tables 5 and 6. 

Base Sharp-Edge Model Rounded-Edge Model 

Prediction Results Prediction Results 

Flat Wooden  20.9 21.4 20.5 19.4 19.6 17.1 

Rough Granite 19.4 20.4 20.4 17.9 17.8 18.2 

Polished Granite 17.5 17.5 17.5 17.4 14.4 17.4 

Stepped Wooden 18.7 18.8 18.8 16.6 16.6 15.8 

 

 

Table 8. Summarized failure mechanisms for the models reflected in Figure 13. T stands for 
theoretical and L for laboratory. 

Block Sharp-Edge Models Rounded-Edge Models 

Flat Wooden Base Stepped Wooden Base Flat Wooden Base Stepped Wooden Base 

T L T L T L T L 

10 Stable Stable Stable Stable Stable Stable Stable Stable 

9 Toppling Toppling Stable Stable Toppling Toppling Toppling Stable 

8 Toppling Toppling Toppling Toppling Toppling Toppling Toppling Toppling 

7 Toppling Toppling Toppling Toppling Toppling Toppling Toppling Toppling 

6 Toppling Toppling Toppling Toppling Toppling Toppling Toppling Toppling 

5 Toppling Toppling Toppling Toppling Toppling Toppling Toppling Toppling 

4 Toppling Toppling Toppling Toppling Toppling Toppling Toppling Toppling 

3 Sliding Sliding Toppling Toppling Toppling Sliding Toppling Toppling 

2 Sliding Sliding Sliding Sliding Sliding Sliding Sliding Sliding 

1 Sliding Sliding Sliding Sliding Sliding Sliding Sliding Sliding 

 

 

 

 



Table 9. Case study 1 block measurements. 

Block Yn (m) Δx ȋmȌ rc (m) 
4 3.8 1.2 0.2 
3 3.8 1.4 0.3 
2 3 0.9 0.23 
1 2 1 0.2 

Note: Blocks are enumerated from the bottom position to the top position. 

Table 10. Case study 2 block measurements. 

Block Yn (m) Δx ȋmȌ rc (m) 

5 1.7 0.6 0.25 

4 2.3 0.7 0.25 

3 2.3 0.4 0.2 

2 2.3 0.5 0.25 

1 2 1.2 0.25 
Note: Blocks are enumerated from the bottom position to the top position. 


