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Abstract 

Tannins are secondary metabolites widely distributed in the plant kingdom. They act as growth inhibitors 

towards many microorganisms: upon microbial attack, they are released helping to fight the infection of plant 

tissues. Extraction of tannins from plants is an active industrial sector with several applications from the 

beginning of the industrial era. Actually, tannins have many industrial applications in oenology, animal feeding, 

mining and chemical industry and, in particular, in the tanning industry. But tannins are also considered very 

recalcitrant pollutants in wastewaters of different origins. The ability to grow on plant substrates rich in tannins 

and on industrial tannin preparations is traditionally considered peculiar of some species of fungi that have 

developed mechanisms to tolerate the toxicity of tannins producing a complex enzymatic pattern active in the 

transformation of these substrates, mainly by hydrolysis and oxidation. Filamentous fungi capable of degrading 

tannins could have a strong environmental impact as bioremediation agents mostly in the treatment of tanning 

wastewaters.	
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Introduction 

Tannins are a complex family of water-soluble polyphenolic compounds, synthesized as secondary 

metabolites by many plants (Haslam 1981). They are gathered from many types of trees and plants and can be 

present in barks, leaves, wood, as well in fruits and roots. Extraction of tannins is one of the first industrial 

activities related with nature, being an active industrial sector with several applications from the beginning of 

the industrial era. During the last two centuries several plants have been classified and proposed to be used as 

raw material, but only few are still of interest because really available and containing a sufficient quantity of 

tannins to provide economically sustainable processes. Usually, the production process is very simple, starting 

with a mere hot-water extraction, followed by some purification steps. 

Today the total amount of industrially produced tannins in the word could be estimated around 170.000 

tons per year, mainly extracted from: black wattle or mimosa (Acacia mearnsii) barks, quebracho colorado 

(Schinopsis lorentzii and Schinopsis balansae) hardwood, chestnut (Castanea vesca and Castanea sativa) 

hardwood, tara (Caesalpinia spinosa) pods extract, maritime pine (Pinus pinaster) barks, oak (Quercus spp.) 

hardwood, Chinese gallnut (Rhustyphina semialata) and Turkish gallnut or Aleppo galls (Quercus infectoria) 

(Food Chemical Codex 2003; FAO-JECFA 2005; European Pharmacopoeia 2005). 

The wide application of tannins is mainly due to their ability to bind proteins, to the complexing capacity 

towards metals, and to the antioxidant capacity of the polyphenolic rings in their molecules. Traditionally, 

tannins are used in the tanning of leathers. This operation makes the animal hide a very resistant material to 

microbiological attack. Nowadays, tannins have many industrial applications: i) in oenology as processing aid in 

the clarification process they allow reducing the amount of SO2 to stabilize the color; ii) in animal feeding as 

alternative to antibiotics to limit microbial proliferation; iii) in mining industry, they are used in rare elements 

recovery, as germanium used in the electronic industry; iv) in chemical industry, hydrolysable tannins are used 

as raw materials to produce gallic acid for the production of displays for smartphone and TVs. 

On the other hand, industrial tannins, particularly when used in the tanning industry, can represent a 

serious environmental problem on a global level: even though vegetable tanning agents are natural materials, 

they are poorly biodegradable and act as growth inhibitors towards many microorganisms ultimately affecting 

the receiving ecosystem.  

Filamentous fungi are known to populate usual and unusual ecological niches with even a strong 

anthropization pressure (Chambergo and Valencia 2016) and particular attention should be given to the strains 

isolated from matrixes rich in tannins since they may have developed an adapted metabolism indispensable to 

exploit tannins as source of nourishment. Actually, fungal strains capable to perform the biotransformation of 

polyphenolic substances contained in tannins could have a certain environmental impact as bioremediation 

agents. Moreover, biotransformed tannins could have a number of applications in agriculture, in the feed and 

wine industries and in the tanning process, for example improving the yields of tanning or the leather quality. 

This work presents an overview on the interactions between filamentous fungi and industrial tannins: we 

focused on how tannins exert their action against fungi and, on the other hand, on the mechanisms used by fungi 

to biotransform tannins. Particular attention was given to the use of filamentous fungi for bioremediation of 
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wastewaters containing tannins, with the integration of the most recent data published on this application at 

industrial level. 

 

Chemical composition of tannins 

From a chemical point of view, it is difficult to define tannins due to their heterogeneity in terms of 

chemical composition and molecular weight (MW). Traditionally, tannins have been divided into two large 

groups: hydrolysable and condensed tannins (Haslam 1996; Scalbert 1991). Hydrolysable tannins are composed 

of a carbohydrate core whose hydroxyl groups are esterified with phenolic acids with a MW ranging from 300 

to 5,000 Da (Mueller-Harvey and McAllan 1992). Depending on the substances produced following hydrolysis 

(by acids, basis or certain enzymes), hydrolysable tannins can be classified in gallotannins (yielding gallic acid) 

or ellagitannins (yielding ellagic acid). Tara and chestnut are representative of gallotannins and ellagitannins, 

respectively. Condensed tannins are oligomers where flavonoid units are condensed together with MW ranging 

from 1,000 to 20,000 Da. Quebracho extract is among the most industrially produced tannins predominantly 

composed by oligomers of profisetinidins. 

The chemical composition of tannins could be explained considering as representative three of the main 

tannins: chestnut tannin, quebracho tannin and tara tannin. Chestnut tannin was shown to be a ellagic-type 

hydrolysable tannin by MALDI-TOF mass spectrometry (Pasch and Pizzi 2002). It contains castalagin (Fig. 1), 

which represents, with the isomer vescalagin, around 30% of the product. These substances and their higher 

oligomers are quite stable in chestnut tannin, and derive from rearrangement of polypentagalloylglucose 

naturally occurring in the chestnut wood (Pash and Pizzi 2002). The higher oligomers contain repeating units of 

polygalloylglucose chain where galloyl groups can be linked differently to each other (Pizzi et al. 2009). The 

chestnut tannin also contains digalloyl glucose, glucose and gallic acid (Radebe et al. 2013). 

The composition of tara tannin is based on a polymeric structure where monomers are esters of gallic acid 

on a core of quinic acid. The predominant structure is a pentagalloyl quinic acid (Giovando et al. 2013). The 

tannin contained in Tara pods, after extraction and purification, is known as tannic acid. Tara tannin could be 

represented by the structure in Fig 2. 

The molecular composition of condensed tannins has been studied by means of MALDI-TOF mass 

spectrometry. In particular, quebracho tannin is composed by polyflavonoids of the type of profisetinidins 

(Pasch et al. 2001). More details were reported by Venter and collaborators (2012), who identified quebracho 

tannin as a mixture of polyanthocyanidins oligomers consisting of linear structures as represented by the 

tetramer in Fig 3. 

 

Antimicrobial activity of tannins and fungal adaptation  

The antimicrobial properties of tannins are well known: they act as growth inhibitors towards many 

microorganisms including bacteria, yeasts, and molds. Tannins exert antibacterial effects on a wide number of 

foodborne pathogens and infectious microorganisms (Aguilera-Carbo et al. 2008; Akhtar et al. 2015). For 

example, pomegranate fruits are an important source of hydrolysable tannins (punicalin, punicalagin, 

pedunculagin) and flavonoids (catechin, epicatechin) largely employed in folk medicine for the treatment of 
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various diseases such as ulcers, fever, diarrhoea, and microbial infections. Their pharmacological properties 

have been extensively studied: methanol extract of pomegranate peel has strong broad-spectrum antimicrobial 

properties against both gram-positive and gram-negative bacteria (Kharchoufi et al. 2018; Prashanth et al. 2001; 

Voravuthikunchai et al. 2005). The antibacterial efficacy of tannins is probably due to the alteration of 

biological membrane functionality by oxidative phosphorylation uncoupling, because of their lipophilic 

properties, causing the loss of cytoplasmic content (Cabral et al. 2013; Pane et al. 2016; Gupta et al. 2017). 

Regarding the fungicide action of tannins, Elsherbiny and collaborators (2016) demonstrated that the 

methanol extract of pomegranate peels has a significant antifungal activity on the spore germination and 

mycelial growth of Fusarium sambucinum, one of the causal agents of potato tubers dry rot. Scanning and 

transmission electron microscopy observations revealed morphological modifications of hyphae such as curling, 

twisting and collapse, and dramatic changes of the cytoplasm and organelles. These changes could be the 

consequence of the disruption of cell permeability, which resulted in imbalance in internal osmotic pressure 

(Plodpai et al. 2013; Elsherbiny et al. 2016). Analogously, Kharchoufi et al. (2018), in a recent study about the 

fungicide action of pomegranate peel extract on Penicillium digitatum, observed by optic microscopy noticeable 

changes in the shape of hyphae, which appeared wilted and coiled. Other filamentous fungi susceptible to the 

action of the same extract were Penicillium italicum, Rhizopus stolonifer and Botrytis cinerea (Tehranifar et al. 

2011). 

With reference to yeasts, Endo and collaborators (2010) reported an irregular budding pattern and pseudo-

hyphae in Candida albicans when treated with punicalagin and remarkable morphological alterations, which 

were visible by electron microscopy such as thickened cell wall, changes in the space between cell wall and the 

plasma membrane, vacuoles, and a reduction in cytoplasmic content. Two other Candida species, C. stellatoidea 

and C. guilliermondii were found to be susceptible to the antifungal activity of tannins (Haslan 1996; 

Vasconcelos et al. 2003). 

Despite tannins have such well-documented antimicrobial activities, some filamentous fungi, yeasts and 

bacteria are resistant to them by the development of adaptive mechanisms and pathways for their degradation in 

natural habitats, where they can exploit ecological niches precluded to other organisms. For example Panno and 

collaborators (2013) studied the microbial community associated to Posidonia oceanica, a seagrass known for 

the high amount of tannins ranging between 55 and 95 μg/g of dry weight of plant material. A total of 88 taxa 

were isolated, mainly Ascomycota, and many strains were recognized as good producers of tannases active in 

presence of high salt concentrations. These fungi, hence, were able to colonize and exploit lignocellulose 

residues, playing important ecological roles in marine environments (thanks to the substrate detoxification 

operated by tanning degrading fungi, leaves and rhizomes of P. oceanica may become available to other 

organisms) but can also be very useful in different biotechnological areas.  

Some phytopathogenic Ascochyta species produce tannases, which help the invasion into the host plant by 

hydrolyzing the complex polyphenolic materials present in the bark of plants that usually confer protection 

against the attacking pathogens (Lekha and Losane, 1997). On the other hand, in mycorrhizal symbiosis, the 

ability to degrade tannic acid by Oidiodendron sp. may be necessary for the successful colonization of root 

cortical cells of members of Ericaceae (Li et al. 2006). 
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The ability to grow on plant substrates rich in tannins and on industrial tannin preparations is traditionally 

considered peculiar of some species of the genera Penicillium and Aspergillus, and in particular, of species 

belonging to the “black Aspergilli” group. In addition to Ascomycota, this ability seems to be widespread in the 

fungal kingdom, involving also Basidiomycota and Mucoromycota. 

More than a century ago Knudson (1913) reported for the first time, that tannic acid could be degraded by 

an Aspergillus niger strain. In 1969, Lewis and Starkey reported that pure cultures of some terrestrial fungi grew 

on media containing tannins as sole carbon source, and some Aspergillus and Penicillium species grew on the 

surface of tannery pits and tannery wastes, and tannin-rich woods such as quebracho and chestnut. Moreover, 

different sources of tannins were compared, and both condensed and hydrolysable tannins were used as 

substrates. Aspergillus, Penicillium, Fomes, Polysporus and Trametes were shown to grow better on tannic acid 

(gallotannin) than on chestnut tannin (ellagitannin) or wattle tannin (condensed tannin) (Bhat et al. 1998). 

The number of fungal species capable of growing in the presence of tannins, possibly using them as carbon 

source, is continuously increasing (Table 1). For example, Bhoite and Murthy (2015) cultured Penicillium 

verrucosum on coffee pulp as sole nutrient, and obtained up to 65% tannin degradation with up to 3.93-fold 

higher tannase concentration. More recently, Prigione and collaborators (2018), in a study on the mycobiota of 

industrial tannins, showed the ability of 125 isolates belonging to 10 fungal species to grow on culture media 

containing different types of industrial tannins as sole carbon source. In particular, five species (namely 

Aspergillus acidus, Aspergillus costaricaensis, Aspergillus vadensis, Penicillium minioluteum, Talaromyces 

subinflatus) had never been isolated from similar substrates, nor their ability to use tannins as the sole carbon 

source was reported before. Moreover, 10 fungal strains displayed a strong activity on chestnut and tara tannins 

in biotransformation tests by submerged fermentation. 

The study of Prigione and collaborators (2018) highlighted that the choice of isolating autochthonous 

microorganisms is an appropriate practice to select strains with high applicative potential. Actually, tannases 

production is a strain-specific feature and fungi isolated from tannins are certainly adapted to these extreme 

environments, since the high tannin content exerts a selective pressure on the fungal community. Therefore, the 

isolates likely developed a unique adapted metabolism in order to exploit tannins as source of nourishment. 

 

Biotransformation mechanisms  

Some fungi have developed mechanisms to tolerate the toxicity of tannins, indeed producing a complex 

enzymatic pattern active in the transformation of these substrates. Hydrolysis and oxidation are the main 

reactions that lead to tannins biotransformation. 

Tannases 

Tannases are the main enzymatic class involved in the tannins hydrolysis. Tannases, namely tannin acyl 

hydrolase (EC 3.1.1.20), hydrolyze ester and depside bonds of hydrolysable tannins to produce glucose and 

gallic acid (Lekha and Lonsane 1997). Known to be produced also by bacteria (Reveron et al. 2017;	Tomás 

Cortázar et al. 2018) and plants (Bains et al. 2009), fungal tannases are well known for their catalytic versatility.  

Numerous fungi are known to be tannases producers, including strains belonging to Penicillium, 

Aspergillus, Neurospora, Trichothecium, Fusarium, Trichoderma, Paecilomyces, Emericella, Lenzites genera 
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(Schons et al. 2011;	Ordonez et al. 2011; Bressan Gonçalves et al. 2013; Zakipour-Molkabadi et al. 2013; 

Herrera Bravo de Laguna et al., 2015). The choice of the fungus to be used is a critical point. For instance, 

Zakipour-Molkabadi and collaborators (2013) inoculated eight strains in the presence of tannic acid 1% as sole 

carbon source: tannase activity was always lower than 1 U/ml with the exception of Penicillium sp. that 

produced 4.33 U/ml after 96 h.  

As regards their cellular localization, contrasting results have been reported. Known to be extracellular 

enzymes, de Böer and collaborators (2009) found specific secretion signal sequences on the yeast Arxula 

adeninivorans tannase gene. On the contrary, Aspergillus niger and Verticillium sp. produced both extracellular 

and intracellular tannases (Aguilar et al. 2001; Kasieczka-Burnecka et al. 2007); the productivity of intracellular 

tannases was even higher than extracellular enzymes for Aspergillus aculeatus (Banerjee et al. 2001). 

Purified tannases have been obtained from A. niger (Mata-Gómez et al. 2009, Ramos et al. 2011), 

Aspergillus carbonarius (Serrani Valera et al. 2015),	 Aspergillus awamori (Beena et al. 2011), Aspergillus 

oryzae (Abdel-Naby et al. 2016), A. adeninivorans (Böer et al. 2009), Lenzites elegans (Ordonez et al. 2011), 

Penicillium sp. (Zakipour-Molkabadi et al. 2013) and the antarctic strain Verticillium sp. (Kasieczka-Burnecka 

et al. 2007) among others. Thanks to this information, the phenomenon at the base of tannase production has 

been clarified. Tannases production is an inducible process that can be obtained both in solid state and liquid 

fermentation. The process is mostly controlled by the source of C and the presence in the medium of	structural 

constituents of tannic acid pyrogallol, methyl gallate and gallic acid (Aguilar et al. 2007; Zakipour-Molkabadi et 

al. 2013).  

According to their ecological role, fungi respond to tannins-rich substrates by producing tannases: 

agricultural byproducts (i.e. tamarind seed powder, palm kernel cake, tea and coffee residues, olive mill 

wastewater, etc.) could be used for fungal fermentation to produce high-value products like tannases (Aissam et 

al. 2005; Jana et al. 2012; Baik et al. 2014; Sabu et al. 2015, Bhoite and Murthy 2015). These findings were 

confirmed by in-depth analysis of tannase genes. ATAN1 is the tannase gene of A. adeninivorans, a common 

fungus model whose tannase was characterized and cloned. Its activation is controlled by	 a CAAT box-like 

sequence but no TATA box-like sequence were identified: expression profile revealed that tannase production is 

induced by tannic acid or gallic acid, whereas glucose did not trigger the same effect. When glucose feeding was 

shifted to tannic acid or gallic acid, the gene was rapidly activated and, after 2 h, the enzymes were already 

detectable (Böer et al. 2009). However, there are still few unclarified steps of the induction mechanism, 

including the role of tannin-related compounds as synthesis inducers. For instance, gallic acid enhanced tannase 

productivity of A. niger at higher extent in solid-state fermentation rather than ineffective submerged cultures 

(Aguilar et al. 2001).  

Fungal tannases have a pH optimum at acidic values and are mildly tolerant to high pH and temperature. 

These data are strictly dependent of the microbial enzymatic source, according probably to isolation origin and 

adaptation skills evolved by each fungus. Tannase activity is usually maximal at pH 5.5 and 35°C and are stable 

at pH 5-6 and 25-35°C (El-Tanash et al. 2011; Zakipour-Molkabadi et al. 2013). Particular attention is given to 

those enzymes with better catalytic features. Tannase from P. variotii showed 95% of activity recovery in the 

range of 3.5-7.5 pH and 20-50°C (Schons et al. 2011). The Basidiomycota L. elegans secreted a tannase 
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effective from 40 to 60°C, whose activity was only halved at 80°C (Ordonez et al. 2011). Promoting structural 

modifications on the active site, tannase activity is generally inhibited by heavy metals and metal ions (Serrani 

Valera et al. 2015; Yao et al. 2014), even though some exceptions can be found. Although being inhibited by 

metal ions, a tannase from A. carbonarius was not perturbed by Ag+: the activity even increased up to 32% 

according to the Ag2SO4 concentration (Serrani Valera et al. 2015). Interestingly tannases can be considered 

solvent- and salt-tolerant enzymes, making them good candidates for biotechnological application in wastewater 

treatment (Serrani Valera et al. 2015). Indeed tannase from Penicillium sp. maintained 50% of the activity in the 

presence of 1 M NaCl after 24 hours (Zakipour-Molkabadi et al. 2013). Activity recovery of tannase from A. 

carbonarius was always higher than 80% after exposition to detergents (SDS and Tween-20) and organic 

solvents (methanol, ethanol, acetone, isopropanol, n-butanol and glycerol) (Serrani Valera et al. 2015).  

Enzymes may be used for industrial application, becoming an intriguing alternative to whole cell systems. 

Although a time-saving technology requiring very low operational control, enzymes are still considered as a 

high-cost system with room for improvement at their catalytic stability over time and stressors (Rao et al. 2014). 

Due to their biochemical properties, the demand for industrial enzymes is increasing, asking for the 

development of solutions feasible for industrial application. Stable and re-usable enzymes may overcome 

technical and economic drawbacks, driving to increasing interest in immobilized enzymes (Arca-Ramos et al. 

2018). Tannases have been immobilized using several supports as Eupergit® (Crestini and Lange 2015), carbon 

nanotubes (Ong and Annuar 2018), gelatin (El-Tanash et al. 2011), sodium alginate, gellan gum and pectin 

(Schons et al. 2011), agarose (Bressan Goncalves et al. 2013), magnetic diatomaceous (Silva de Lima et al. 

2018). Advanced techniques have been successfully applied as cross-linking (Ong and Annuar 2018), 

microencapsulation in calcium alginate membranes (Yu et al. 2004), etc. The choice of the immobilization 

method has a central role in the success of the treatment, because inadequate systems can influence the diffusion 

of molecules and products (El-Tanash et al. 2011). Respect to free tannases, immobilization allows repetitive 

cycles (Ong and Annuar et al. 2018) and enhances the enzymatic stability, enlarging the pH and temperature 

range of action (Yu et al. 2004; Schons et al. 2011; Kumar et al. 2015). Immobilization can also protect the 

enzymes from inhibition effects played by metal ions. Tannases from A. aculeatus were more stable by metal 

ions disturbance when immobilized on gelatin: in the presence of several ions, the activity recovery was always 

higher than free enzymes, with peaks of 20% activity increase for K+ (El-Tanash et al. 2011). Positive effects 

can be also observed in the catalytic efficiency of the immobilized enzymes. For instance, tannase from A. niger 

on sepharose beads better converted methyl gallate into gallic acid: process yields increased from 30% up to 

40% (Sharma et al. 2002). According to the authors, immobilized enzymes are less perturbed by the competitive 

inhibition by gallic acid, which is instead electrostatically pushed away from the positively charge support.  

The competitiveness of tannase-based methodology lays the foundation on the rapidity of the catalyzed 

reactions, positively affecting the feasibility and the sustainability of the proposed methodology. A. oryzae 

tannase can hydrolyse tannic acid forming at first penta-, tetra- and tri- galloyglucose during the first 10 min, 

which are further transformed in gallic acid and mono galloylglucose after 15 min. The reaction continues 

having gallic acid as the sole end product after 35 min incubation (Abdel-Naby et al. 2016). Immobilized and 

free tannases can be indeed applied in several biotechnological fields as environmental bioremediation, 
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pharmaceutical and food industry (e.g. clarification of beverage, manufacture of instant tea, etc.). Tannase from 

marine A. awamori catalyzed transesterification reaction of tannic acid producing propyl gallate, an antioxidant 

used in the food industry with nutraceutical importance (Beena et al. 2011). Tannase from marine A. niger 

transformed green tea extracts, rich of polyphenols that are responsible for the formation of sediment and haze 

(Baik et al. 2014). P. verrucosum tannase treatment of pomegrade and aonla juice enhanced the clarity and 

removed astringency (Bhoite and Murthy 2015). It has been proved that tannase-treated straw have a reduced 

content of tannins, along with an improved nutritional content useful for cattle feed (Raghuwanshi et al. 2014). 

 

Gallic acid decarboxylases 

Among tannin-transforming enzymes, tannases are not the only enzymes involved. Following gallic acid 

production by tannases, gallic acid decarboxylases (gallate decarboxylase, EC 4.1.1.59) indeed catalyze its 

decarboxylation to pyrogallol. Known to be produced mainly by bacteria (Zeida et al. 1998;	 Jiménez et al. 

2013), very few of these enzymes have been characterized because highly unstable and known to be sensitive to 

oxygen (Zeida et al. 1998). Recently also fungi have been identified as gallate decarboxylase producers. The 

first report of fungal nonoxidative decarboxylation of tannins is the study of Sietmann and collaborators (2010) 

on the yeast A. adeninivorans: pyrogallol was the main reaction product of gallic acid decarboxylation. Studying 

the transformation pathway, the authors suggested pyrogallol as the substrate for further ring fission, forming as 

end-product the 2-hydroxymuconic acid. This enzyme was further purified and characterized (Meier et al. 

2017). The optimal pH and temperature is between 5.6 and 7.1, and between 25 and 45°C, respectively. The 

enzyme was almost completely inhibited by buffer and some metal ions. 

Gallic acid decarboxylases expression is specifically controlled by gallic acid, whereas other 

hydroxybenzoic acids do not induce its production (Meier et al. 2017). Noteworthy, gallic acid induce also 

catechol-1,2-dioxygenase, even though its role in the tannins degradation is currently unclear (Meier et al. 

2017). This observation may suggest that these enzymes are specifically involved in the transformation pathway 

of gallic acid. Kinetic analysis confirmed this assumption: both bacterial and fungal gallic acid decarboxylases 

have a high affinity for gallic acid, catalyzing reactions against gallic acid but not on structural analogues as 

benzoic acid derivatives (Zeida et al. 1998; Meier et al. 2017). 

	

Laccases 

Fungi also catalyze oxidation reactions leading to the transformation of phenolic compounds as tannins by 

extracellular oxidative reductases as laccases (EC 1.10.3.2) and peroxidases (EC 1.11.1.x) that are among the 

most known and studied fungal enzymes (Janusz et al. 2017). Although not constitutively produced by fungi, 

gene transcription is usually regulated by metal ions and catabolic byproducts of lignin and tannin (Martinez 

2002; Piscitelli et al. 2011). Natural lignin-based materials rich of tannins as corn cob, wheat straw, saw dust 

and evergreen oak litter can be used as growth medium to trigger extracellular secretion of oxidoreductases 

(Tagger et al. 1998; Sahay et al. 2009).  

Laccases are involved in the gallotannin, ellagitannin and proanthocyanidins biosynthesis by plants 

(Niemetz and Gross 2005; Hu et al. 2013) whereas in fungi may trigger oxidation cascades against tannins and 
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their derivates. Indeed, laccases have a high affinity for phenol monomers including catechol, pyrogallol and 

gallic acid (Sahay et al. 2009; Itoh et al. 2016; Zerva et al. 2016). The reaction often leads to the production of 

dimers and phenol polymers (Zerva et al. 2016). 

Although hydrolyzable tannins are usually a better substrate for laccase than condensed tannins (Widsten 

et al. 2009), laccase from M. termophila was used to perform the grafting of polyphenols (condensed and 

hydroxypropylated tannins) to improve wood preservation reducing the water absorption and enhancing the 

hydrophobic properties (Filgueira et al. 2017). Laccases from Myceliophthora termophila were also applied in 

the fiberboard manufacturing, providing an ecological sustainable alternative to common process that use 

formaldehyde-based adhesives: formaldehyde emissions pose indeed important health concern (Widsten et al. 

2009). Laccases activated tannin and wood fibers, by forming radicals that later create covalent bonds among 

fibers by radical coupling: when the interfiber bonds are widespread on the surface, the adhesive effect can be 

considered similar to synthetic resins (Widsten et al. 2009; González-García et al. 2011). This reaction is at the 

base of wood decay prevention strategies, where tannins are under study as natural preservatives against wood 

decaying fungi. Laccase from Trametes hirsuta catalyzed polymerization reactions to fix phenolic preservatives 

as tannin acid and vanillin acid to the wood fibers: the treatment enhanced the resistance to microbial attack by 

the brown-rot fungus Coniophora puteana and the white-rot fungus Coriolus versicolor (Ratto et al. 2004). 

 

Peroxidases 

The role of peroxidases in tannins transformation has been mostly unexplored, even though they are 

recognized among the most powerful fungal enzymes. Despite the redox potential of peroxidases falls in the 

range of 1100–1500 mV, significantly higher than laccases, stability issues mostly limited their application 

(Ravichandran and Sridhar 2017). Post-translational modifications are under study to enhance this feature (Sáez-

Jiménez et al. 2015). Even though gallic acid is involved in peroxidase metabolism as production inducer or 

oxidation cascade mediator (Mishra and Jana 2017; Mishra et al. 2017), very few reports studied their actual 

involvement in tannin degradation. Heme peroxidases from Phanerochaete chrysosporium were capable to 

degrade tannic acid and condensed tannins, and removed tannin components from spent tan liquor. Studying the 

enzymatic kinetic, authors suggested that complexation reactions were indeed followed by the cleavage of 

ethereal linkage, hydroxylation reaction, aromatic ring opening and ultimately oxidation to the end products 

(Gnanamani et al. 2001). 

 

Fungal bioremediation of wastewaters containing tannins 

Tannins are considered very recalcitrant pollutants in wastewaters of different origins, e.g. winery and beer 

wastewater (Moreira et al. 2015; Yague et al. 2000), pulp and paper mill effluents (Vepsalainen et al. 2011), 

olive mill wastewaters (Aissam et al. 2005), landfill leachates (Bardi et al. 2017b) and mainly tannery 

wastewaters (He et al. 2007). The core of wastewater treatment plants (WWTPs) consists of engineered 

biological ecosystems (activated sludge) based on bacteria that allow an economical and sustainable treatment 

of wastewaters (Leyva-Diaz et al. 2017). However, bacteria are ineffective in the removal of compounds 

characterized by high toxicity and recalcitrance, such as tannins (Lofrano et al. 2013; He et al. 2007). A 
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substantial percentage of the Total Organic Carbon (TOC) in the effluent of the biological treatment phase in 

tannery WWTPs is attributable to natural and synthetic tannins (Munz et al. 2009). Condensed tannins, in 

particular, are more resistant to microbial attack than hydrolysable ones and have stronger toxic effect on 

microbial populations (Mutabaruka et al. 2007). Despite a direct inhibiting effect cannot be associated with the 

tannin concentration in the effluent, a lower specific growth rates of ammonium and nitrite oxidising bacteria 

indicates a strong environmental pressure due to the tannery wastewater (Munz et al. 2009). In this regard, the 

WWTP implementation with a fungal treatment could be useful to achieve better depuration results (Zhang et al. 

2015). 

Fungal treatment aimed to the tannin removal can be based on three mechanisms: adsorption (Natarajant 

and Manivasang, 2018), degradation (Zhang et al. 2015), and precipitation induced by extracellular enzymatic 

polymerisation (Yamaguchi et al. 1998). These mechanisms could run at the same time or be sequential (Song 

and Burns 2005). 

In general, biosorption occurs within the first few hours but a change in the process conditions or long term 

operations could cause backward transformation or desorption (Tigini and Varese, 2018). Besides, this option 

requires an adequate disposal or further treatment of the loaded biosorbent, since it consists in the transfer and 

concentration of pollutants from one medium to another. For these reasons, fungal biosorption appears more 

adequate for the treatment of chromium tannery wastewaters, aimed to the recovery of chromium ions 

(Hintermeyer and Tavani, 2013). 

Biodegradation is the most investigated strategy in fungal bioremediation of vegetable tanning 

wastewaters. Despite enzymes can be applied, economic drawbacks have discouraged their investigation in this 

field (Aguilar et al. 2007, Govindarajan et al. 2016). A whole-cell system can degrade tannins, despite the lack 

of information about the acting metabolic pathways (Chávez-González et al. 2012). Several fungal species, 

mainly belonging to Aspergillus, Penicillium, Paecilomyces and Fusarium genera have been reported to utilize 

both hydrolysable and condensed tannins as sole carbon source. However, no report of their application at real 

scale on vegetable tannery wastewaters is reported (Chaudhary et al. 2017). An application to a real scale 

encounters several issues to be addressed, since typical conditions of conventional WWTPs are unfavourable to 

fungal growth. The scale up of an effective fungal treatment is still an actual challenge. 

The first goal is to obtain a stable system in real operative conditions where allochthonous fungi are often 

not able to compete with autochthonous microorganisms (Svobodová and Novotný, 2018). In particular, during 

the start-up period the faster growth rate of bacteria can cause the fungal growth suppression and mycelium 

disgregation, that turn in outclass of fungi (Rene et al., 2010). Moreover, bacterial colonisation can induce a 

drop in enzymatic activity, deeply affecting the treatment effectiveness (Gao et al. 2008). Autochthonous fungi 

can also affect the efficiency of the inoculum development in bioreactors as happens in the presence of 

Trichoderma spp., mycoparasites able to degrade tannins, and consequently often present in tannery 

wastewaters (Badia-Fabregat et al. 2017; Tigini et al. 2018). Therefore, many studies were indeed carried out in 

sterile conditions, but sterilization is impracticable in a full-scale reactor system, due to high operational costs 

(Gao et al. 2008). 



	 11	

Different strategies have been suggested to enhance the resistance of fungi in non-sterile conditions. 

Mature and well-developed fungal inoculum, possibly immobilised in an adequate support, is recommended 

(Spina et al. 2012; Bardi et al. 2017). The control of the environmental conditions (e.g. pH adjustment, nitrogen 

sources) may support the success of fungal bioreactors (Bardi et al. 2017b; Wu et al. 2018). To avoid negative 

effects on fungal metabolism and biomass growth, these operations must be carefully optimised (Badia-Fabregat 

et al. 2017; Wu et al. 2018). 

The addition of co-substrates as selective carbon source, not exploitable by bacteria or with antibacterial 

effect, may help fungi to compete with them (Badia-Fabregat et al. 2017; Bardi et al. 2017b). Moreover, 

alternative carbon sources could be required by white rot fungi for their growth, as they often degrade pollutants 

with a co-metabolism mechanism, as well as enhancing the tannase production (Ordonez et al. 2011). This is 

true also for fungi that produce oxidative enzymes with the aim of detoxifying their environment causing tannin 

precipitation by polymerisation. For instance, malt extract strongly enhanced quebracho removal by Aspergillus 

tubingensis (Spennati et al. 2017). This species produces high amount of laccases in addition to tannases 

(Spennati et al. 2016; Iqbal et al. 2018). Alternatively, lignocellulose material would be a strategic choice, 

operating a selective pressure against bacteria and supporting fungal co-metabolinsm at the same time (Spennati 

et al. 2016). However, the co-substrate addition should be evaluated in order to be a sustainable option when 

applied in a WWTP. Besides, strong catabolite repression of tannase synthesis in A. niger can occur when 

alternative carbon source is added, probably due to changes in carbon/nitrogen ratio (Aguilar et al. 2001). This 

must be kept in mind in the case of treatments specifically aimed to tannin degradation by means of tannases. 

Lastly, bioreactor configurations and elevated retention time (1-3 days) are also useful to acquire a better 

understanding of the process, which facilitates the up-scaling and highlights possible unexpected effects like the 

ecotoxicity increase or excessive biomass growth (Spina et al. 2012; Chanda et al. 2016; Spennati et al. 2017). 

Another future challenge is the investigation of microbial relationships, with the aim to enhancing the 

exploitation of fungal natural degradative ability towards tannins. In nature as well in wastewater oxidative 

biological treatment, microorganisms do not exist in isolated form, and they coexist with each other, 

establishing biological competences among the interacting species. Biotransformation in nature is commonly a 

combination of metabolic pathways from different microorganisms (Ijoma and Tekere 2017). Moreover, 

microbial consortia are more vigorous to environmental variations and better survive in nutrient limitation 

thanks to metabolites exchanging or by trading molecular signals. Each biological entity identifies the presence 

of other organisms in the consortium and acts in response to that (Chaudhary et al. 2017). Microbial consortia 

can serve unknown functions potentially inducing alternative degradation pathways and metabolites in 

bioreactors. In an established consortium, several enzymatic isoforms from different species may be 

complementary in the degradation of complex matrices, and mutualistic or antagonistic relationships may 

ultimately enhance enzymatic production (Ijoma and Tekere 2017). Furthermore, different species showed 

specific activity dependent on the tannin to be treated (Prigione et al. 2018).  Likewise some strains are more 

effective against the Chemical Oxygen Demand (COD) and other on the total phenol content (Perovano et al. 

2011). The development of a consortium is sometimes recommended, in order to achieve better yields in the 

bioremediation of tannins wastewaters. 
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The study of autochthonous fungal consortia could enhance their exploitation in in-situ bioaugmentation 

strategy, too. The presence of fungi in activated sludge is established (Evans and Seviour 2012; Fathi et al. 

2017) as the activity specificity according to pollutants of interest (Tigini et al. 2018). Nevertheless, during 

normal operational condition, hyphal colonisation of flocks in activated sludge is not predominant, so their role 

has been underestimated up to now (Liu et al. 2017). Besides high tolerance and adaptation to pollutant toxicity 

and microorganisms’ competition (Herrero and Stukey 2015), fungi could be involved both in the direct 

degradation of pollutants, and in the formation/stabilisation of adequate ecosystems for the development of 

degrading organisms (Liu et al. 2017).  

Some possible configurations for tannin fungal treatment were hypothesized for future applications based 

on different tannin concentrations (Spennati et al. 2018). Firstly, vegetable tannin bath would be treated with an 

optimized process based on fungal bioreactors, before the conventional activated sludge process, exploiting high 

selective pressure given by high tannin concentration as an important factor for fungal biofilm stability. 

However, the maximum load of tannins treatable by fungi should be established for evaluating a dilution of 

tannery wastewater in case. Another possible strategy could be the treatment in a side-stream reactor with a 

recirculation system in active sludge, with the aim to remove the residual recalcitrant COD. The adjustment of 

nutrient load in the effluent could allow obtaining a stable fungal biofilm. Fungi predominate in the microbiome 

of WWTPs treating nitrogen deficient wastes, indeed (Evans and Seviour 2012). In any case, scientists are 

surely called to face the challenge of implementing of WWTPs with real scale fungal treatment in the next 

future. 

 
Conclusions 

Filamentous fungi are undoubtedly endowed with high application potential in the field of industrial tannins 

biotransformation. The more tannins are finding new applications the more fungi will play an increasingly 

important role both in biotransformed tannin production and in tannin biodegradation. Nevertheless, even 

though there are numerous references to the isolation of fungi from soils, plant material or extreme 

environments capable of degrading tannins, the report of successful applications at real scale are still missing. 

The actual challenge in the next future is to harness the potential of fungi in order to open the way for tannin 

exploitation, taking advantage of the infinite applicative resources of these heterogeneous compounds. 
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Table 1 Filamentous fungi capable of producing tannases and/or of using tannins as sole carbon source.  
 

Fungus Reference 
Ascochyta boltshauseri Lekha and Losane 1997 
Ascochyta pisi Lekha and Losane 1997 
Ascochyta viciae Lekha and Losane 1997 
Aspergillus acidus Prigione et al. 2018 
Aspergillus aculeatus Banerjee et al. 2001; El-Tanash et al. 2011 
Aspergillus aureus  Bajpai and Patil 1997 
Aspergillus awamori Bradoo et al. 1996; Mahapatra et al. 2005; Beena et al. 2011; Prigione 

et al. 2018 
Aspergillus caespitosus Batra and Saxena 2005 
Aspergillu carbonarius Serrani Valera et al. 2015 
Aspergillus carneus Ganga et al. 1977 
Aspergillus costaricaensis Prigione et al. 2018 
Aspergillus ficuum Ma et al. 2015 
Aspergillus fischeri Bajpai and Patil 1997 
Aspergillus flavipes Ganga et al. 1977 
Aspergillus flavus Yamada et al. 1968; Batra and Saxena 2005 
Aspergillus foetidus Banerjee et al. 2001 
Aspergillus fumigatus Batra and Saxena 2005 
Aspergillus japonicus Ganga et al. 1977; Bradoo et al. 1996 
Aspergillus nidulans Ganga et al. 1977 
Aspergillus niger Knudson 1913; Haslam and Stangroom 1966; Lekha and Lonsane 

1994; Bradoo et al. 1996; Rana and Bhat 2005; Cruz-Hernandez et al. 
2005; Murugan et al. 2007; Prigione et al. 2018 

Aspergillus oryzae Iibuchi et al. 1967; Doi et al. 1973; Bajpai and Patil 1996; Bradoo et 
al. 1996; Huang et al. 2007; Abdel-Naby et al. 2016 

Aspergillus parasiticus Ganga et al. 1977; Bajpai and Patil 1996 
Aspergillus tamarii Lekha and Losane 1997 
Aspergillus terreus Ganga et al. 1977; Bajpai and Patil 1997 
Aspergillus tubingensis Prigione et al. 2018 
Aspergillus ustus Ganga et al. 1977 
Aspergillus vadensis Prigione et al. 2018 
Aspergillus versicolor Batra and Saxena 2005 
Chaetomium globosum Lekha and Losane 1997 
Cryphonectria parasitica Farias et al. 1994 
Cunninghamella sp. Bradoo et al. 1996 
Emericella nidulans Bressan Gonçalves et al. 2013 
Fusarium oxysporum Bradoo et al. 1996 
Fusarium solani Bajpai and Patil 1996; Bradoo et al. 1996 
Helicostylum sp. Bradoo et al. 1996 
Lentinus edodes Zheng and Shetty 2000; Vattem and Shetty 2003 
Lenzites elegans Ordonez et al. 2011 
Mucor sp. Belmares et al. 2004 
Myrothecium verrucaria Lekha and Losane 1997 
Neurospora crassa Bradoo et al. 1996 
Paecilomyces variotii Mahendran et al. 2005; Battestin and Alves-Macedo 2007; Schons et 

al. 2011; Herrera Bravo de Laguna et al. 2015; Prigione et al. 2018 
Penicillim crustosum Batra and Saxena 2005 
Penicillium charlesii Bradoo et al. 1996 
Penicillium chrysogenum Rajakumar and Nandy 1983; Bajpai and Patil 1996; Bradoo et al. 

1996; Karpe et al. 2015 
Penicillium citrinum Bradoo et al. 1996 
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Penicillium corylophilum Bradoo et al. 1996 
Penicillium digitatum Bradoo et al. 1996 
Penicillium fellutanum Ganga et al. 1977 
Penicillium glabrum Van de Lagemaat and Pyle 2005 
Penicillium glaucum Lekha and Losane 1997 
Penicillium islandicum Ganga et al. 1977 
Penicillium minioluteum Prigione et al. 2018 
Penicillium montanense Silva de Lima et al. 2014 
Penicillium notatum Ganga et al. 1977 
Penicillium restrictum Batra and Saxena 2005 
Penicillium spinulosum Prigione et al. 2018 
Penicillium variabile Batra and Saxena 2005 
Penicillium verrucosum Bhoite and Murthy 2015 
Rhizopus oligosporus Vattem and Shetty 2002 
Rhizopus oryzae Hadi et al. 1994; Purohit et al. 2006 
Syncephalastrum racemosum Bradoo et al. 1996 
Talaromyces subinflatus Prigione et al. 2018 
Trichoderma hamatum Bradoo et al. 1996 
Trichoderma harzianum Bradoo et al. 1996 
Trichoderma viride Bajpai and Patil 1996; Bradoo et al. 1996 
Trichothecium roseum Lekha and Losane 1997 
Verticillium sp.  Kasieczka-Burnecka et al. 2007 
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Fig. 1 Molecular structure of castalagin, the main component in the chestnut tannin 
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Fig. 2 Molecular structure of pentagalloyl quinic acid, the main component in the tara tannin 
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Fig. 3 Molecular structure of fisetinidin trimer, the main component in the quebracho tannin 

 


