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We propose a design strategy for hybrid metamaterials producing complete omni-

directional band gaps for elastic waves. The wave control in the developed meta-

materials is based on simultaneous activation of scattering mechanisms in phononic

plates and pentamode lattices. The approach is illustrated by numerical results for

a particular hybrid configuration comprising phononic plates with cross-like cavities.

We report complete band gaps of highly tunable width due to variations of geometric

parameters. We show that the wave attenuation performance of the hybrid meta-

materials can be further enhanced through implementation of multiphase lightweight

material compositions. These give rise to omnidirectional band gaps in challenging

low-frequency regions. We note that the proposed design strategy is not limited

to the illustrated configurations, and can be applied to various designs of phononic

plates with cavities, inclusions or slender elements.
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Phononic and acoustic metamaterials demonstrate unusual mechanical properties1,2 and

the ability to control elastic waves by producing band gaps3–5 or negative group velocity.6,7

They draw these remarkable functionalities from their engineered architectures, giving rise to

remarkable dynamic characteristics at various frequency ranges. Numerous two-dimensional

(2D) configurations with periodic patterns have been designed to activate wave manipu-

lations mechanisms, resulting in omnidirectional, complete band gaps for plane-polarized

elastic waves (2D band gaps).8 Applications of such designs to three-dimensional (3D) ge-

ometries are characterized by poor attenuation of oblique or normally incident waves.8,9

Common examples are phononic plates with voids10 or internal resonators11–13 with 2D

band gaps for waves in the plane of a plate, allowing propagation of waves with out-of-plane

components.9,13,14 This issue substantially limits the potential of 2D metamaterials for engi-

neering applications, including seismic wave shielding,15,16 vibration mitigation,3,6,13 or wave

focusing and splitting.17,18

Here, we propose the design strategy specially aimed at extension of 2D band-gap gen-

eration mechanisms in phononic plates into fully 3D settings. We show that the proposed

hybrid metamaterials, based on phononic plate with pentamode lattices architectures, ex-

hibit complete 3D band gaps due to simultaneous activation of the wave scattering in the

plates and peculiar dynamics of pentamode lattices.

Pentamode lattices belong to a class of “extremal materials” introduced by Milton and

Cherkaev.19–21 These essentially 3D structures consist of periodic repetitions of four tapered

bars meeting at point-like joints in a diamond lattice. Ideal pentamodes have zero shear

modulus, and thus exhibit fluid-like dynamics inhibiting propagation of shear waves at any

frequency.19,22,23 Realistic structures are characterized by a finite, non-zero effective shear

modulus. Typically, this modulus is much smaller than the effective bulk modulus.23,24 Shear

and compressional waves are thus weakly coupled. This leads to frequency intervals with a

single compressional mode. As we shall show, the hybrid structures formed by a combination

of pentamode lattices and phononic plates can be designed to produce 3D band gaps. Such

metastructures enable band gap tuning by adjusting geometrical parameters and maintain

structural integrity and stability due to incorporated spheres at the joints.

A typical phononic plate has an essentially 2D configuration, if its cross-section is repli-

cated along the thickness. This simplifies a theoretical analysis of the plate dynamics, pos-

sible optimization procedures and manufacturing process. A 2D formulation of the related
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FIG. 1. (a) Metastructure unit cell; (b) irreducible Brillouin zone for a tetragonal lattice.

elastodynamic problem for the cross-sectional geometry (under assumption on an infinite

thickness of the plate) enables the decoupling of motions into in-plane modes with displace-

ments {ux, uy} and out-of-plane (or transverse) modes with displacements uz orthogonal

to the cross-sectional plane.8,9 Scattering mechanisms for these mode families are governed

by a 2D elasticity tensor and a shear modulus, respectively, that results in 2D band gaps

at different frequencies.9,11 In a 3D plate of finite thickness, the separation of modes is, in

general, not possible. For waves in the cross-sectional plane, the band structures of in-plane

and out-of-plane modes are superimposed; while for oblique incident waves, the two mode

families become coupled, resulting in closing of 2D band gaps (see Figs.1-3 in the Supplemen-

tary Material (SM)). In order to generate complete 3D band gaps, one needs to introduce a

wave attenuation mechanism in the out-of-plane direction, suppressing the coupled modes.

This is typically done by designing a new 3D configuration from scratch, neglecting exten-

sive knowledge and data available for 2D metamaterials. Our approach, in contrast, relies

on preserving and using the wave attenuation abilities of 2D phononic plates in 3D hybrid

metamaterials.

As an example of the proposed hybrid metamaterials, we consider phononic plates with

cross-like cavities, known for their ability to induce wide 2D band gaps,10 interlayered by

pentamode lattices. The metamaterial unit cell (Fig. 1a, on the left) can be periodically

repeated along the z axis to form a 1D meta-chain or populated along the three axial

directions into a 3D structure. An extended face-centered-cubic lattice, typical for the

pentamode, is replaced by a tetragonal lattice with the Brillouin zone shown in Fig. 1b.25

To maintain the structural stability, we introduce elastic spheres, connecting the lattice bars

to each other and to the plates. The center and end diameters of a bar are denoted by D
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and d, respectively; the radius of the connection spheres is R (Fig. 1a, on the right). The

bar length is
√

3a/4, where a denotes the height of the pentamode element. The cross-like

cavity is defined by length b, width c, and depth h. The unit cell dimensions are a1 × a1 × a3
with a1 = a+ 2R and a3 = a+ 2h. The examples considered here are for structures made

of isotropic titanium alloy Ti6A14V26 with Young’s modulus E = 120 GPa, Poisson’s ratio

ν = 0.33, and mass density ρ = 4450 kg/m3.

Wave dispersion is evaluated numerically in Comsol Multiphysics 5.2 by applying Bloch-

Floquet boundary conditions at the plate faces and solving the related eigenfrequency prob-

lem for wavenumbers along the borders of the irreducible Brillouin zone (Fig. 1b). Figure 2

shows the dispersion relation for the hybrid metamaterial with a = 16 mm, d = 0.2 mm,

D = 1.2 mm, R = 0.1a, h = 0.2a, b = 0.9a1, c = 0.25a1. These values are chosen to provide

the widest band gaps for the transverse and in-plane modes in the pentamode lattice and the

phononic plate, respectively.10,22 The color of the bands designates the mode polarization

p =
∫
V

|uz|2dV /
∫
V

(|ux|2 + |uy|2 + |uz|2) dV , where V is the material volume in the unit cell.

Specifically, the blue color indicates in-plane modes with dominant displacements ux, uy,

while the red color represents out-of-plane modes with governing displacement uz.

The band structure diagram in Fig. 2 exhibits a complete 3D band gap highlighted in dark

violet. For waves propagating along the x− y plane (Γ−X −M directions), this band gap

originates from the Bragg scattering in a phononic plate of thickness 2h with the bottom and

upper faces being free from stresses. Such a plate has a band gap, expanding from 55.7 kHz

to 96.4 kHz as indicated in violet in Fig. 2. To understand the band gap formation process

for waves with out-of-plane wave vector components, we note that the structure of the hybrid

metamaterial resembles the lattice of a zincblende crystal with tetrahedral coordination and

alternating types of masses at lattice sides.27 In this case, the wave dispersion along the z

axis can be approximated by a dispersion relation of a 1D diatomic chain.28 The chain is

formed by two lumped masses (represented by a plate with half-spheres and a central sphere)

connected by springs (represented by inclined bars). The solution to the corresponding

dispersion relation (see SM for details) describes two dispersion bands separated by an

extremely wide band gap (between 40.7kHz and 270kHz, light violet region in Fig. 2). Since

the real hybrid structure is formed by elastic plates with distributed, not lumped masses,

the eigenmodes of these plates give rise to additional modes in the band structure (see, for

example, the mode indicated by the blue circle in Fig. 2). The Bloch-Floquet conditions at
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FIG. 2. Band structure diagram for the hybrid single-phase metastructure. Complete 3D band

gap is shaded in dark violet; 2D band gap for in-plane waves in the phononic plate (without the

pentamode) is highlighted in violet; 1D band gap for an equivalent diatomic chain is shown in light

violet. The color of the dispersion bands indicates the mode polarization. The colored circles refer

to the mode shapes at selected frequencies shown at the bottom.

the plate boundaries also generate an additional set of modes, represented, for instance, by

the localized mode marked by the green circle. As a result, the 3D band gap has a narrow

width, as compared to that of the diatomic chain, limited to the frequencies of the 2D band

gap for in-plane modes. Mode shapes at the bounds of the 3D band gap (red and black

circles) reveal strong interactions between the bars and the plates.

The introduced analogy with a diatomic chain indicates the universality of the proposed

design strategy. In other words, hybrid metamaterials can be formed by any phononic

plates exhibiting 2D band gaps (see e.g. Fig. 5 in the SM). This analogy also suggests that

the central sphere in the pentamode unit plays an important role in the wave attenuation

mechanism by the proposed hybrid designs. On the one hand, the decrease of its mass

results in the shift of the upper band gap bound to higher frequencies. On the other hand,
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the smaller the radius of the sphere is, the smaller is the effective axial stiffness of the bars

due to vanishing contact areas between the bars. Our simulations show that there is no

band gap for R < 0.06a (Fig. 6 in SM); for 0.1a ≥ R ≥ 0.06a, there exists a complete 3D

band gap of almost constant width, since the variation of the mass of the central sphere

remain small relative to the mass of the plate.29 Note that the revealed dependence of the

band gap width on R is opposite to that for pure pentamode lattices, in which wide band

gaps for shear waves are obtained for vanishing contact areas between the bars.22

Figures 3a-d show the shapes of iso-frequency contours for the lowest out-of-plane mode

(a-b), originating from zero frequency, and the first mode above the band gap (c-d) for the

two planes of the Brillouin zone (see Fig. 1b). The symmetries of these contours reflect the

rotational and reflective symmetries of the unit cell. For waves in the plane of the phononic

plates, the hybrid metamaterial is isotropic, whereas for waves with non-zero components

kz, it is strongly anisotropic, regardless of frequency. The same behavior is observed for

isofrequency contours of other modes as shown in Fig. 7 in the SM.

Next, we demonstrate that the 3D band gap exists in the hybrid metamaterials with

a wide range of the geometric parameters, i.e. the band gap mechanism is robust and is

not limited to a particular geometrical configuration. Figure 3e shows the band gap width

versus height parameter h, while the other unit-cell parameters are fixed. The violet-shaded

region indicates the frequencies of the 2D band gaps for the phononic plates with cross-

like holes of thickness 2h. One can see that in most cases the 3D band gap occurs at the

frequencies of the 2D band gaps. However, due to the interplay of different sets of modes in

the hybrid metamaterials, it becomes possible to extend the 3D band gap to wider frequency

ranges. Note that by varying the plate thickness, it is also possible to tune the gap width

or even close the band gap, e.g., for 1.6 < h < 2.8mm. For 4 ≤ h ≤ 6mm, the bounding

mode (marked with the black circle in Fig. 2) is shifted towads higher frequencies and the

mode branch separates the band gap into two parts. As the thickness increases (h > 6mm),

in-plane plate modes enter the band gap range and split it further. Similar tunability can

be achieved by varying the center dimension D of the bars (Fig. 8 in SM).

We further consider multi-phase configurations with different material phases for the plate

and lattice units. The key idea here is to improve the structural robustness and stability

by decreasing the weight of the plates, and thus, to design light-weight metamaterials. As

an example, we consider a unit cell of the same structure as in Fig. 1a with the plates
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FIG. 3. (a-d) Directionality of plane wave propagation in two planes of the Brillouin zone at (a, b)

low and (c, d) high frequencies. The frequencies (in kHz) associated with contours are labeled. (e)

The width of 3D band gaps for hybrid metamaterials with varying thickness h of a phononic plate.

The red bar corresponds to the band gap in Fig. 2. Shaded region shows the width of the 2D band

gap for in-plane modes in the corresponding phononic plate.

made of Nylon30 (Young’s modulus E(p) = 2 GPa, Poisson’s ratio ν(p) = 0.41, and mass

density ρ(p) = 1200 kg/m3) and the pentamode bars made of the titanium alloy (Fig. 4a).

Our simulations reveal a complete band gap of 22% gap width for h = 3.5mm. Note that

the mid-gap frequency 22.925 kHz is about 4 times lower than that of the corresponding

single-phase configuration (Fig. 2a), and the effective material density ρeff = 270 kg/m3

(evaluated as the sum of a material phase density multiplied by its volume fraction) is 3.3
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FIG. 4. (a) Unit cell of the two-phase hybrid metamaterial; (b) finite-size structures composed of

five unit cells. (c-d) The normalized transmitted displacements
√
u2x + u2y + u2z/uz0 vs. frequency.

Shaded regions indicate directional (gray) and complete (magenta) band gaps.

times smaller than ρeff = 892 kg/m3 for the single-phase structure, indicating a significant

weight reduction. Hence, apart for the improved robustness, the two-phase light-weight

hybrid configurations enable generation of the band gaps in the challenging low-frequency

range. This is a distinguishing feature of these designs as compared to many other lattice-

type meta-structures, in which the low-frequency waves attenuation is achieved through

introducing of heavy masses.5,26,30

Finally, we estimate the efficiency of wave attenuation by the two-phase configurations by

performing the transmission analysis for finite-size structures. The related frequency-domain

finite-element simulations are performed for 5 unit-cell samples with periodic boundary

conditions at the lateral faces, which are excited by time-varying normal displacements of

amplitude uz0 = 1µm at one end, while the other end is attached to a perfectly matched
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layer (of 5 unit-cell size). We consider wave propagation in Γ− Z and Γ−X directions as

shown in Fig. 4b. The curves in Figs. 4c-d represent the magnitude of normalized transmitted

displacements
√
u2x + u2y + u2z/uz0 averaged upon a single unit cell. Elastic material response

is denoted by black curves. The transmission drops are in a good agreement with band gap

frequencies (shaded regions) or occur at frequencies of modes not excited by the applied

loading (see Fig. 4b in SM). The small discrepancies can be attributed to finite sizes of the

samples. Note that at the frequencies of the complete band gap (magenta shading) the

transmission drops by three orders of magnitude, when the wave passes through four unit

cells only. This highlights good attenuation performance of the hybrid metastructure in

both of the considered propagation directions. Red lines refer to damped material behavior.

The damping in Nylon is implemented using a Rayleigh model with coefficients α = 1s−1 and

β = 4e− 7s, in agreement with the reported experimental data.30 For titanium, we introduce

the loss factor η in the stress-strain relation σ = D(1 + iη)ε and assign η = 0.001 Pa·s

corresponding to minimum experimentally measured losses.31 The magnitude of transmitted

displacements in the damped case is lower compared to the elastic case. This is in agreement

with the predictions for lossy composites.32,33 The amplified damping behavior at f > 25 kHz

can be explained by inapplicability of the Rayleigh model at these frequencies.30

In summary, we have proposed a design strategy for hybrid metamaterials producing 3D

band gaps for elastic waves by combining phononic plates with pentamode units. We have

illustrated the idea considering the example of hybrid metamaterials with a specific phononic

plate and demonstrated the universality of the strategy for plates with various wave atten-

uation mechanisms. This paves the way to the development of numerous 3D metamaterials

with target wave attenuation characteristics by exploiting, in full, the advantages of 2D

configurations. For instance, one can apply powerful topology optimization techniques to

design 2D geometries with required dynamic characteristics at much lower computational

costs as compared to 3D cases, and then introduce them into hybrid designs with pentamode

lattices by ensuring the presence of 2D band gaps.

The proposed hybrid designs involves structural robustness and stability through rein-

forcement of the critical joints. The performance of these metamaterials is shown to be

highly tunable by varying geometric parameters, and the band gaps appear for a wide range

of configurations. Thus, the wave attenuation ability relies on intrinsic property of the pro-

posed structural design, rather than on a specific combination of geometric properties. This
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feature opens the way to the development of metamaterial configurations for broadband

wave attenuation by employing rainbow-type designs with slightly varying dimensions in

neighboring unit cells.34 Moreover, we have shown that multiphase designs of the hybrid

metastructures can further produce low-frequency attenuation characteristics in lightweight

structures. The illustrative example of polymeric plates and stiff pentamodes demonstrates

the potential for a broad range of engineering applications aimed at wave and vibration at-

tenuation. For practical realizations, further detailed studies are required, including energy

localization in the slender bars, non-linear material behavior,35 and reliable experimental

fabrication of the hybrid metastructures.
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